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Abstract—We revisit the question of how many virtual
networks (VNs) are required to provably avoid deadlock in a
cache coherence protocol. The textbook way of reasoning about
VNs says that the number of VNs depends on the longest
chain of message dependencies in the protocol. We show that
this conventional wisdom is incorrect and results in a number
of virtual networks that is neither necessary nor sufficient
for the general system model of an arbitrary interconnection
network (ICN) topology and multiple directories. We have
created a formalism for modeling coherence protocols and their
interactions with ICN queueing. Using that formalism, we have
developed an algorithm that (a) determines the minimum number
of virtual networks required to avoid deadlock and (b) generates
the mappings from message types to virtual networks.

I. INTRODUCTION

Multicore processors must ensure that coherence protocol
deadlocks are impossible. A coherence protocol deadlock
can occur due to cyclic dependencies between coherence
messages. For example, a deadlock can occur if caches C1 and
C2 are waiting for responses from each other, but neither will
respond until the other one responds first. More complicated
deadlocks can arise through cyclic dependencies that involve
the routers of the interconnection network (ICN).

There are three approaches to avoiding cache coherence
protocol deadlocks. The first two have significant drawbacks
or obstacles to deployment, which is why the third is the most
commonly used approach.

• Use negative acknowledgments (nacks). A protocol can
use nacks to avoid deadlocks (e.g., DASH [1] and
FLASH [2]), but the use of nacks risks livelock and
starvation that are difficult to provably avoid. We do not
consider nacks further in this paper.

• Allow protocol deadlocks and recover from them. There
are several schemes that can detect and recover from
potential deadlocks or periodically drain the ICN to avert
potential deadlocks [3]–[6]. We discuss these approaches
in Section VIII, and explain their advantages as well as
reasons why they are not (yet) widely deployed. The
main limitation of the approach is its complexity and the
difficulty of proving that it avoids deadlocks.

• Use virtual networks. Virtual networks (VNs) are simply
dedicated buffers at the ends of physical network links,
where each VN has the capability to buffer at least one

message.1By assigning different messages to different
VNs, we can ensure that certain messages cannot get
blocked due to being behind other messages in the
same buffer. VNs are the most common approach today.
Indeed, today’s industrial strength specifications such as
CHI [7], CXL [8], and Tilelink [9] all prescribe VNs for
avoiding coherence deadlocks.

In this paper, we focus on the solution of VNs. We revisit
the question of how many VNs are required to provably
avoid deadlocks, and develop an algorithm that determines
the minimum number of VNs and generates the mappings
from message types to VNs. Since VNs consume a significant
amount of the ICN power, it is beneficial to reduce their
number [10]. Note that the minimum number of VNs and
the generated VN mappings solve the problem of protocol
deadlock; these results are orthogonal to the need for virtual
channels to avoid routing deadlock.

The textbook way of reasoning about VNs has been to
group messages into classes and assign each class to its own
VN [11]. The number of these VNs is determined from the
longest chain of messages in the protocol. For example, typical
directory protocols group their messages into three classes:
requests, forwarded requests, and responses. Because a request
can trigger the sending of a forwarded request, and a forwarded
request can trigger the sending of a response, we have a chain
of dependencies: request → forwarded request → response. To
avoid a cyclic dependency, the standard solution is to separate
these message classes and assign each class a VN.

We show that this conventional wisdom is incorrect. The
textbook algorithm for determining VNs results in a number
of virtual networks that is neither necessary nor sufficient for
the general system model of an arbitrary ICN topology and
an arbitrary number of directories. We will show examples
of protocols for which the textbook algorithm results in too
few and too many VNs. Having too few VNs can result in
deadlock. Having too many is a waste of router hardware and
power, and it can lead to routers that are slower than they
could be [4].

1Here we distinguish between virtual networks and virtual channels:
whereas the former refers to buffers used to avoid protocol deadlock, the latter
refer to buffers used to avoid routing deadlock. The two concepts compose,
in that a system that requires N virtual networks and C virtual channels,
requires NC distinct buffers at the end of each physical link.
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We have developed a novel, formal approach to modeling
cache coherence protocols and the impact of ICN queuing
on them. Using this approach, we have derived a sufficient
condition for ensuring that a given protocol cannot deadlock.
Leveraging this condition, we have developed an algorithm
that (a) determines the minimum number of VNs required to
provably avoid deadlocks and (b) generates the mappings from
message types to VNs.

Utilizing the insight from our modeling methodology and
VN determination algorithm, we have divided coherence
protocols into three classes. This classification assumes the
most general system model: multiple directories (interleaved
by address) and an arbitrary ICN.

Class 1 protocols are prone to deadlock regardless of the
VNs, i.e., they have protocol deadlock. It is easy to identify
such protocols using a model checker.

Class 2 protocols, which to the best of our knowledge have
not been identified before, are prone to a deadlock even if
every static message is assigned to a unique VN. To avoid
a deadlock, these protocols need a new way of allocating
VNs—e.g., a VN for every unique cache line. This is obviously
not practical, and it is important to ensure that class 2 protocols
are not used. Surprisingly, as we show later, this class includes
several well-known protocols [11].

Class 3 protocols are useful because they require a constant
number of VNs. In fact, we show that all of these protocols,
in practice, require exactly two VNs. The industrial CHI [7]
protocol belongs to this class, despite its specification stating
it requires four VNs. Thus, a practical implication of this work
is that open protocol specifications such as CHI need fewer
virtual networks than they mandate.

We have confirmed the results of our analysis by model
checking a variety of Class 2 and Class 3 protocols. To
consider all possible ICN behaviors in a tractable fashion, we
developed a novel ICN model for use in model checking.

We make the following contributions:

• We show that conventional wisdom for computing the
number of virtual networks is incorrect.

• We create a formal methodology for modeling coherence
protocols and their interactions with ICN queuing.

• We develop an algorithm that determines the minimum
number of VNs and generates the mappings from
message types to VNs.

• We classify protocols into three classes, based on their
VN requirements, including one previously undiscovered
class.

• We show that, under the assumption of an arbitrary ICN
and multiple directories, practical coherence protocols
require two VNs. In particular, we are the first to
formalize the CHI [7] protocol specification, and we show
that two VNs are sufficient to avoid deadlocks.

• We formally verify our results with the Murphi model
checker [12], using a novel ICN model that manifests all
possible ICN behaviors.

II. SYSTEM MODEL AND BACKGROUND

We consider a very general system model, so as to ensure
that our results are broadly applicable. In this system model,
there are some number of caches and one or more directories.
If there are multiple directories, they are assigned to different
cache blocks; i.e., a request for block B will be sent to
the directory that is the home for block B. The caches and
directories communicate over an interconnection network with
an arbitrary topology.

For other system models that are more restrictive, our results
may be conservative. For example, a protocol that deadlocks
in the general case may not deadlock in a restrictive system
model.

In the following, we review some concepts of coherence
protocols. Note that in this work we focus on directory
protocols that enforce the Single-Writer-Multiple-Reader
(SWMR) invariant. These are the most common protocols
employed today in industry and comprise the MOESIF family
of protocols. Our work is applicable to industrial-strength
coherence protocol specifications, including CHI [7], CXL [8],
and OpenCAPI [13].

A. Directory and Cache Controllers

A directory coherence protocol consists of a set of cache
controllers and directory controllers exchanging messages to
keep the caches consistent. There can be multiple directory
controllers, each in charge of handling a mutually exclusive
set of cache block addresses. Formally, these controllers can
be modeled as finite state machines (FSMs) that maintain,
for every cache block individually, the state of that block:
variants of the MOESIF states. These state machines also
specify what should happen when messages pertaining to a
cache block arrive; typically the state of the cache block
changes, and in addition, other messages may be sent to
other controllers. These state machines are often specified in
a tabular format as in Nagarajan et al. [11]—reproduced in
Figures 1 and 2—where the rows contain states and columns
contain message ids, and each cell specifies what happens
when a message is received in a specific state.

B. Static Messages and Dynamic Instances

We distinguish between a message event, which refers to
the message instance during execution, and the message name,
which is a static concept. While the columns in protocol tables
statically specify the names of messages (ids) that will be
received, multiple instances of these messages are received
throughout any execution (dynamically). In this paper, we use
message to refer to the static message name (id), and we use
instances or events to refer to the multiple instances of that
message type that occur during a concrete execution (which
have concrete values, like addresses, associated with them).

C. Coherence Transactions

A cache coherence transaction is initiated by a cache
controller. Each coherence transaction consists of a series of
coherence message events, starting with a request and ending
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in a response. Each of these coherence message events carries
a name that encodes the function of the message. A GetS
message (GetShared), for example, is a read request that is
initiated on a processor load, that is sent from the cache to the
directory. A GetM message (GetModified) is a write request
that is initiated on a processor store, that is again a message
sent from the cache to the directory. In addition to read and
write requests, there are also cache block eviction requests.
Each of these requests (reads, writes, and evictions) is sent
to the home directory that is in charge of that cache block
address; the directory responds to the request if it can, or it
sends a forwarded request to the cache that is currently the
owner of that address; that owner cache then responds to the
directory and/or the original requestor. In some protocols, the
requesting cache additionally sends a completion message to
the directory, signaling the end of the coherence transaction.

It is useful to classify coherence message names into types:
requests (which always go from the cache to the directory),
forwarded requests (from the directory to the cache), and
responses, which can be further classified into data responses
and control responses. Summarizing, each message instance
has a name, and each message name has a type (request,
forwarded request, data response, and control response).

D. Interconnect Network Model

The cache and the directory controllers communicate with
each other across an interconnect network (ICN). Each
controller has one or more outbound and inbound FIFO queues
which buffer outgoing and incoming coherence messages.
(FIFO queues are predominantly used because of their
simplicity.) The ICN could provide point-to-point ordering
or no ordering. These FIFO queues are also known as
virtual networks (VNs), because each FIFO queue simulates
a separate network connecting the caches and the directory.

E. Protocol Stalls

The correctness of coherence protocols hinges on each
coherence transaction appearing to take place atomically.
However, modern ICNs and protocols are highly concurrent,
and so multiple different coherence transactions can be in
flight at any given time. To ensure logical atomicity, a cache
or directory controller may choose to delay the processing
of a message of the same address as that of the transaction
that is currently in flight. This is typically done by blocking
the incoming FIFO queue. Going back to the protocol in
Figure 2, a directory controller that is currently in a transient
state—having received a GetS to address X and having
forwarded the request to the current owner—blocks another
GetM to the same address until the first transaction has been
completed. In other words, the directory blocks the second
GetM until it receives a data response for the GetS This
delay is represented in the protocol as a stall—the semantics
of which is to block the incoming queue until the original
transaction completes.

III. THE FAILURE OF CONVENTIONAL WISDOM

As discussed in Section I, conventional wisdom says that
the number of VNs depends on the longest chain of message
dependencies. For many directory protocols that chain length
is three: request, forwarded request, response. Some protocols,
which follow a response with a completion message from the
requestor to the directory, have a chain length of four. In this
section, we show that this analysis is neither necessary nor
sufficient.

A. Not Sufficient

To demonstrate that conventional wisdom can lead to a
number of VNs that is not sufficient, we show an example
of a protocol for which conventional wisdom would require
three VNs. Start with the standard MSI directory protocol in
Table 8.1 of Nagarajan et al.’s Primer on Memory Consistency
and Cache Coherence [11]—reproduced as Figures 1 and 2.
Assume a system with 3 caches and 2 directories. One of the
directories is the home of block X (denoted Dir-X), and the
other is the home of block Y (Dir-Y).

Initially, cache C1 holds block X in state M, and cache C2
holds block Y in state M. Cache C3 holds neither block. Dir-X
records that X is in state M with C1 as the owner, and Dir-Y
records that Y is in state M with C2 as the owner.

The example execution proceeds in four time steps, each
of which consists of two concurrent actions. We illustrate the
example in Figure 3 and explain it below.

• Time 1
– C1 sends a GetM request for Y to Dir-Y and

transitions to a transient state (denoted IMAD in
Figure 1). Dir-Y receives the request and changes
state to M with C1 as owner. Dir-Y sends a
Fwd9GetM to C2 that is delayed until time 4.

– C2 sends a GetM request for X to Dir-X and
transitions to a transient state. Dir-X receives the
request and changes state to M with C2 as new
owner. Dir-X sends a Fwd9GetM to C1 that is
delayed until time 4.

• Time 2
– C3 sends a GetM for Y to Dir-Y. Dir-Y changes state

to M with C3 as owner. Dir-Y sends Fwd9GetM to
C1.

– C3 sends a GetM for X to Dir-X. Dir-X changes state
to M with C4 as owner. Dir-X sends Fwd9GetM to
C2.

• Time 3
– C1 receives Fwd9GetM for Y, but stalls because it

is in a transient state.
– C2 receives Fwd9GetM for X, but stalls because it

is in a transient state.
• Time 4

– C1 receives Fwd9GetM for X, but it is stalled behind
Fwd9GetM received at time 3.

– C2 receives Fwd9GetM for Y, but it is stalled behind
Fwd9GetM received at time 3.
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I Send Send
GetS to GetM to
Dir/ISD Dir/IMAD

ISD Stall Stall Stall Stall -/S -/S
IMAD Stall Stall Stall Stall Stall -/M -/IMA -/M ack--
IMA Stall Stall Stall Stall Stall ack-- -/M
S Hit Send Send Send Inv-

GetM to PutS to Ack to
Dir/SMAD Dir/SIA Req/I

SMAD Hit Stall Stall Stall Stall Send Inv- -/M -/SMA ack--
Ack to
Req/IMAD

SMA Hit Stall Stall Stall Stall ack-- -/M
M Hit Hit Send PutM Send data Send

+data to to Req & data to
Dir/MIA Dir/S Req/I

MIA Stall Stall Stall Send data Send -/I
to Req & data to
Dir/SIA Req/IIA

SIA Stall Stall Stall Send Inv- -/I
Ack to
Req/IIA

IIA Stall Stall Stall -/I

Fig. 1. MSI Cache Controller from Nagarajan et al. [11]

PutS- PutS-Last PutM + PutM + data
GetS GetM NonLast data from from Non- Data

Owner Owner
I Send data to Send data to Send Put-Ack Send Put-Ack Send Put-Ack

Req, add Req Req, set Owner to Req to Req to Req
to Sharers/S to Req/M

S Send data to Send data to Req, Remove Req Remove Req Remove Req
Req, add Req send Inv to Sharers from Sharers from Sharers, from Sharers,
to Sharers clear Sharers, set send Put-Ack send Put-Ack send Put-Ack

Owner to Req/M to Req to Req/I to Req
M Send Fwd-GetS Send Fwd- Send Put-Ack Send Put-Ack Copy data Send Put-Ack

to Owner, add GetM to to Req to Req to memory, to Req
Req and Owner Owner, set clear Owner,
to Sharers, Owner to Req send Put-
clear Owner/ SD Ack to Req/I

SD Stall Stall Remove Req Remove Req Remove Req Copy
from Sharers, from Sharers, from Sharers, data to
send Put-Ack send Put-Ack send Put-Ack memory
to Req to Req to Req /S

Fig. 2. MSI Directory Controller from Nagarajan et al. [11]

The underlying reason for the deadlock is that a Fwd9GetM
for one cache block is stalling and a Fwd9GetM for another
cache block is stuck behind it. The cache cannot process the
first Fwd9GetM until it has processed the second.

To avoid deadlock, these two messages would need to be
on separate virtual networks, but they are both the same type
of message. One way to separate them would be to provide a
separate set of virtual networks for every cache block, which
is not practical.

We have found multiple examples like this for well-known
and seemingly standard protocols [11]. We hypothesize that
they may have been designed for one directory, and might not
have been verified or tested with multiple directories.

B. Not Necessary

We now present two examples in which the number of VNs
is less than what conventional wisdom would require.

The first example is almost trivial. Imagine a directory
protocol in which no messages ever block, at either caches or
directories.2 In such a protocol, one does not even need VNs!
There is no need to separate messages, because messages can
never get stuck behind each other. Nevertheless, conventional
wisdom would have determined the need for three or four
VNs, depending on the chain of dependent message types.

2A completely non-blocking directory generally requires the presence of
an O(wned) state (e.g., an MOSI or MOESI protocol) and a directory with
enough state to track the maximum number of possible outstanding requests
to main memory.
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Fig. 3. Deadlock Example

The second example is the industrial CHI protocol [7]. The
CHI specification includes four VNs. Our analysis, shown
later, reveals that CHI needs only two VNs.

IV. FORMALISM FOR STATICALLY ANALYZING
COHERENCE PROTOCOLS

The main claims of this paper all pertain to the existence of
deadlocks in cache coherence protocols. To be able to reason
about protocols and detect deadlocks, we develop a formalism
for statically analyzing coherence protocols and ensuring the
absence of deadlocks.

A. Modeling Coherence Transactions

We model coherence transactions as follows: We define a
relation causes−−−−→⊆ M ×M on pairs of message names, where
m1

causes−−−−→ m2 iff the message named m1 can appear before
a message named m2 in a coherence transaction. Note that
the relation above is static; this means that there exists a
coherence protocol execution in which the message named
m1 comes before m2 in a coherence transaction, even if
this is not the case for every protocol execution. The class
of coherence protocols we look at—the MOESIF family of
protocols—involves a rich set of coherence transactions. In the

MSI protocol in Figures 1 and 2, some coherence transactions
can be as simple as:

GetS
causes−−−−→ Data (1)

A GetS (GetShared) request from a cache causes a data
response from the directory itself if the block is owned by the
directory. More complex transactions might take the following
form:

GetS
causes−−−−→ Fwd9GetS

causes−−−−→ Data (2)

In this case, a GetS request from cache-1 leads to a forwarded
request being sent to another cache (cache-2, the current
owner), which then responds back to the directory and the
requestor with the data response (Data). Even more complex
coherence transactions are possible. Across every MOESIF
protocol, however, the longest chain is at least as long as:

req
causes−−−−→ fwd

causes−−−−→ res

i.e., a message of type request from a cache causing a message
of type forwarded request being sent from the directory to
another cache, leading to a message of type response from
that cache to the requesting cache.
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B. Computing the “causes” Relation

Computing causes−−−−→ is straightforward, given the protocol
state transition tables for the cache and directory controllers
(e.g., Figures 1 and 2). The basic idea is to start from a state in
the cache and perform a depth-first traversal of the sequence
of messages in response to each processor core request (load,
store, and eviction). Note that this is a static analysis of the
protocol. During the traversal, when a message is sent to a
controller, we again trace the sequence of messages for every
state that the controller could be in. Every sequence thus starts
with a request from a cache and ends in a response. All of these
sequences together thus define the causes−−−−→ relation. Going back
to the protocol in Figures 1 and 2, tracing the causes−−−−→ relation
for a read yields equations 1 and 2. Applying a similar process
for the write and the eviction yields the complete causes−−−−→
relation for the protocol.

C. Modeling Protocol Stalls

We model the fact that a message name can stall another
message name via a relation called stalls−−−→⊆ M × M , where
m0

stalls−−−→ m1 if, and only if:
• there exists a controller which accepts a message named

m1 in some state, say S, and
• after receiving a message named m0 and transitioning to

a transient state, say T , the controller stalls a message
named m1 (to the same address as that of m0).

Essentially, it means that m1 can be stalled by a controller after
receiving m0. In the example discussed earlier in Section II-E,
GetS

stalls−−−→ GetM as the GetM is stalled because of a prior
GetS message. (Looking at the protocol in Figure 2, we can see
that the outstanding GetS can also stall a new GetS request.)

How can a message m1 that is stalled ever get un-stalled?
We know that when m1 is stalled, it is because of a coherence
transaction (say t0) involving m0, i.e. m0

stalls−−−→ m1. Thus,
m1 will stall until the coherence transaction t0 completes.3 In
other words, a protocol stall induces a dependency in which a
coherence message from one transaction—the one that is being
stalled—waits for one or more messages from the transaction
that caused it to stall.

What precisely are these messages that m1 waits for? All
messages m belonging to the transaction t0 that come after
message m0 in causes−−−−→:

M2 = {m | m0
causes−−−−→

+
m}

Here, the notation causes−−−−→
+

denotes the transitive closure of
causes−−−−→. We can thus model this dependency between messages

via a relation called “waits for”, waits−−−→⊆ M ×M , where

∀m2 ∈ M2, m1
waits−−−→ m2.

3It actually will only stall until that controller has finished with the
transaction. There might be more messages (e.g. an acknowledgment) that
are part of the transaction but received by a different controller. We also
consider those here in an over-approximation, but this is not a problem, as
this just makes our analysis more conservative.

This means that there is an execution in which message m1

from transaction t1 (to cache block address x) is stalled,
waiting for the set of messages M2 belonging to another
transaction t0 (also to address x).

Summarizing, suppose a message m0 causes message m1

to be stalled; then m1 waits for the set of messages that follow
m0 in the causes−−−−→ relation. This yields the equation:

waits−−−→=
stalls−−−→

−1

;
causes−−−−→

+
(3)

Here, stalls−−−→
−1

means the inverse of the relation stalls−−−→ and
(; ) means the composition of the relations.

Going back to our previous example (Figure 2), recall that
the directory controller receives a GetM when it is in the
transient state SD. In this state, it (a) has processed a GetS
from an earlier transaction, (b) has sent a Fwd9GetS to the
owner and (c) is waiting for a Data response. Note that GetM
is made to stall until the data response is received, which in
turn requires the Fwd9GetS message to have been received by
the owner. Thus:

GetM
waits−−−→ Fwd9GetS, GetM

waits−−−→ Data

Note again that waits−−−→ is a static relation.

D. Computing the “waits for” Relation

As we can see from Equation 3, the waits−−−→ relation can
be computed simply from the causes−−−−→ and stalls−−−→ relations. We
have seen how to compute causes−−−−→, so we just need to compute
stalls−−−→. This, we can obtain from the protocol state transition

table: We first identify all of the stalls in the protocol. For each
stall, it is trivial to identify the message (m2) that is stalled.
Suppose the stall happens in a transient state; We can go back
to see what message (m1) caused it to be sent to the transient
state. From this we can infer that m1

stalls−−−→ m2.

E. Modeling ICN Queuing

When a message named m is stalled by a controller, it
blocks an input queue: it blocks the VN to which m is mapped.
This has the effect of blocking every other message mapped to
the same VN that could be queued behind m. More concretely,
suppose a message named m1 mapped to some VN could be
stalled, and suppose there is another message m2 mapped to
the same VN, which could queue behind m1; we model this
situation via a relation called queues behind,

queues−−−−→⊆ M×M ,
where:

m2
queues−−−−→ m1

Note that, in the general case, these two messages m1 and m2

could belong to transactions of different addresses.
How does one compute

queues−−−−→? In this work, we do not
want to assume any specific ICN properties. (Indeed, industrial
coherence protocol specifications such as CHI or CXL do not
make any ICN assumptions either.) Thus, we are forced to
make the conservative assumption that any message allocated
to the same VN as the stalling message can queue behind it.
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V. PREVENTING DEADLOCKS

With our formal vocabulary for coherence protocols, we are
now in a position to analyze the conditions that can lead to a
deadlock.

When does a deadlock occur? A deadlock occurs in a
protocol execution when there is a circular dependency
between message events across different coherence
transactions: i.e., message events (dynamically) waiting
for one another resulting in a circular dependency.

Recall from the previous section that protocol stalls are
the primary reason for these waits. Without a stall in the
protocol there can be no deadlocks. There is a secondary
reason, and that is when a message gets queued behind other
stalled messages.

Before we derive the precise condition for a deadlock, we
first classify deadlocks into two kinds: protocol deadlocks and
VN deadlocks. In a protocol deadlock, a circular dependency
between messages is caused entirely due to protocols stalls. In
contrast, in VN deadlocks at least some of these dependencies
are because of messages queued behind one another in a VN.

A. Protocol Deadlocks

Some protocols might have inherent dependencies between
messages that result in a deadlock regardless of the number
of VNs. The problem is not with the number of VNs or
their mappings but with the protocol itself. These protocols
have a protocol deadlock, and they are the Class 1 protocols
mentioned in Section I.

Refer back to our example protocol shown in Figures 1 and
2, and consider the following protocol execution. Assume that
there are two caches — Cache 1 and Cache 2 — both of
which are caching a particular block in state S. Suppose that
both of them want to write to the block; hence they each send
a GetM9e to the directory and transition to state SMAD. (We
use an ‘e’ at the end of the message name to indicate that
we are referring to the dynamic message event, as opposed
to the static message name.) Assume that the GetM9e from
Cache 1 reaches the directory first; accordingly, the directory
sends an Inv9e message event to Cache 2 and moves to state
M. (Because the GetM9e from Cache 2 reaches the directory
second, and the directory is in state M with Cache 1 as the
owner, the directory sends a Fwd9GetM9e to Cache 1.)

Referring to Figure 1, the Inv9e would reach Cache 2 in
state SMAD. As per the cache controller specification, the
message is served and an Inv9Ack9e message event is sent
back to the requestor, which is Cache 1. Suppose that the
protocol instead stalls the incoming Inv9e message on SMAD.
In that case, the Inv9e message event would wait for a response
for the ongoing write that has been initiated at Cache 2;
in particular, it would wait for the Data9e response from
Cache 1, which in turn means that it would wait for Cache 1
to process the Fwd9GetM9e from the directory. Thus in this
execution: Inv9e

dyn-waiting−−−−−−−→ Fwd9GetM9e. (Note here that
dyn-waiting−−−−−−−→ is a dynamic relation on message events with the

first message event waiting for the second in the execution.)

But when the Fwd9GetM9e reaches Cache 1, Cache 1 would
be in state SMA and would stall the Fwd9GetM9e until it
receives the Inv9Ack9e from Cache 2. Thus, in this execution:
Fwd9GetM9e

dyn-waiting−−−−−−−→ Inv9e, leading to a cycle.
Generalizing, a protocol deadlock means that there is an

execution with a cycle in
dyn-waiting−−−−−−−→, and none of these

dependencies in the cycles are due to messages being queued
behind one another in a VN. Such protocols are easily
identified using a model checker. We model check the protocol
with just one address4 and with every message allocated its
own VN; if there is a deadlock, then that indicates a protocol
deadlock. In this work and in the rest of the discussion, we
assume that the given protocol is correct in the sense that
it does not suffer from a protocol deadlock. Tools such as
ProtoGen [14] can be used to ensure that there are no protocol
deadlocks.

Our focus is on ensuring that a given protocol (without any
protocol deadlocks), will not experience any deadlocks due to
VNs and their mappings to message names.

B. VN Deadlocks

A deadlock may arise because of non-stalling messages
getting queued behind other stalling messages. These
deadlocks arise not because of a protocol bug, but because
two messages happened to be allocated to the same VN.

Consider the directory controller in Figure 2. We saw
earlier that a GetM can get stalled behind an ongoing GetS
transaction. When the data response for the GetS arrives it can
get queued behind the stalling GetM leading to the following
cycle: GetM waits−−−→ Data

queues−−−−→ GetM.
Having multiple virtual networks is a way to avoid these

deadlocks. A message that was originally queued behind a
stalling message—if it was allocated to a different virtual
network as that of the stalling message—would now not be
queued behind and can progress. In the above example, if
requests (cf. GetM) and responses (cf. Data) are assigned
to different VNs, this deadlock can be avoided. This is why
coherence protocol specifications prescribe multiple virtual
networks and allocate message names to specific virtual
networks to avoid VN deadlocks.

Generalizing, we see that the interaction of stalled messages
waiting for other messages, and stalled messages blocking
other messages could lead to a deadlock. We call this deadlock
a VN deadlock.

C. Sufficient Condition to Prevent VN Deadlocks

In order to ensure that there are no VN deadlocks, we
need to have enough VNs so that there is no cycle in the
combination of waits−−−→ and

queues−−−−→. What sort of combination?
Not a simple union, but a union where there is at least one
waits−−−→ edge. Why? As we saw earlier, without a stall (which

4One address is sufficient for protocol deadlocks as these deadlocks are
about protocol bugs and not about one coherence transaction blocked in a
VN behind another transaction for a different address.
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would manifest as a waits−−−→ edge), there can be no deadlocks.
More precisely:

acyclic(
waits−−−→; (

waits−−−→
⋃ queues−−−−→)∗) (4)

Here, (
waits−−−→

⋃ queues−−−−→)∗ denotes the reflexive, transitive
closure of the union of waits−−−→ and

queues−−−−→. We assert that
Equation 4 is sufficient to prevent deadlocks: i.e., if the
equation above is acyclic then there can be no deadlocks.

To see why, let us suppose there is a deadlock; we will then
show that Equation 4 cannot hold. Because we have assumed
there is a deadlock, by definition, there has to be a controller
(say C1) whose state machine cannot transition to any other
state. This means that the controller C1 must be stalled in a
(transient) state T . (Otherwise, it would be able to transition
to a different state.) Let m1 be the message that is stalled in
T . Since C1 is stalled, it is waiting for a message m2 (with
m1

waits−−−→ m2) which must come from some other controller
(say C2). Since we have assumed there is a deadlock, at this
point, the transition that makes C2 send message m2 cannot
happen. This must be because C2 is either waiting for a
different message (say m3) or because message m2 is queued
behind a different message (say m4). We can thus successively
build a chain of messages that must, inevitably, end in a cycle
because there is a finite number of controllers and messages.
The presence of a cycle though implies that Equation 4 does
not hold.

D. Preventing Deadlocks

Equation 4 reveals two ways to prevent a deadlock: prevent
messages from waiting for one another or prevent messages
from being queued behind one another. The root cause of a
message waiting for another message is a stall in the protocol.
Therefore, avoiding stalls in the protocol is a way to prevent
or reduce waiting. We do not explore this approach in this
paper, insofar that we do not modify the protocol to prevent
or reduce stalling.

The second way to prevent deadlocks is to reduce or
prevent messages from being queued behind other messages by
allocating messages on to different VNs. This is the focus of
our work: we are interested in minimizing the number of VNs
necessary to prevent a deadlock. We will develop an algorithm
for this in the next section. Before that we discuss the limits of
the approach: for certain protocols it is impossible to prevent
a deadlock even if we assign each message to a unique VN.

E. Protocols with Inevitable VN Deadlocks

Suppose a protocol has a cycle in the waits−−−→ relation. We
argue that this protocol will deadlock even if every message
name was allocated to its own unique VN. Intuitively, this is
because a cycle in waits−−−→ allows us to construct a dynamic
execution (shown below) where every message queues behind
another message of the same name with a different address.
Such a cycle can only be prevented if two messages of the
same name can be allocated to a different VN, which obviously
is impossible. We call such protocols Class 2 protocols.

a) A cycle in waits−−−→ implies a VN Deadlock: Suppose that
there is a cycle m1

waits−−−→ m2...mn−1
waits−−−→ mn

waits−−−→ m1

in waits−−−→, where each mi is a message name in the protocol.
Recall, though, that we have assumed the absence of a protocol
deadlock, which means that there exists no corresponding
dynamic cycle, in

dyn-waiting−−−−−−−→, with messages of those names.
We know, however, that for every individual edge mi

waits−−−→
mi+1 in the cycle, there exist events mi9e, mi+19e and a
protocol execution such that mi9e(a)

dyn-waiting−−−−−−−→ mi+1(a)9e,
for some address a. In other words, we may not have a chain
of

dyn-waiting−−−−−−−→ relating all message events to the same address,
but we are guaranteed to have

dyn-waiting−−−−−−−→ edges relating pairs
of message events for each pair in the cycle.

Crucially, the state machines for different addresses are
independent, so we can combine these pairs of events using
different addresses to construct a cycle. We do this by
chaining these pairs of events with

queues−−−−→ edges, as follows:
m19e(a)

dyn-waiting−−−−−−−→ m2(a)9e
queues−−−−→ m29e(b)

dyn-waiting−−−−−−−→
m3(b)9e, . . . ,mn−1(c)9e

dyn-waiting−−−−−−−→ mn9e(c)
queues−−−−→

mn9e(d)
dyn-waiting−−−−−−−→ m19e(d)

queues−−−−→ m19e(a).
Note that each of the

queues−−−−→ edges in the cycle above relates
messages of the same name. Therefore, it would be impossible
to break the cycle by assigning different messages to different
VNs.

b) Explaining the Deadlock in Section III-A: We can
now explain why the protocol presented in Figures 1 and
2 suffered from this issue. The cache controller stalls a
Fwd9GetM and that Fwd9GetM could potentially wait for
another Fwd9GetM. In other words there is a cycle in
waits−−−→: Fwd9GetM

waits−−−→ Fwd9GetM. To prevent this cycle,
we would need to somehow distinguish these messages with
the same name and assign them to different VNs; for example
it is theoretically possible to allocate a distinct VN for every
cache block address, but that would be impractical.

VI. PRACTICAL PROTOCOLS NEED TWO VNS

The key claim of this paper is that practical protocols
(neither Class 1, which suffer from protocol deadlocks, nor
Class 2, which suffer from inevitable VN deadlocks) need
only two virtual networks (VNs) to prevent deadlocks. We
use our formalism to derive an algorithm to assign virtual
networks such that no deadlocks can occur. This allows us to
substantiate this claim.

A. Algorithm for Assigning Virtual Networks

In this section we develop an algorithm for determining
the number of VNs necessary to avoid deadlocks. The core
idea is that we use Equation 4 to statically compute the
cycle(s) that can potentially cause a deadlock (if any). For
this initial computation, we assume one VN, which means
each message can potentially queue behind any other message.
We then minimally partition the messages of the protocol so
that we break cycles in Equation 4. Partitioning two messages
is tantamount to assigning those to two different VNs. To do
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this, we reduce the problem of minimizing the number of VNs
to a known problem from graph theory: that of computing a
minimum feedback arc set [15]. In the following, we explain
this reduction and why it is correct.

a) Constructing the Graph: To reduce the assignment of
VNs to a graph problem, we must first construct an appropriate
graph. Let P be a protocol, given as state-transition tables for
the directory and cache controllers. We then define the directed
graph G(P ) = (E, V ) as follows. The set of vertices is given
by message names m ∈ M , i.e., V = M . For two messages
m1,m2, we add an edge (m1,m2) iff there exist a path from
m1 to m2 starting with a waits−−−→ edge and consisting then of
waits−−−→ or

queues−−−−→ edges. In other words

E =
waits−−−→; (

waits−−−→
⋃ queues−−−−→)∗ (5)

The set of edges of the graph G, therefore, corresponds exactly
to the relation of Equation 4. Computing this graph is trivial
since we know how to compute waits−−−→ and

queues−−−−→ relations
(as outlined in the previous section).

We want to minimally remove edges in this new graph G
so that it is acyclic; recall, from Equation 4 that acyclicity
is necessary to avoid deadlocks. Then, we want to translate
these removed edges to their corresponding

queues−−−−→ relations
between messages in the protocol; recall that we can only
break cycles by removing

queues−−−−→ relations (i.e., assigning the
two messages in the relation to diferent VNs). For this, we
remember the (minimal) paths that we used to build the edges
in G, satisfying Equation 5. Note that there can be multiple
minimal paths between any two messages consisting of waits−−−→
and

queues−−−−→. Since we assume a single VN at this point, these
paths can only be either a single waits−−−→ or a waits−−−→ followed
by a

queues−−−−→ or waits−−−→. For each edge e, we remember all the
queues−−−−→ relations we find in all minimal paths; We call this set
qs(e).

b) Breaking the Cycles: A feedback arc set S of a graph
G is a set of edges in G, such that S has an edge for every
cycle in G and removing the edges in S from G makes G
acyclic. If S is minimal with this property, it is called a
minimal feedback arc set [15]. This can also be computed
in a weighted version, where the edges have weights.

From the graph G we computed earlier, we want to remove
just the

queues−−−−→ relations to make it acyclic. Thus, we define
the weights as follows:

w(e) =

{
1, if qs(e) ̸= ∅,
2|V | + 1, otherwise.

(6)

With this definition, the sum of the weights of all edges e,
where the path in Equation 5 contains a

queues−−−−→ edge, is less
than the weight of any single edge that consists only of waits−−−→
edges. In particular, for an edge e in a minimal feedback arc
set S, if qs(e) = ∅ (i.e. it consists only of waits−−−→ edges),
Equation 4 means that waits−−−→ is cyclic. (Otherwise, if all the
cycles in Equation 4 have

queues−−−−→ edges, there would be a
different edge in the minimal arc set S with lower weight.)

In this case, when there is a waits−−−→-only cycle, it means this
protocol is a Class 2 protocol; we give up on the computation,
since there is no way to avoid the VN deadlock by assigning
virtual networks per message ID. On the other hand, if all
cycles have at least one

queues−−−−→ edge, then we can break these
cycles with a VN assignment.

c) Finding a VN assignment: Given a minimal feedback
set S of our computed graph G, we can use it to compute
the minimal number of VNs required. We translate each edge
e ∈ S to all the

queues−−−−→ relations qs(e) that we previously
remembered.

We then use these
queues−−−−→ edges from the minimal feedback

arc set S to construct an undirected conflict graph. For each
such m1

queues−−−−→ m2 we add (m1,m2) to the conflict graph.
We then find a minimal graph coloring of this conflict graph.
This coloring will give a partial partition of the message IDs
into VNs that ensures no cycles in Equation 4. This is by
construction: the minimal feedback arc set is exactly the set
of edges we need to remove to break all cycles. By coloring
the conflict graph, we ensure that all messages that could
cause such a deadlock are in different VNs. The remaining
message ids (that were not part of the conflict graph) can be
distributed among the virtual networks in any way, since they
cannot cause any VN deadlocks.

Note that the conflict graph cannot have any self edges,
since the paths are minimal by construction. Recall that these
cycles have to start with a waits−−−→ edge, so that removing an
edge m1

queues−−−−→ m1 would always leave a cycle.

B. Complexity and Tractability

The problem of finding shortest paths to construct the graph
is known to be polynomial in the size of the graph, as is
the computation of waits−−−→ and

queues−−−−→ as we discussed in
Section IV. Both graph coloring and the problem of finding
a minimum feedback arc set for a directed graph are in
Karp’s 21 classical NP-hard problems [16]. Many heuristics
and algorithms have been studied in practice, which make this
tractable in practice [17]–[19]. In particular, for our cases, the
instances are fairly small, as the number of nodes in the graph
is the number of message IDs in the protocol, and the order
of magnitude is around 101.

C. Implications of our Theory

In this section, we analyze the implications of our theory
and draw useful conclusions for the three classes of protocols
we introduced earlier in Section I.

1) Class 1 Protocols: Protocol Deadlock: As discussed in
Section V-A, a protocol with a cycle in

dyn-waiting−−−−−−−→ suffers
from a protocol deadlock. These Class 1 protocols, which can
be identified by model checking (e.g., as has been done with
Murphi [12], [20]), are doomed; VNs are not going to save
the day.

2) Class 2 Protocols: Stalling Forwarded Messages
Considered Harmful: In Section V-A, we showed that a
protocol with a cycle in waits−−−→ inevitably experiences a VN
deadlock even if every message is allocated its own VN.
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What kinds of protocols will have a cycle in waits−−−→, and how
can these be avoided? We provide a qualitative analysis. First,
note that in any protocol a response message (data or control
response) cannot ever be stalled, as stalling those messages
will lead to a protocol deadlock. Second, note that, while a
request message can be stalled, stalling requests cannot cause
a cycle in waits−−−→. This is because a request message can only
wait for forwarded requests and responses but can never wait
for another request. (Again, doing so will lead to a protocol
deadlock.) Thus, we are left with forwarded requests.

We assert that protocols that stall forwarded requests are
harmful, as they could potentially lead to a cycle in waits−−−→.
This is because in a protocol that stalls forwarded messages,
it might be possible for a message to wait for a message of
the same name. Going back to Section III-A, recall that this
was the problem in the protocol (Figure 1): in that protocol,
a Fwd9GetM waits for another Fwd9GetM.

It is important to note that there are two situations in
which a protocol can stall forwarded requests and yet remain
deadlock-free. First, one can contrive odd protocols to avoid
cycles. For example, if a protocol were to stall on only one
type of forwarded request but not the others, it might be
possible to prevent a cycle in waits−−−→, and one could put that
forwarded request on one VN and the rest on another VN.
Second, if one limits the system to one centralized directory
that handles requests for all addresses, it is similarly possible
to eliminate cycles that could otherwise occur.

3) Class 3 Protocols: Practical Protocols Require 2 VNs:
Class 3 protocols have neither protocol deadlock nor do
they let caches stall forwarded requests. Class 3 protocols
are distinguished by whether the directories stall incoming
requests, and there are two possibilities.

First, if the directories never stall, only one VN is needed,
because there are no waits−−−→ edges in these protocols. While
attractive, they are generally not practical due to the need for
every directory to have enough MSHRs to track the worst-case
number of outstanding requests to off-chip memory.

Second, if the directories sometimes or always stall requests,
deadlocks can be avoided by assigning requests to their own
VN, while other message types share another VN. Why is
this correct? Because requests are the only types of messages
that can stall, and because requests could wait for forwarded
requests and responses—from Equation 4, it becomes clear
that isolating requests from all other messages using two
different VNs prevents deadlocks. This second group of
Class 3 protocols—with directories that stall at least some
requests—are practical, and they all require two VNs. It
is worth noting that this class includes industrial protocol
specifications including CHI and CXL.

Thus, a tangible practical implication of this work is
that each of the protocols in this class need only 2 VNs
for correctness whereas their specifications mandate more
than 2 VNs—e.g., the CHI specification mandates 4 VNs.
This reduced VN requirement has important ramifications
for power, performance, and area (PPA) of Network-on-chips

(NoCs). The impact is significant: recent work has shown
that reducing the number of VNs from 6 to 0 saves 40%
NoC power and area, and reduces critical path time by
31% [3]. While our algorithm does not always result in the
elimination of VNs—it only results in the elimination of VNs
for fully non-stalling protocols—it nevertheless shows that
our proposal could translate into non-trivial benefits for PPA.
Importantly, these benefits are for “free” because our proposal
does not need new microarchitectural mechanisms to tolerate
deadlocks. And finally, with cache-coherent interconnect
specifications such as CHI and CXL starting to get used widely
for integrating accelerators, these benefits can be reaped across
the board.

Looking ahead, when new protocol specifications are
designed, our analysis provides the minimum VNs needed
to avoid deadlocks. This does not mean that the system
designer must necessarily pick the exact number prescribed
by our analysis; rather, it allows the designer to focus on
performance considerations without the burden of having
to consider deadlocks. We expect designers to choose the
minimum number of VNs, but a designer may choose to use
more; for example, a designer might prefer to separate message
types of different sizes that our algorithm maps to the same
VN.

VII. VERIFICATION OF DEADLOCK FREEDOM

To corroborate our analysis, we have used model checking
to verify the absence/presence of deadlocks in a variety of
protocols. Because of its suitability for coherence protocol
verification, we use the Murphi model checker [12]. We run
Murphi on a computer with 256 GB of memory, in order to
maximize its ability to handle very large state spaces.

Even with 256 GB, Murphi does not scale to the systems
we need to model, if modeled naively. We have innovated
how we model systems in the model checker, as discussed
later in this section. All of the protocols that deadlock are
indeed detected by model checking. Of the protocols that do
not deadlock, we completely check some, but some others
have state spaces that exhaust 256 GB of memory, even with
our optimizations. For these protocols, we use the well-known
technique of bounded model checking [21]. With bounded
model checking, the model checker uses breadth-first search
and progresses level by level until the model checker is halted.
All of our bounded model checking experiments have reached
at least 47 levels, which is significantly more than the depths at
which we detect deadlocks in the protocols that have deadlocks
(25-31).

A. Models of Protocols for Model Checking

For any given protocol, we seek to verify the most general
system model. This includes an arbitrary network topology and
a number of caches, addresses, and directories that is sufficient
to manifest any possible deadlocks.

1) Interconnection Network: Directly modeling the
interconnection network—including its topology and
buffers—for every possible topology is beyond the state
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Directory never blocks Directory always blocks Directory sometimes blocks
MOSI, MOESI CHI MSI, MESI

Cache
never
blocks

(1) ✓1 VN (3) irrelevant (5) ✓2 VN E.g., VN1=Req,VN2={FwdReq, Resp}.

Cache
sometimes
blocks

(2) deadlocks with 3 VNs (4) ✓2 VN; E.g., VN1=Req, VN2={Resp,Data,Snoop} (6) deadlocks with 3 VNs

TABLE I
SUMMARY OF VERIFICATION EXPERIMENTS

Fig. 4. Model showing only one virtual network, for clarity. (All virtual
networks are modeled in the same way.) If the virtual network does not
require point-to-point ordering, a source can dynamically choose either
global buffer when sending to any destination. If the virtual network does
require point-to-point ordering, we separately model check all possible static
mappings of source-destination pairs to global buffers.

space capability of a model checker. We instead use a novel
construction that preserves all of the possible behaviors of
any ICN, including point-to-point ordering and queuing at
routers between endpoints. As illustrated in Figure 4, we
model each virtual network with (a) a pair of global FIFO
buffers and (b) a FIFO buffer at each cache and directory
(that can receive messages on that virtual network).5

If the virtual network does not require point-to-point
ordering, a source can dynamically choose either global buffer
when sending to any destination. Because the model checker
explores the entire reachable state space, this model enables
any pair of messages to either queue behind each other (if
inserted into the same global buffer) or not (if inserted into
different global buffers). This model also permits arbitrary
reorderings of messages in the network, because the model
checker will explore situations in which messages in one
global buffer stay in that buffer while messages in the other
global buffer are popped and delivered to their destinations.

5This model suffices for any protocol that limits the number of in-flight
messages from any node to any other node to two; we are unaware of any
protocol that violates this limit.

When we wish to preserve point-to-point ordering, we
require all messages from Endpoint A to Endpoint B to
be inserted into the same global buffer. Thus we have all
of the behaviors described above, but with the restriction
of point-to-point order. Because deadlocks can depend on
message paths, we separately model check every possible
static mapping of endpoint-to-endpoint messages to global
buffers.

2) Caches, Addresses, and Directories: Practically, the
number of caches, addresses, and directories required to
manifest coherence bugs, including deadlocks, is limited.
To enable the model checker to explore the search space,
verification exploits those limits and verifies systems that are
no larger than needed to manifest all/most possible deadlocks.
Typical verification uses only two or three caches, one or
two addresses, and one directory [22], [23]. We have already
observed deadlocks that require at least three caches, two
addresses, and two directories, and we use those values in
our verification experiments.

B. Protocols

In Table I we present our results for a variety of protocol
types. The MSI, MESI, and MOSI protocols are inspired by
the corresponding protocols in Nagarajan et al. [11]. The
MOESI protocol was derived from the MESI and MOSI
protocols. For all of these protocols, we modified the cache
and directory controllers to add/remove blocking on forwarded
requests and requests, respectively. The only completely
non-blocking directories are for the MOSI and MOESI
protocols; the O(wned) state avoids directory blocking when a
cache line transitions from M to S, and we provision enough
transient state (MSHRs) at the directory to accommodate the
maximum possible number of outstanding requests to main
memory.

The CHI protocol is based directly on the CHI prose
specification [7]. This is an industrial strength protocol
specification that is used widely, and consists of tens of pages
of prose specification. This is the first formalization of the CHI
protocol to our knowledge. We open source all our Murphi
models including the one for the CHI specification.
C. Results

In Table I, we summarize our results, which confirm
what we discovered in this paper. In the table, we label
the experiments from (1) to (6). Experiments (2) and (6)
correspond to Class 2 protocols. Experiments (3), (4), and
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(5) correspond to Class 3 protocols. Note that experiment
(3), with an always blocking directory and a never-blocking
cache is irrelevant; the cache will never have an opportunity
to take advantage of being non-blocking, because the blocking
directory precludes any concurrency.

It is worth noting that protocol (1) which
never blocks—either in the cache or the directory
controller—requires exactly one VN. Class 3 protocols,
which corresponds to experiments (4) and (5), requires
exactly two VNs. It is worth noting that this includes the CHI
protocol: whereas the specification mandates four VNs, we
find that two would suffice. Specifically, the VNs prescribed
by CHI are: request, snoop, response, and data response,
whereas we have found that mapping the requests to one
VN, and the rest of snoops, responses, and data responses to
another VN would suffice to avoid deadlocks.

Fig. 5. Example from CHI results. The ReadShared from Requester-2 is
waiting for the transaction initiated by Requestor-1 to complete.

To further explain our CHI results, we present the causes−−−−→
and waits−−−→ relations for a small subset of the CHI protocol.
The CHI protocol is a MOESI-based intervention-forwarding
protocol in which every coherence transaction involves
a completion message to the directory. Figure 5 shows
Requester-1, which is currently in Invalid state, requesting the
directory for write permissions via a CleanUnique request;
UCE (Unique Clean Exclusive) is a state that allows for the
cache to perform a “full write” to the cache line and so the
transaction from I to UCE does not result in data transferred
from the directory.6 A CleanUnique request is sent to the
directory which forwards invalidation messages to the sharers;
the sharers send acknowledgments to the the directory; once
all of the acknowledgments have been received, the directory
responds to the requester, which then sends a completion
message to the directory.

This leads to the following causes−−−−→ relation.

CleanUnique
causes−−−−→ Inv

causes−−−−→ Inv9Ack (7)
causes−−−−→ Resp

causes−−−−→ Comp

6For ease of exposition, we have used the standard terminology to represent
for other messages in the transaction instead of the CHI terminology.

Now suppose there is another cache which is currently in
Invalid state that reads the same cache line and therefore sends
a concurrent ReadShared transaction—with the ReadShared
ordered at the directory after the CleanUnique. Because the
CHI protocol blocks concurrent transactions at the directory,
the ReadShared blocks at the directory waiting for the
prior CleanUnique transaction to complete. This leads to the
following waits−−−→ relation:

ReadShared
waits−−−→ {Inv, Inv9Ack, Resp, Comp}

Generalizing across all coherence transactions, we get the
following waits−−−→ relation:

req
waits−−−→ {fwd, res, data}

The fact that only requests are ever blocked allows our
algorithm to assign requests on one VN and the rest of the
messages on the other virtual network.

D. Model checking times

Model checking was conducted on a high-performance
server: Intel Xeon Gold 6226 Processor with 768 GB memory.
Model checking took up to 68 hours and consumed 300 GB
memory. Note that these times are in line with other model
checking results. Note also that our goal in this paper is not
to invent a novel verification approach; our verification results
are merely to back up our theory and static algorithm.

VIII. RELATED WORK

The most relevant related work are schemes that address
deadlocks in coherence protocols, and not just routing
deadlocks. Sorin et al. [6] observed that deadlocks are rare,
even with fewer than the required number of VNs, and they
proposed deadlock detection (e.g., with a timer) and system
recovery. DRAIN [5] similarly notes that deadlock is rare and
periodically drains the ICN to recover from any deadlocks that
do occur; because deadlock is rare, draining can be infrequent.
Both Pitstop [4] and FastPass [3] dedicate certain resources
to guarantee that they can unblock packets that are stalled
or potentially stalled due to deadlock. Pitstop and FastPass
eliminate VNs throughout the ICN, but they appear to require
VN buffering at endpoints (caches and directories). More
importantly, automatically verifying that such techniques do
not suffer from deadlocks is a hard and open problem.

In this work we focus on protocol deadlocks that are caused
by inbound FIFO queues that buffer coherence messages
at cache and directory controllers. Complex controllers
could potentially relax this FIFO ordering to service younger
messages before older messages to avoid deadlocks or
increase utilization. For example, gem5’s Ruby coherence
protocols [24] support FIFO-like buffers that allow a blocked
message at the head of the FIFO to be removed and placed at
its tail. However, using such an approach to completely avoid
deadlocks is tricky when point-to-point ordering is required in
certain VNs—as is often the case for typical protocols.
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Other related work focuses strictly on routing deadlocks,
rather than deadlocks due to the coherence protocol. Bufferless
routing—such as hot potato or deflection routing and
BLESS [25]—obviously guarantees deadlock freedom, but
implementations must be careful to guarantee eventual forward
progress for misrouted packets. Another option is the use
of escape virtual channels—in addition to the normally used
virtual channels—that are guaranteed to be deadlock-free (e.g.,
by restricting turns [26]). SEEC [27] combines escape virtual
networks with bufferless routing to create stochastic escape
express channels. SWAP [28] allows deadlocks to occur and
then breaks them by swapping packets in a way that is
guaranteed to enable forward progress. SPIN [29] also allows a
deadlock to happen; it then orchestrates a spin – a coordinated
forward movement of every flit in the deadlocked ring. They
show that forward progress can be guaranteed with a bounded
number of these spins.

There has been a lot of influential work on cache
coherence verification, ranging from manual proofs [30]
through theorem proving to model checking [20]. Automated
model checking techniques have matured enough that there are
now standard industrial tools from companies like Cadence
that are used widely. None of these tools are immune
to state space explosion, however, and practitioners must
either automatically verify smaller system models or employ
manual intervention [31] to prove for the general case. The
primary goal of this paper is not to invent a new verification
methodology. Rather, our contribution is a theory and an
algorithm for deriving a minimal number of VNs for a given
protocol. We do use model checking to validate our theory,
and we were forced to innovate to manage the state space
involved in a system model with more than one directory,
which is necessary to trigger the deadlocks.

Our formal approach to modeling coherence protocols
bears some resemble to how memory consistency models are
modeled axiomatically. Specifically, our approach of statically
analyzing coherence protocols to determine the minimal
number of VNs is analogous to how a parallel program can be
statically analyzed to determine the minimal number of fences
that need to be inserted to ensure sequential consistency [32].

IX. CONCLUSIONS

Virtual networks play a critical role in preventing deadlock
in cache coherence protocols, yet we have discovered that
they have not been well understood. Architects relying on
conventional wisdom are not guaranteed to find a necessary
or sufficient number of VNs. To overcome this problem,
we have developed a formalism for describing coherence
protocols, how coherence messages can queue in an ICN, and
the sufficient condition for determining whether a protocol
can deadlock. Using this formalism, we have designed an
algorithm that generates the minimum number of VNs required
to avoid deadlock, as well as the mappings from message types
to VNs. We show that some textbook protocols require an
absurd number of VNs, and we show that the CHI protocol
was provisioned with more VNs than necessary.
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APPENDIX

A. Abstract

This appendix describes the artifact that accompanies this
paper. It includes Python code for determining the minimum
number of VNs for a given protocol, as well as generating
mappings from message types to VNs. It also includes all
evaluated protocols in Murphi, corresponding to Experiments
(2), (4), (5), and (6) in Table I.7 We provide scripts to run
the algorithm and the model checking for all protocols, either
individually or all together.

B. Artifact Check-list (Meta-information)
• Program: Our program (in Python) that determines the

minimum number of VNs and generates the mappings from
message types to VNs.

• Protocols. Our protocol models (in Murphi).
• Run-time environment: Linux (Ubuntu 20.04), Python 3.8,

CMurphi 5.4.9.1
• Hardware: System with about 200GB of RAM and Intel Xeon

Gold 6226 Processor.
• Output: Algorithm generates virtual network assignment

for protocols. Model checking verifies the correctness of the
assignments.

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT

C. Description

1) How to access: Code available on:
https://github.com/Author1-isca24/ISCA24-AE

(For blind review, we keep the code author anonymous)
2) Hardware dependencies: The VN assignment algorithm

does not require any special hardware. Model checking
requires at least 200 GB of RAM to run most tests. Some
model checking runs will require several days to run, for
reasons we explain in section F.2.

3) Software dependencies:
• Linux distribution (e.g. Ubuntu 20.04) or MacOS (version

newer than 10.15.7)
• Python 3.8 or higher
• networkx 2.6.3 (Python package)
• matplotlib 3.4.3 (Python package)
• CMurphi 5.4.9.1

D. Installation

1) Option 1: Install manually:
1. CMurphi setup
To install CMuprhi run from the parent

directory; get CMurphi 5.4.9.1 by: git clone
https://github.com/Errare-humanum-est
/CMurphi.git

Then, install it by:
sudo apt-get install bison
sudo apt-get install byacc
sudo apt-get install flex
cd src && make
mkdir ErrorTrace

7Protocols in categories (1) and (3) of Table I do not need to be evaluated.

2) Option 2: Use Docker: We have prepared a
Docker container with all of the environment (including
hardware/software dependencies and CMurphi) already set up.
You can access it from: https://zenodo.org/records/10895869

After entering the container, you can start from section E.

E. Using Artifact to Generate VN Results

Since we run the algorithm for several protocols, we provide
two options: (a) run all experiments and (b) run a single
experiment in Table I.

Run algorithm for all protocols (Run-all option):
./run_all_algorithm.sh

Run algorithm for single protocol (Run-single option):
For Experiment (2):

python3 main.py MOSI
python3 main.py MOESI

For Experiment (4):
python3 main.py CHI

For Experiment (5) :
python3 main.py MSI_nonblocking_cache
python3 main.py MESI_nonblocking_cache

For Experiment (6) :
python3 main.py MSI_blocking_cache
python3 main.py MESI_blocking_cache

F. Expected VN Results

Our algorithm results should reproduce Table I.
For the “Run-single” option, when the user runs the

algorithm for Experiment (2) and Experiment (6), it will stop
because they are Class 2 protocols and output “The protocol
is a Class 2 protocol, Program Exit!”. For Experiment (4) and
Experiment (5), it will generate the possible virtual network
assignments for two virtual networks.

For the “Run-all” option, the algorithm is run for all the
experiments and it outputs the summary of all the results in
Table I.

Since the output text is not very long, it is simply displayed
on the command line.

G. Verifying Results

To verify the correctness of the algorithm, we develop
Murphi-based protocol models that can be model-checked with
Murphi. We again provide two options: (a) model check all
experimental results and (b) model check a single experiment
from Table I.

Run-all model-checking:
./run_all_murphi.sh

Run-single model-checking: We provide a command-line
input for Experiments (4) and (5) to let the user define
the maximum runtime for each sub-task (explained in the
following note). Because Experiments (2) and (6) lead to
deadlock, they complete quickly (20-40 minutes) and thus do
not need an input for maximum runtime. Note that maximum
runtime is specified in units of days.

For Experiment (2):
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./run_single_murphi.sh 2

For Experiment (4): Since Experiment (4) has 6 sub-tasks,
we provide 6 command-line inputs (d1-d6) to set the maximum
runtime for each subtask.
./run_single_murphi.sh 4 d1 d2 d3 d4 d5 d6

For Experiment (5): Since Experiment (5) has 12 sub-tasks,
we provide 12 command-line inputs (d1-d12) to set the
maximum runtime for each subtask.
./run_single_murphi.sh 5 d1 d2 d3 d4 d5 d6

d7 d8 d9 d10 d11 d12↪→

For Experiment (6):
./run_single_murphi.sh 6

Example usage: Run the first sub-task in Experiment (4) for
a maximum of 12 hours and the others for a maximum of 36
hours:
./run_single_murphi.sh 4 0.5 1.5 1.5 1.5

1.5 1.5↪→

Runtime expectations:. For each protocol in Experiments
(2) and (6) of Table I, since they deadlock, they take relatively
little time to run (about 20 to 40 minutes). Each protocol
in Experiments (4) and (5) of Table I consists of several
verification sub-tasks. Each sub-task takes about 72 hours to
complete or run to the bound level of 48. Thus Experiment (4),
the CHI protocol that has 6 sub-tasks, takes about 72x6 hours
to complete. Experiment (5), the MSI and MESI protocols that
have 6 sub-tasks each, takes about 72x6x2 hours to complete.
In the run-all option, we set a default run time of 72 hours
for each sub-task. Since model-checking takes a long time
to complete, we provide the run-single option to let the user
define the maximum runtime for each sub-task.

H. Expected Verification Results

For each of the model-checking experiments, Murphi will
generate a result text file. There are three types of results:

1. The protocol deadlocks;
2. The model checker reaches a certain bound level and the

protocol has not deadlocked;
3. The model checker completes and the protocol has no

deadlocks.
The protocols in Experiments (2) and (6) should have

deadlocks (result 1). The protocols in Experiments (4) and (5)
should either complete or reach the bound level of 48 without
error/deadlock (result 2 or 3).

We also provide a script to extract results from
Murphi-generated result text files.

For all experiments:
python3 result_extract_murphi.py all

For a single experiments (2), (4), (5) or (6):
python3 result_extract_murphi.py 2
python3 result_extract_murphi.py 4
python3 result_extract_murphi.py 5
python3 result_extract_murphi.py 6

This script will judge if the results match our
expectation (i.e., if they reproduce Table I) and write it
to murphi result.csv.
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