
Dvé: Improving DRAM Reliability and
Performance On-Demand via Coherent Replication

Adarsh Patil
University of Edinburgh
adarsh.patil@ed.ac.uk

Vijay Nagarajan
University of Edinburgh
vijay.nagarajan@ed.ac.uk

Rajeev Balasubramonian
University of Utah
rajeev@cs.utah.edu

Nicolai Oswald
University of Edinburgh
nicolai.oswald@ed.ac.uk

Abstract—As technologies continue to shrink, memory system
failure rates have increased, demanding support for stronger
forms of reliability. In this work, we take inspiration from the
two-tier approach that decouples correction from detection and
explore a novel extrapolation. We propose Dvé, a hardware-
driven replication mechanism where data blocks are replicated
in 2 different sockets across a cache-coherent NUMA system.
Each data block is also accompanied by a code with strong
error detection capabilities so that when an error is detected,
correction is performed using the replica. Such an organization
has the advantage of offering two independent points of access
to data which enables: (a) strong error correction that can
recover from a range of faults affecting any of the components
in the memory, upto and including the memory controller, and
(b) higher performance by providing another nearer point of
memory access. Dvé realizes both of these benefits via Coherent
Replication, a technique that builds on top of existing cache
coherence protocols for not only keeping the replicas in sync
for reliability, but also to provide coherent access to the replicas
during fault-free operation for performance. Dvé can flexibly
provide these benefits on-demand by simply using the provisioned
memory capacity which, as reported in recent studies, is often
underutilized in today’s systems. Thus, Dvé introduces a unique
design point that offers higher reliability and performance for
workloads that do not require the entire memory capacity.

Index Terms—memory systems, DRAM, reliability, coherence

I. INTRODUCTION

For servers or systems with high-value data like in finance,
automotive, and healthcare, system reliability is of utmost
importance. Improving memory reliability has been key to
improving overall system reliability. Field studies of memory
in datacenters [45], [64], [65] and supercomputers [4], [24],
[67], [68] have reported patterns of larger granularity memory
errors/failures and unexpected DRAM failure modes [38],
corroborating the need for improved memory reliability.

There have been several techniques and proposals for im-
proving the fault tolerance of DRAM memory. These works
have largely focused on incrementally increasing the efficiency
and scope of error control mechanisms in memory subsystems.
DRAM memory schemes initially only targeted cell failures
and progressively evolved to handle chip, DIMM, and channel
failures. Primarily, these schemes pad data with error correct-
ing code (ECC) and distribute the resulting codeword on a
set of components such that, on a partial failure, data can be
recovered from the remaining fault-free data and the padded
error correction code.

Fig. 1. Comparison of various DRAM reliability designs

One notable step in this progression is the recent body of
work that has advocated the decoupling of error detection from
correction by breaking down DRAM fault tolerance into two
tiers [31], [33], [43], [50], [73], [79]. These works add a check
code per codeword for detecting errors in the first stage and
an error correction mechanism at a larger granularity in the
second stage. Doing so allows for deploying more powerful
ECC codes to recover from a larger class of errors. This
decoupling also allows storing ECC bits elsewhere in memory
and thus does not impose restrictions on the configuration and
operation of DRAM DIMMs.

In this work, we take inspiration from the two-tier ap-
proach and explore a novel extrapolation. We propose Dvé1,
a hardware-driven replication mechanism with the following
important features.

1) Dvé leverages ECC codewords and other existing mech-
anisms for error detection but provides recovery from a
detected error by reading from a replica of the data,
instead of reconstructing data using the ECC bits.

2) It significantly improves memory reliability by keeping
replicas as far apart and disjoint as possible – replicating
data across 2 different sockets on the same system,
thereby tolerating errors anywhere in the entire memory
path (controllers, channels, DIMMs, and DRAM chips).

3) Dvé introduces Coherent Replication, a technique that
builds on top of existing cache coherence protocols for
not only keeping the data and replica in sync, but also
providing coherent access to the replicas during fault-
free operation. In doing so, Dvé alleviates some of the
NUMA latency overheads as data can be accessed at
the nearest replica memory. It also provides improved

1Dvé (Sanskrit) translates to the two, referring here to the dual benefits of replication.



memory access bandwidth by providing two endpoints
to access data.

4) Dvé can be employed on-demand by taking advantage
of the memory that is often underutilized in large instal-
lations ([28], [42], [56], [58]), thus allowing flexibility
between capacity and reliability.

A New Tradeoff. Fig. 1 compares DRAM RAS mechanisms:
SEC-DED (bit level error protection), Chipkill (chip level error
protection), and Dvé across the goodness metrics of reliabil-
ity, performance and effective capacity (inverse of capacity
overheads).

Dvé achieves higher reliability (at least 4× lower uncor-
rected error rate than Chipkill) as its design is more robust to
failures and can detect/correct a larger granularity of errors.
The only Achilles heel for Dvé is in the case of simultaneous
failure in exactly the same location on a pair of completely
independent replicated memory components, the occurrence of
which is lower in probability than 2 DRAM devices failing in
the same memory rank as in the case of Chipkill. Thus, Dvé
provides stronger protection against memory errors.

Typically, error detection/correction imposes a performance
overhead. Many manufacturers concede that Chipkill ECC
DRAM will be roughly 2-3% slower than non-ECC DRAM
[62]. Although Dvé still requires error detection, by providing
two independent points of access to the data, it provides per-
formance improvement in a multi-socket NUMA organization.

Dvé uses simple data replication with higher capacity over-
heads (lowering effective capacity to 43.75% compared to 85%
for Chipkill). While the capacity overheads for Chipkill are
strictly fixed at design time, Dvé overheads are applicable only
when employed on-demand at runtime (for example, when
memory is underutilized).
Contributions. We introduce Dvé, a hardware-driven replica-
tion mechanism which provides the dual benefit of improved
reliability and performance. Specifically:

• We explore a unique design point which trades off
reduced memory capacity for higher reliability and per-
formance by replicating data blocks across two sockets
of a cache-coherent NUMA system

• We analytically quantify Dvé’s reliability benefits and
show that it provides lower uncorrectable and unde-
tectable error rate over Chipkill ECC and thus provides
higher memory reliability. Similarly, Dvé in conjunction
with Chipkill ECC provides 2 orders of magnitude higher
reliability over IBM RAIM [44]. Further, Dvé’s thermal
risk aware mapping lowers DUE by at least 11% over
Intel memory mirroring [26].

• We propose Coherent Replication, a technique that builds
on top of existing protocols to not only maintain the
replicas in sync (required for reliability), but also provide
coherent access to both of the replicas during common-
case fault-free operation (for performance).

• To allow for flexibility between capacity and reliability,
we propose a hardware-software co-design approach to
enable/disable replication when desired at runtime.

Fig. 2. Anatomy of RAS features in memory

• Our experiments indicate that Dvé provides performance
improvements of between 5%-117% across 20 workloads
over a dual-socket NUMA system, and between 3%-
107% over an improved (hypothetical) version of Intel’s
memory mirroring scheme.

II. MOTIVATION

We first motivate the need for improved DRAM reliability
to combat: (a) projected increase in errors caused by DRAM
design trends; and (b) DRAM failures caused by any part of
the DRAM subsystem. Secondly, we motivate the need (and
opportunity) for providing improved memory reliability on
demand. Finally, we summarize by identifying the limitations
of existing approaches.

A. Growing DRAM Error Rates

The memory subsystem has several modules built-in at
various points in the hierarchy (e.g., cell, rank, bank, chip,
memory controller) to improve reliability of the DRAM as
highlighted in red in Fig. 2. We analyze these current DRAM
specs/chips and state-of-the-art error protection mechanisms
and observe that these would be inadequate for handling the
nature of faults/errors seen in field studies.
Cell errors and their increasingly costly mitigation. DDR5
DRAM chips are expected to have 4 times the memory capac-
ity per DRAM chip, in line with the trend of miniaturization
and higher density of DRAM. To combat the increase in cell
fault rates due to smaller cell geometry, increased variability of
manufacturing, and additional refresh pressure, DDR5 includes
simple in-DRAM (on-die) ECC [47]. DDR5 DIMMs have also
doubled the number of error correcting bits compared to DDR4
DIMMs, i.e., from 8-bit to 16-bit ECC for 64-bit data (25%)
[47]. Several mechanisms already propose row/column sparing
and selective replication [10], [52] to tolerate higher number
of faulty cells caused during manufacturing. The capacity
overheads (provisioned invisible redundant capacity) required
to maintain reliability is growing.
Non-cell errors are becoming important. Studies have
shown that unpredictable large multi-bit DRAM failures can
occur due to faults in the chip-internal circuitry [67] that can
affect multiple banks, rows, etc. within a DRAM chip. To

2



handle such DRAM chip errors, several variants of Chipkill 2

solutions have been developed. Further studies have observed
shared board-level circuitry failures that cause cascading er-
rors, rendering multiple DRAM chips (that share circuitry
within a DIMM) erroneous or inaccessible [30]. To cope with
such failures Bamboo ECC [36] and Virtualized ECC [79]
were proposed to handle multi-pin and multi-chip failures. In
addition, studies have shown that faults outside the DIMM
such as faults in memory controller logic that interacts with the
external DRAM subsystem, errors in the channel, or electrical
disturbances also affect the reliability of DRAM memory [37],
[45], [65]. These studies suggest that a wide variety of memory
failures can occur and existing mechanisms are insufficient to
handle these errors because they co-locate data and correction
codes on the same channel.

To reduce channel errors, DDR5 memory uses a host of bus
reliability mechanisms like command/address parity checks,
bus CRC, gear down mode. DDR5 chips are to feature delay-
locked loop and forward feedback equalization to handle chan-
nel errors that occur because of the higher DDR frequencies
[68]. These bus error checks only detect errors and perform
transaction retry; they cannot tolerate hard channel errors.

Stronger ECC codes with longer codewords were introduced
to detect and correct channel errors in [31], [37]. Increasing
the codeword length is also problematic, as the decoder
complexity increases more than linearly with the codeword
length [7]. Further, sophisticated techniques use 2 channels in
a RAID-1 layout (Intel Memory Mirroring [26]) or 5 “ganged”
channels in RAID-3 layout (IBM RAIM [44]) to tolerate
complete channel failures. However, each of these techniques
limits reliability and performance benefits. RAIM’s ganged
channel mode forces 256 byte memory reads and writes which
negatively impacts performance [82] and leaves it susceptible
to any errors in the single RAIM controller. Although Intel’s
mirroring scheme replicates memory between channels within
a controller, the secondary channel’s copy is used as a backup
and is read only on the failure of the primary – thus, providing
no performance benefits despite the existence of data replicas.
Further, Intel’s approach localizes replicas to a single socket
and a single memory controller leaving it susceptible to any
faults in the controller or its subsystem. Additionally, the
memory that is replicated is fixed at boot time and limited
to the OS kernel memory.

DRAM reliability is also impacted by external factors like
temperature, requiring sufficient timing slack margins while
operating DRAMs [40] or throttling of requests to avoid
thermal emergencies [41]. DRAM disturbance faults or row-
hammer faults [38] demonstrate that new and unexpected
multi-bit failures may occur while in operation. Mitigations
include more frequent memory refresh for frequently accessed
rows which could cause performance degradation.

2Chipkill is a generic term for a solution that guarantees recovery from failure of an
entire DRAM chip.

B. Need for on-demand memory reliability

The mitigation techniques thus far have fixed area and logic
overheads (at design time) for providing memory reliability.
We observe the possibility of using idle memory capacity to
opportunistically improve memory reliability. To accomplish
this, we motivate the need for such a reliability service to be
flexible and allocatable on-demand.
Large scale memory underutilization is prevalent. Several
studies point to the phenomenon of memory underutilization
in HPC systems [28], [56] and in cloud datacenters (e.g.,
Alibaba- [14], [42], Google- [58]). These works report that at
least 50% of the memory is idle 90% of the time. There exists
a large gap between a node’s maximum/worst-case memory
utilization and the common-case memory utilization; i.e., a
few workloads have high utilization while most other work-
loads have significantly lower utilization. However, memory
resources are often over-provisioned due to peak estimation.
Datacenter operators procure systems with a view to keeping
the machines homogeneous with respect to the workloads or to
improve the system’s capability to solve large problem sizes,
which is an important figure of merit in HPC systems [56].

The bulk of applications, that are not memory capacity
intensive, would benefit from increased memory reliability and
improved memory access latency [56]; for example, capacity-
agnostic long running HPC applications. Furthermore, some
applications may require reliability for only a small region of
memory; for example, cloud applications need fault-tolerance
for only the stateful memory regions and not the stateless
regions. Providing this flexibility between capacity and relia-
bility allows deploying large numbers of commodity DRAMs
or lower reliability DRAMs for high capacity while still being
able to turn on/off higher reliability on demand.

A central observation in our work is that servers under-
utilize their memory capacity, and applications can exploit
this idle memory to boost performance and reliability. Industry
products like Intel Memory Mirroring [26], that relinquish half
their memory capacity for high reliability, confirm that this
observation is valid, but has only been partially exploited.
Error Rates increase as DRAMs age. Another need for on-
demand reliability is to combat the higher error rates observed
as DRAMs age and suffer from wear-out faults [18]. This is
due to degradation of retention time and increased sensing
delays. Memory systems today do not allow for flexibly
boosting reliability, requiring periodic memory replacement.

Summary. State-of-the-art DRAM error protection mecha-
nisms suffer from the following limitations.

1) Existing mechanisms jeopardize the correction capa-
bility by putting correction mechanisms in the same
“basket” as data. Given that failures can occur at any
level in the memory subsystem, current mechanisms
are therefore vulnerable to failures beyond a channel,
including errors in the memory controller.

2) They trade off reduced error detection capability for
some amount of correction capability which limits their
effectiveness to detect more errors (e.g., designing for

3



Fig. 3. Dvé Replication Schematic

Double Symbol Correction before Triple Symbol De-
tection).

3) Existing mechanisms typically impact performance neg-
atively. Using Chipkill ECC DRAM reduces perfor-
mance by 2-3% [62] over non-ECC DRAMs. Even
contemporary reliability techniques like Virtualized ECC
[79] and Bamboo ECC [36] reduce performance further
by 3-9% and 2-10% respectively. Further, alleviating
temperature induced effects and row hammer mitigations
tend to hurt performance.

4) They lack flexibility to provide memory reliability on
demand by adapting to workloads requirements.

III. DVÉ: OVERVIEW

The variety and the granularity of DRAM errors are in-
creasing. Correcting all of these errors demands a robust
mechanism. We argue for a broadsword approach to error
correction that is decoupled from error detection, and can
correct errors of any granularity. We advocate for changing the
perspective of DRAM protection from an incremental, short-
sighted view to a holistic approach leveraging the time-tested
end-to-end argument. We argue for protecting memory at the
highest end point of memory (i.e., at the memory controller
level), thereby subsuming all other types of errors.

Our solution, Dvé is a hardware-driven replication scheme
for achieving not only reliability but also performance. Dvé
performs memory replication on two memory controllers lo-
cated on different cache-coherent NUMA nodes (as shown in
Fig. 3); when a dirty block is written back to its home memory
node, it is also written to its replica. Using a different “basket”
for recovery allows us to recover from a wide variety and
granularity of failures. Indeed, Dvé can tolerate large multi-
bit errors due to memory controller logic failure, bus failures
as well as any failures in shared components in the hierarchy.

Because Dvé relies on a replica for correction it needs to
store only error detection codes. Therefore, it requires only
error detection circuitry that is simpler to build as it in-
volves computation of just the error-locator polynomial (error
correction also involves computing the extra error-evaluator
polynomial for symbol based codes [6]). The extra code space
available as a result of forgoing the correction code can be
used to store stronger detection codes for detecting larger
number and/or larger granularity of errors. Along with ECC

based detection, Dvé can rely on any new and/or existing
fault detection techniques, such as CRC or parity present in
the DDR4 spec [60], and additional hardware and firmware
diagnostic capabilities like temperature sensors, clock skew
detection, etc., to mark failed components (Fig. 2).

Dvé’s replication proves advantageous in several other sce-
narios as well. Mapping replicated data onto DIMMs with
different thermal properties – e.g., data on a hot DIMM/chip
replicated on a relatively cooler DIMM/chip on the other
socket – ensures reduced temperature induced failures. Row
hammer errors can be mitigated by load balancing requests
between the independent replicas. Sec. IV quantifies the reli-
ability benefits of Dvé using failure rates from field studies.

While performance penalties are a problem for existing
schemes, in Dvé, the presence of the replica in another NUMA
node provides an opportunity to boost performance. Note that
in order to ensure strict recovery semantics, the data and its
replica needs to be kept consistent at all times. Happily, a
replica that is kept strongly consistent allows for the replica to
be accessed by reads even during fault-free operation. In other
words, it allows for a read request to be potentially serviced
from the nearest replica to mitigate some of the NUMA latency
overheads and also improve memory bandwidth. In Dvé, we
realize this via Coherent Replication (Sec. V-C), a technique
that extends existing coherence protocols to keep the data and
the replica consistent, while providing coherent access to both
the data and the replica during fault-free operation.

In Dvé, each physical address is mapped to a replica
physical address. This can either be a fixed function mapping
or a flexible table-based mapping. A flexible mapping allows
for providing memory reliability on demand and requires the
OS to map each allocated physical page to a replica physical
page. Using the OS memory allocator’s understanding of the
system’s memory topology, replica page pairs are made such
that they exist on memory adjoining different sockets. A single
system-wide OS managed replica map table (RMT) maps a
physical page to its corresponding replica page. If an entry
does not exist in the RMT, Dvé seamlessly falls back to using
a single copy. On the other hand, a fixed function mapping3

benefits from fast translation to replica address and works well
if the entire memory space is being replicated en masse.

Unless stated otherwise, we assume that all memory is
replicated using a fixed function mapping and that there is one
replica for every data item (i.e., 2 copies). The core workings
of Dvé are unchanged even with a table based mapping, which
would require an additional lookup into the RMT to locate
the replica address. We discuss the details of such a flexible
mapping system in Sec. V-D.

3a fixed mapping is a static direct-mapped function of the form f :

p(S,Ro,Ra,Ba,Co, Ch) → pr(S
′, Ro′, Ra′, Ba′, Co′, Ch′), ∀p, pr ∈ P

where p, pr are physical addresses in P and S,Ro,Ra,Ba,Co, Ch cor-
respond to socket number, row, rank, bank, column, channel respectively.
An example for such a function which we use in this work, is given by
f(p) = p

L + 1 − (2 ∗ S) where L is page size. The function considers
consecutive physical pages interleaved between sockets and maps to a replica
page on the other socket but retains the same DRAM internal mapping.

4



TABLE I
DUE AND SDC RATES (PER BILLION HOURS OF OPERATION) AND

IMPROVEMENT †TEMPERATURE SCALED FIT RATE

Scheme DUE SDC
Rate (lower is better) Impr. Rate (lower is better) Impr.

Chipkill 10−2 – 3.1× 10−10 –
Dvé+DSD 2.5× 10−3 4× 6.3× 10−10 0.49×
Dvé+TSD 2.5× 10−3 4× 2.5× 10−16 ~106×

IBM RAIM 1.5× 10−14 – 4.0× 10−10 –
Dvé+Chipkill 8.7× 10−17 172× 6.3× 10−10 0.63×

Chipkill† 2.2× 10−2 – 1.0× 10−9 –
Intel+TSD† 5.9× 10−3 3.72× 1.1× 10−15 ~106×
Dvé+TSD† 5.3× 10−3 4.15× 1.1× 10−15 ~106×

IV. QUANTIFYING THE RELIABILITY OF DVÉ

Dvé’s robust design can recover from a large breadth of
memory related errors that can be detected. This is because
Dvé can simply adopt differing bits from the replica, re-
compute the code, and confirm it matches. This provides
asymptotically better reliability than any ECC based correction
scheme. We now quantify the reliability improvements.

DRAM reliability mechanisms use Forward Error Correc-
tion (like ECC) which add redundant information so that data
can be recovered when errors are encountered. Block codes
that work on fixed-size blocks or “symbols” are used to allow
encoding/decoding in polynomial time. Various classical block
codes such as Hamming codes, Reed-Solomon codes, BCH
codes apply the algebraic properties of Finite (Galois) Field
Arithmetic to correct and detect errors in DRAM. These error
control systems can have one of the following outcomes: (a)
corrected error (CE), (b) detected but uncorrected (DUE) error,
or (c) suffer Silent Data Corruptions (SDC).

Comparative Case Studies: For this, we analytically model
(similar to [70]) and quantify reliability improvements of Dvé
using DUE, SDC rates with a uniform DRAM device FIT rate
of 66.1 [67]. Since Dvé can use any detection code, we equip
Dvé with a similar detection capability as the scheme being
compared against.

A. Comparison to Chipkill ECC

Consider a system with 32 single rank ECC DIMMs, each
DIMM containing 9 DRAM chips. The baseline Chipkill ECC
can tolerate one failed chip per rank4. For Dvé the 9th chip is
modeled in 2 ways:
(i) equipped with detection code similar to the baseline (DSD)
(ii) equipped with stronger detection code (TSD)5; using the
extra capacity obtained by relinquishing the correction code
present in the baseline
DUE rate: A Chipkill system fails to correct an error if 2
chips fail simultaneously within a single DIMM6 inside a scrub

4Assuming 8-bit symbol based RS(18,16,8) code with SSC-DSD (Single
Symbol Correct-Double Symbol Detect), organized as in Virtualized ECC [79]

5Triple Symbol Detect (TSD) is provided using 16-bit Reed-Solomon code
as in Multi-ECC [31]

6Chipkill ECC is per rank. This being a single rank DIMM, failure of the
rank implies failure of the DIMM.

interval which is given by [9× 66.1× 8× 66.1× 10−9]× 32
(≈ 10−2) in every billion hours of operation.

Each model imposes certain constraints on the chip fail-
ures that are uncorrectable; more constraints lead to a lower
uncorrectable rate. In Dvé, the system fails to correct if 2
corresponding chips in the same position on two DIMMs in
the corresponding rank fail together inside a scrub interval
which is given by [9 × 66.1 × 1 × 66.1 × 10−9] × 32 × 2
(≈ 2.5× 10−3) per billion hours of operation.

Thus, Dvé provides 4× lower DUE rate than a Chipkill
system. It is worth noting that this number is irrespective of the
detection code and is only a factor of the number of replicas.
SDC rate: A Chipkill system potentially fails to detect an error
if three or more chips fail simultaneously within a DIMM
inside a scrub interval. A simultaneous three device failure
probability is given by [9 × 66.1 × 8 × 66.1 × 10−9 × 7 ×
66.1 × 10−9] × 32 (≈ 4.6 × 10−9). The probability of DSD
code failing to detect three chip failure is 6.9% [77]. Thus,
overall SDC is alteast (4.6× 10−9 × 0.069) per billion hours
of operation.

For Dvé the SDC rate using a DSD code is twice that
of Chipkill since we use double the number of DIMMs
for replication and a SDC error can occur in either replica.
However, with a TSD code this number reduces drastically as
the detection potentially fails only if four or more chips fail
simultaneously within a single DIMM.

For even better detection options, low-overhead highly-
efficient codes [6] which come closer to reaching the theoreti-
cal Shannon limit can be employed. Alternatively, incremental
multi-set log hashes [13] can also be used to detect errors. We
leave such options for future work.

B. Comparison to IBM RAIM

While Chipkill ECC was not designed to tolerate channel
failures, a high reliability system such as IBM RAIM provides
a more outright design point for comparison. Recall RAIM
uses Chipkill ECC DIMMs with RAID-3 organization across
5 channels; striping four cache lines across four channels and
adding redundant diff-MDS ECC code [39] in the fifth channel
to correct upto 1 entire channel failure.

We assume 5 RAIM channels each with 8 Chipkill ECC
DIMMs and Dvé equipped with 2 replicated channels with 32
Chipkill ECC DIMMs each on different NUMA nodes.
DUE rate: RAIM fails to correct an error if 2 two cor-
responding Chipkill DIMMs on 2 channels (out of the 5
channels) fail together. Thus, the DUE is calculated as
[(1st Chipkill DUE × 8) × (4) × (2nd Chipkill DUE ×
1)]× 5(≈ 1.5× 10−14) per billion hours of operation.

Dvé+Chipkill fails to correct an error only if 2 pairs of
chips in the same position on two DIMMs fail together which
is given by [9× 66.1× 8× 66.1× 10−9 × 1× 66.1× 10−9 ×
1× 66.1× 10−9]× 32× 2 (≈ 8.79× 10−17) per billion hours
of operation. Hence, Dvé+Chipkill provides 172.4× (2 orders
of magnitude) lower DUE than RAIM.
SDC rate: Both systems suffer a SDC when Chipkill ECC fails
to detect an error. In addition, RAIM also potentially suffers an

5



SDC when 3 channels fail simultaneously. (Probability of this
is significantly lower and hence both are limited by Chipkill
ECC SDC). Since the total number of DIMMs in Dvé is higher
Dvé+Chipkill (64 DIMMs, compared to 40 in RAIM) it has a
marginally higher SDC compared to RAIM.

C. Thermal effects on Reliability

To factor in temperature effects on reliability we scale the
FIT rate using Arrhenius Equation [48]. There exists a 10◦C
temperature gradient between the DRAM chip closest and
farthest to the fan [41], leading to non-uniform FIT rates for
the 9 chips within a DIMM scaled as [66.1, 74.3, 82.5, 90.7,
98.9, 107.1, 115.3, 123.5, 131.7]. Using a similar calculation
as above, we see that although overall DUE and SDC increases
for baseline Chipkill system, Dvé+TSD is able to lower DUE
by 4.15× and provide significant reduction in SDC compared
to the temperature-factored Chipkill baseline by using a risk
inverse mapping (data in chips that have higher FIT rate are
mapped to chips in the replica that have lower FIT rate).

When compared to an Intel mirroring-like scheme (employ-
ing TSD for a fair comparison), Dvé+TSD is able to lower
DUE by 11% using the thermal risk inverse mapping while
the Intel mirroring scheme, despite the presence of replicas,
does not. While the analysis above exploits a non-uniform
thermal distribution across chips in a rank, some boards may
exhibit a non-uniform thermal profile across ranks, e.g., ranks
closer to the processor may exhibit higher temperatures than
ranks further from the processor. Memory controller policies
can be designed to place the two copies of data in ranks that
are not both at high risk of failure, thus achieving higher
overall reliability than thermal-unaware policies – we leave
such explorations for future work.

D. Summary

Table I summarizes the DUE & SDC rates. A key reason
why Dvé provides significantly higher reliability over Chipkill
and RAIM is because Dvé relies on full replication, while
other schemes are all based on ECC (which is a “k-out-of-n”
system). More precisely, our competitors rely on (n− k) out
of n hardware entities operating correctly – where hardware
entities can be chips, channels etc., and k = 1 or 2 and n is
between 5 and 9, typically. In contrast, Dvé only relies on the
exact same hardware entity in the other independent replica
not failing. Therefore there are more ways for our competitors
to fail compared to us. Finally, it is worth noting that our
analytical model does not account for other memory subsystem
failures like those in address/data bus, memory controllers,
etc., due to absence of field data for these. Because Dvé is
the only scheme that can tolerate such failures, our analyses
serve as lower bound for the actual DUE, SDC rates.

V. DVÉ

In this section, we describe how Dvé achieves both reliabil-
ity and performance via replication. We first outline the system
model after which we precisely specify the consistency and
recovery semantics of Dvé. Then, we describe details of the

Fig. 4. Coherence in (a)NUMA(above) (b)Dvé(below) (c)Logical view(right)

coherence protocol extensions for realizing these semantics.
Finally, we discuss how a flexible replica region is organized.

A. System Model

We assume a typical modern system consisting of multi-
ple multi-core chips connected via a cache-coherent, high-
bandwidth, low-latency point-to-point interconnect like Intel
QPI, UPI or AMD Hyper-transport. Each multi-core chip
seated within a socket has a DRAM memory array co-located
with it. Each chip has multiple levels of SRAM caches
including a last-level cache (LLC) that is shared by the cores
within that socket, but globally the LLC is private to each
socket as shown in Fig. 4(a). On an LLC miss, the request is
routed to the “home directory” adjoining the physical location
of the home memory controller. (The home directory for
an address is determined based on a static hash function of
the address.) Thus, the memory access latency depends on
where the request originated and where the memory is located.
Accessing locations mapped to a remote socket experiences
a higher latency, as they require traversing one or more
socket interconnect links compared to accessing locations on
the same socket. A hierarchical cache coherence protocol
handles permissions for each write request and enforces write
serialization. Coherence is enforced by looking up the logically
centralized (but physically distributed) global directory. We
assume a full directory with the recently accessed entries
cached on-chip [66].

Dvé uses either a statically reserved portion of the entire
memory space for replication with a fixed function mapping
or employs a flexible table based mapping populated by the
OS as explained in Sec. III. For either case, blocks are
always inserted into the caches using the original physical
address and only the directory controller is responsible for
maintaining consistency between the replicas. Note that there
are no requests from caches for addresses in the replica pages
since these are unused/unallocated by the OS.

B. Consistency and Recovery Semantics

1) Consistency: Dvé extends the coherence protocol to: (a)
keep the replica strongly consistent with the data; and (b)
ensure that the replica is accessible during fault-free operation.

6



To maintain a strongly consistent replica, when a dirty cache
block is replaced from the LLC, the block is written back
to the home node as well as the replica, synchronously. (By
“synchronously”, we mean that the request completes only
after both home node and replica are written to.) A strongly
consistent replica is a necessary but not sufficient condition
to ensure that the replica can be accessed during fault-free
operation. The data in memory, and hence the replica, could
be stale when some cache in the system holds the location in
writable state. Therefore, we augment the coherence protocol
with additional metadata and logic (in the form of a replica
directory) to ensure that the replica is accessed only when it
is not stale. With these extensions, Dvé ensures that a read
request can be serviced from nearest replica.

2) Recovery: Dvé’s strong consistency guarantee makes
recovery straightforward. When a memory read fails in one
of the replicas, i.e., the local ECC check (if equipped with
DSD/TSD) or local ECC check+repair (if equipped with
Chipkill) at the memory controller fails after a DRAM read,
the home/replica directory diverts the request to the other
memory controller for recovery. (If the other copy’s read also
fails, the data is lost (DUE) and a machine check exception
is logged and signaled.) If the copy is good, data is returned
to the requester and the system logs a Corrected Error (CE).
The initial memory controller attempts to fix its copy by
updating (writing) it with the correct data and then re-reading
the DRAM. If the error was temporary, this read will succeed
else the system is placed in a degraded state with only one
working copy.

C. Coherent Replication

Logically speaking, Dvé introduces a new replica directory
and so, each location now has a home directory as well as
a replica directory. In physical terms, Dvé augments each
directory controller with metadata (as shown in Fig. 4(b)) to
allow for the replica values held in that socket to be safely
accessed. Normally each physical directory maintains state for
only locations mapped to that node. In Dvé each directory also
maintains state about replica locations mapped to that node.

For each location, all LLCs in the system can be classified
into two classes: (a) home-LLCs: LLCs that send their request
to the home directory – the home directory being nearer to
them; and (b) replica-LLCs: LLCs that send their request to the
replica directory – the replica directory being nearer. (Note that
LLCs can still cache any block in system memory.) There is a
hierarchical relationship between home directory and replica
directory as shown in Fig. 4(c). The replica-LLCs view the
replica directory as a cache of the home directory. Transactions
originating from the replica-LLCs check the replica directory
first before going to the home directory. The home directory
on the other hand views the replica directory as one of its
“sharers”; it forwards requests to the replica directory which
in turn consults its own sharer vector and forwards the requests
to one or more of the replica-LLCs.

We propose two protocol families – allow-based and deny-
based – based on how access permissions are acquired for

Fig. 5. Replica directory controller: stable states and transitions.
Above: allow-based protocol; Below: deny-based protocol

replicas. In the former, the replica directory pulls “allow per-
missions”: replica can be accessed only if a replica directory
entry for that location explicitly says the location can be
accessed; the absence of an entry means “no”. In the latter,
the home directory pushes “deny permissions” to the replica
directory: replica can be accessed unless a directory entry
explicitly forbids its access; absence of an entry means “yes”.

1) Allow-based Protocol: The replica directory maintains
entries like in a conventional director – including state, sharer
vector, and owner. Without loss of generality we assume the
MSI states. “Invalid” means that the location is not cached in
any of the replica-LLCs. “Shared” means that the location is
cached in readable state in one or more of the replica-LLCs.
“Modified” means that the location is cached in writable state
in one of the replica-LLCs.

Suppose that there is an LLC read miss in a socket that is
sent to the replica directory – the socket being closer to the
replica directory. The request can safely read from the replica
if (and only if) that location is in shared state in the replica
directory. If it is in modified state, it has to be routed to the
owner in one of the replica-LLCs.

Importantly, if the entry for the location does not exist (i.e.,
the location is in invalid state) the replica cannot be safely
accessed because it is possible that one of the home-LLCs may
currently hold the block in modified state. In such a case, the
request is forwarded to the home directory. The home directory
responds to the request with the value and adds the replica
directory as one of its “sharers”. Upon receiving the response,
the replica directory goes into shared state and sets the sharer
vector to point to the LLC that initiated the request.

The complete state transition diagram of the replica con-
troller is illustrated in Fig. 5 (top). The states and transitions

7



resemble a conventional MSI directory controller but with one
crucial difference. When one of replica-LLCs evict a dirty
block in modified state, the replica directory not only writes
back the block to the replica memory but also the home
memory. In a similar vein, the home directory also writes back
a dirty block to both the home memory and replica memory.

In summary, the allow-based family of protocols lazily pull
read permissions for the replica upon access. This reactive
approach works well on workloads with significant private
writes; it makes sense to avoid pushing permissions to the
replica directory via the inter-socket link when other threads
are not likely to read those lines.

2) Deny-based Protocol: In contrast to allow-based, in
the deny-based family of protocols, the home directory ea-
gerly pushes deny permissions (i.e., knowledge about writable
locations in their LLCs) to the replica directory. In doing
so, the replica memory can be accessed even if there is no
directory entry corresponding to that location. The proactive
approach is suited to read-only (or mostly-read) workloads
since directories can read the nearest replica without the need
for requesting permissions.

Like in the allow-based protocol, the replica directory again
maintains entries like in a conventional protocol including:
state, sharer vector, and owner. States include the conventional
MSI states, but additionally a new remote modified (RM) state.
A location in RM implies that one of the home LLCs have the
block in modified state; this implies that the replica is stale and
hence cannot be accessed directly. “Invalid”,“Modified” and
“Shared” states mean the same as in the allow-based protocol.

Suppose that there is an LLC miss that is sent to the replica
directory. The request can be safely read from the replica as
long as the location is not in RM state. Note that the replica
can be read even if there is no entry in the replica directory.
Indeed, the absence of an entry implies that there are no remote
writers and hence means that the replica is not stale.

Finally, as in the allow-based protocol, an evicted dirty LLC
block is written to both the home memory and the replica
memory. The state diagram of the replica directory controller
is illustrated in Fig. 5 (bottom).

3) Handling Recovery: The recovery process of Dve is
simple and does not involve any stop-the-world state update:
when a local memory controller returns a read failure, the
directory simply forwards the request to the replica memory
controller. In other words, the coherence protocol is agnostic
to the recovery action. Any concurrent request from a cache
or an I/O operation is serialized and coalesced at the directory
in the MSHR/intermediate state as in the baseline coherence
protocol. This invariant ensures correctness for all cases.

4) Complete protocol and Verification: Until now we have
discussed only stable states and transitions, implicitly assum-
ing that state transitions happen atomically. In reality, each
transition involves a number of steps in modern systems.
For this reason, transient states and actions are necessary to
enforce logical atomicity. We have fully fleshed out complete
protocol specifications including transient states and actions
for both protocol variants. Further, we have modeled the

complete protocol in the Murφ model checker [17] and
exhaustively verified the protocol for deadlock-freedom and
safety, i.e., they enforce the Single-Write-Multiple-Reader
invariant [66]. The detailed state transition table for the replica
controller and the Murφ model are available online7.

5) Protocol Optimizations.: We describe 3 protocol opti-
mizations for improving performance.
Speculative replica access. Consider an LLC miss that is sent
to the replica directory in the allow-based protocol; further let
us assume that an entry for the location is not present in the
replica directory. This can either mean that the location is in
writable state in one of home-LLCs or the directory entry has
been evicted. The only way to find out for sure is to ask the
home directory. But in the meantime the local replica can be
speculatively accessed to overlap memory latency with home
directory access. A similar optimization can be employed in
the deny-based protocol as well: in case of a replica directory
miss, the local replica can be speculatively accessed while
waiting for the entry to be retrieved from DRAM.
Coarse-grained replica directory. Until now we had assumed
that the replica directories operate at cache line granularity.
We draw inspiration from prior works [8], [49] to amortize
overheads by using coarse-grain replica directories. We use a
contiguous, aligned block of memory to be covered by one
entry when possible i.e. a full memory block is entered into
the replica directory if no cacheline within it is currently in
writable state.
Sampling based dynamic protocol. The performance of
allow-based vs disallow-based protocols is dependent on the
workload. A sampling based dynamic protocol can be used to
achieve the best of both. We apply both approaches to a region
of memory for a few epochs and monitor their effectiveness
(similar in spirit to set dueling). Such an implementation
requires a few additional saturating counters in the profiling
phase. The scheme that performs better is then applied to the
rest of the memory. When switching between the protocols
(based on a register being set in the CPU by compiler or
OS), we enter a drain phase to clear the replica directory and
stop reading from the replica memory. We then switch state
machines, followed by a warmup phase to bring the metadata
entries au courant.

D. Discussion: OS support for memory replication

We now discuss the OS support needed to enable memory
replication using the flexible table based mapping (relaxing the
restriction of fixed function mapping assumed so far). There
are 3 fundamental questions that need to be addressed for
this: (i) How does the OS carve and manage space required
for replication? (ii) How does the OS map replica page pairs?
(iii) When does the OS enable or disable replication?
Carving and managing space required for replication: The
OS already uses heuristics to estimate unused memory to
transparently cache accessed files (called as disk buffering or
file caching). Such approaches to estimate maximum DRAM

7https://github.com/adarshpatil/dve

8



resident set size can be reused to opportunistically steal system
visible memory for replication. Further, balloon drivers [76]
in the OS can be used to create memory pressure, forcing
it to select pages to swap to disk, thereby carving memory
space for replication. If memory pages are required to be
swapped out to disk, the OS can monitor page fault rate to
ensure that excessive swapping does not cause performance
degradation beyond a pre-defined threshold. Note that Dvé
only requires pairs of pages in different NUMA nodes and
not a large contiguous address space, thus avoiding the need
to perform memory compaction. In the absolute worst-case,
when additional memory capacity is essential (either during
burst periods or diurnal workloads), server management in-
frastructure can notify the OS to disable Dvé replication.
The memory relinquished can be hot-plugged back to system
visible capacity (free memory pool). Dvé’s modular design of
building over ECC enabled DIMMs with Chipkill allows the
system to provide the baseline reliability when Dvé is disabled.
Mapping replica page pairs: As explained in Sec. III, replica
page pairs are stored in an in-memory data structure called
RMT. As the OS is already aware of the memory layout on
boot via EFI it can create replica pairs such that they exist on
memory adjoining different sockets. The RMT can be cached
at the directory controller for quick lookups and the controllers
can lookup/walk the RMT in hardware when needed (similar
to a page table walker). Replication can even be performed
at coarse granularity, allowing the RMT to be organized as a
simple linear table or a 2-level radix-tree (similar to the page
table) to perform fast end-to-end translations. A mapping entry
can remain in the RMT despite the page being deallocated.
This reduces the number of times the RMT cache would
need to be shot down or quiesced. Further, RMT changes are
infrequent since it only needs modifications in the rare event of
a capacity crunch i.e., free list runs out, and the OS reclaims
replica pages for use as addressable memory. Lastly, RMT
entries can also be apriori populated by the OS heuristically
in anticipation of replication requests for fast turn-around at
memory allocation.
When should replication be enabled or disabled? The
onus is on the workload placement and server management
infrastructure (aka Control Plane) to define critical workloads
and notify the OS when such replication costs are justified.
The workload placement infrastructure manages the capacity
vs reliability memory mode decision as a soft setting on a
fleet of commodity high-capacity machines without having to
procure specialized hardware for high reliability memory. This
allows greater flexibility as datacenters and HPC installations
can provision single homogeneous iso-config hardware to
enable easier cost-efficient management while using Dvé to
run mission critical workloads where reliability is a non-
negotiable first order concern.

Dvé’s replicated reliable memory can be flexibly deployed:
(i) by the hypervisor at per-VM granularity, (ii) per-container
or per-process granularity for serverless FaaS (Function-as-a-
Service) deployments, (iii) for kernel allocations where system
stability is of utmost importance or in workloads like file

TABLE II
CONFIGURATION OF THE SIMULATED SYSTEM

Processors 16-core, 2 socket, (8-core/socket), 3.0 GHz
L1 I/D Cache 64KB, 8-way, private per core, 1 cycle, writeback

L2 Cache (LLC) 8MB, 16-way, shared per socket, 20 cycles, writeback
Local Directory embedded in L2, fine-grain (cores) sharing vector
Global Directory 20-cycle, coarse-grain (sockets) sharing vector

2 × 8GB DDR4-2400 Mhz, 8 devices, 8-bit interface
Baseline Memory tCL-tRCD-tRP-tRAS=14.16ns-14.16ns-14.16ns-32ns

1KB row buffer, 16 banks/rank, 1 channel/socket
Replicated Memory 4 × 8GB DDR4-2400 Mhz, 2 channel/socket

Intra-socket interconnect 2×4 Mesh, SSSP routing, 1 cycle per hop
Inter-socket interconnect point-to-point, 50ns

TABLE III
BENCHMARKS

Suite Benchmark
HPC (assorted) comd [1], xsbench [72], graph500 [21], rsbench [71]

PARSEC [5] canneal, freqmine, streamcluster
SPLASH-2x [74] barnes, fft, ocean cp

Rodinia [11] backprop, bfs, nw
NAS PB [53] mg, bt, sp, lu
Parboil [34] stencil, histo

SPEC 2017 [69] lbm

servers which use large amounts of OS memory to perform
basic kernel operations, (iv) by mirroring entire address space
to protect aging machines errors. With this knowledge, the
OS adds a flag to the process control block (PCB) at creation
process time to always allocate replicated memory.

Alternatively, to allow an application to explicitly provide
high reliability to certain memory regions (say for a stateless
application to allocate failure resilient data segments), a variant
of the malloc/calloc call can be provided to request the OS to
allocate a replicated physical memory.

Finally, note that Dvé guarantees higher reliability and
improved performance only for the replicated region.

E. Performance caveats of Dvé

Dvé aims to maximize the performance obtained by using
the Coherent Replication scheme. Recall that if there are any
issues with one of the replicas, for e.g. due to hard errors or
thermal throttling or preventing a row-hammer access pattern,
the system is placed in a degraded state where there is only
one working copy. This negates the performance benefits for
that memory location. Note that by marking the locations
which are in a degraded state and funneling their requests to
the single functional location, Dvé will provide performance
comparable to baseline NUMA. The performance benefits may
also be nullified or marginally adversely affected with Dvé
if all compute and memory accessed is localized to a single
NUMA node. This is because all memory writes have to be
replicated to both NUMA nodes (not in critical path).

VI. EVALUATION METHODOLOGY

In this section, we set out the parameters and configuration
of the multi-socket NUMA architecture used in our experimen-
tal evaluation of the coherent replication protocols proposed.
System Configuration: We model 2-socket Skylake-like con-
figuration with mesh topology within the socket and a point-
to-point QPI/UPI-like interconnect between the sockets. All

9



backprop

graph500 fft
sten

cil
xsbench

ocea
n cp nw

rsb
ench sp

comd

gm
ean

-to
p10 bt

barnes lu histo lbm

gm
ean

-to
p15 bfs

canneal mg

stre
amcluster

freq
mine

gm
ean

-all

1

1.2

1.4

1.6

2.17

S
p

ee
d
u
p

NUMA Allow protocol Deny protocol Dynamic protocol Intel Mirroring++

Fig. 6. Performance comparison of Dvé

links are ordered and have a fixed latency. A table-based static
routing is enforced with a shortest path route with minimum
number of link traversals. Each multi-core chip has per-core
private caches, a shared LLC, a directory and a memory
controller. The system is kept coherent using a hierarchical
MOESI/MOSI protocol (full config details in Table II). Mem-
ory is allocated using an interleave policy whereby adjacent
pages are interleaved across memory controllers in a round-
robin fashion. We use an inter-socket latency of 50ns per hop.
This is in-line with the difference between local and remote
memory on a dual-socket Intel SandyBridge machine [23]. We
also study the performance sensitivity to inter-socket latency.
Memory Configuration: Since our primary aim is to demon-
strate the benefits of coherent replication in conditions where
workloads memory needs are already satisfied, both the base-
line and Dvé have the same system visible memory capacity.
We assume the entire system memory is replicated using
a fixed function mapping as explained in Sec III. In our
evaluation, to accommodate the additional capacity required
to store the replica, we add DIMMs on another channel on
both the NUMA nodes as shown in Fig. 3. While several other
lower performance configurations can be used to increase the
capacity required to house the replica (like using a dual rank
DIMM or higher capacity chips in a DIMM), this does not
affect the overall reliability of the system as the replicas are
anyway stored on different NUMA nodes.
Simulator: Simulating large core count systems with high-
capacity DRAMs and large application working set sizes is
challenging with existing publicly available tools. To circum-
vent this, we generate traces of benchmarks using the Prism
framework [54] which uses Valgrind to generates traces of
compute, memory, multi-threading APIs like create/join, mu-
texes, barriers, conditional wait/signaling/broadcasting, spin
locks/unlocks and producer-consumer thread communication
events. The tool captures synchronization and dependency-
aware, architecture-agnostic multi-threaded traces.

We replay traces in a modified gem5 simulator [59]. Inte-
ger/floating point computations and thread API events have
fixed latency of 1 cycle and 100 cycles respectively while
all memory operations are simulated in detail. The replay
mechanism respects synchronizations, barriers and mutexes.
We skip the serial sections and/or initialization parts of the
programs and instrument only the region of interest (ROI) in

the benchmarks.
Workloads: We use OpenMP and Pthreads based multi-
threaded workloads from 7 benchmark suites. Memory inten-
sive applications were chosen from these suites (Table III). We
use the largest input dataset available for these benchmarks.
Traces of the ROI are used to warm-up the caches and struc-
tures for the first 1 billion operations i.e. computation, memory
or communication events (which correspond to between 0.5-
1.15 billion instructions) and then simulated in detail for 20
billion operations (8-19.3 billion instructions). We order the
workloads in descending order of L2 MPKI and report the
geometric mean of speedup as an aggregate statistic for the
top-10 (high MPKI), top-15 and all 20 benchmarks.
Protocol Config: We use a fully associative 2K entry structure
for the replica directory. We assume same access latency for
the replica directory as the home directory for both protocols.
We employ speculative replica memory access optimization
as part of the default configuration. While this does trade-off
bandwidth for squashed replies, we find that in our simulations
the latency benefits outweigh the bandwidth loss. For the
sampling based dynamic scheme optimization, we run a profile
phase for the workload for 100 million instructions every 1
billion instructions for each scheme. We then apply the scheme
that performs better for the rest of the phase.

VII. EVALUATION RESULTS

The goals of our evaluation are as follows. First, to evaluate
the performance benefits of the coherent replication protocols
over baseline NUMA architecture. Second, to explain the
performance benefits using the key metric of coherence traffic
between sockets. Third, evaluate the optimizations presented
in Sec. V-C5. Fourth, evaluate the robustness of performance
gains of Dvé schemes to varied inter-socket latencies. Finally,
study the impact of replication on DRAM and system energy.
Performance Benefits of Coherent Replication: Fig. 6
shows the performance of allow, deny and dynamic protocol
normalized to a baseline NUMA system without memory
replication. The deny protocol achieves an average speedup of
28%, 18% and 15% for the top-10, top-15 and all benchmarks
respectively, while the allow protocol achieves an average
speedup of 17%, 14% and 12% respectively over the baseline.
Although deny protocol performs better on average, only 10
benchmarks (backprop, graph, fft, stencil, xsbench, ocean cp,
nw, rsbench, bfs, streamcluster) show better performance with

10



a deny protocol while the other workloads perform better
with the allow protocol. The dynamic protocol is always able
to detect the better of 2 protocols. Therefore the dynamic
protocol achieves the best average speedup of 29%, 22%
and 18% over the baseline. A key point to note is that
all benchmarks for all schemes, perform equal to or better
than the baseline which shows that the overheads of coherent
replication does not cause any adverse performance penalties.

To compare against the best possible performance that
can be gained by reading data from 2 mirrored channels,
we implement an improved (hypothetical) version of Intel’s
memory mirroring scheme by actively load balancing reads
between them. (Recall the default Intel memory mirroring
scheme does not read the secondary copy, unless the primary
fails.) Dvé’s schemes provide a geomean speedup of 9%
and 13% better than the Intel-mirroring++ scheme for allow
and deny respectively, as they are able to avoid the inter-
socket latency by providing node local reads while the Intel-
mirroring++ scheme can only provide higher read memory
bandwidth by allowing reads from both channels.

ba
ck

pr
op

gr
ap

h5
00 fft

st
en

ci
l

xs
be

nc
h

oc
ea

n
cp nw

rs
be

nc
h sp

co
m

d bt

ba
rn

es lu
hi

st
o

lb
m bf

s

ca
nn

ea
l

m
g

st
re

am
cl
us

te
r

fre
qm

in
e0

20

40

60

80

100

%
of

R
eq

u
es

ts

private-read read-only read/write private-read/write

Fig. 7. Sharing pattern in benchmarks

Performance Analysis - Workload Sharing Characteristics:
To assess why a scheme performs better for a workload, we
look at the inter-socket sharing characteristics of workloads
in the baseline NUMA system. By analyzing this, we can
understand the opportunity for performance gains from each
scheme. We classify the requests at the home directory as
one of the following – private-read for a GETS request to a
line in I state, read-only for a GETS request to a line in S
state, read/write for a GETS request to a line in M or O state
or a GETX request to a line in S state, private-read/write for
GETX request to a line in I state. Fig. 7 shows the distribution
of the above mentioned classes for each workload. Workloads
that exhibit considerable private read/write behavior (greater
than 46%) show higher benefits with an allow protocol. This
is expected, since for such workloads on a GETX request
where there is no sharing, the allow protocol is able to avoid
aggressively pushing invalidates (by virtue of being a lazy,
pull-based scheme) while the deny protocol is required to
update the replica directory.
Performance Analysis - Inter-socket traffic: Fig. 8 quantifies
the reduction in inter-socket traffic when using Dvé protocols
compared to baseline NUMA. We see that reduction in inter-
socket traffic correlates with the performance benefits, i.e., the
protocol which shows higher reduction in inter-socket traffic

backprop

graph500 fft
sten

cil
xsbench

ocea
n cp nw

rsb
ench sp

comd

avg
-to

p10 bt
barnes lu histo lbm

avg
-to

p15 bfs
canneal mg

stre
amcluster

freq
mine

avg
-all

20

40

60

80

100

In
te

r-
so

ck
et

tr
affi

c

NUMA Allow protocol Deny protocol

Fig. 8. Inter-socket traffic (normalized to NUMA)

performs better. Backprop and graph500 notably experience
a 86% and 84% reduction in inter-socket traffic as they
see mostly private-read and read-only requests which can be
serviced by the replica. Overall for the 20 benchmarks, allow
and deny protocols reduce inter-socket communication traffic
by an average of 38% and 35% respectively over the baseline
NUMA architecture.

backprop
graph500 fft

stencil
xsbench

ocean cp nw
rsbench sp

comd

gm
ean

-top
10 bt

barnes lu histo lbm

gm
ean

-top
15 bfs

canneal mg

stre
amcluster

freqmine

gm
ean

-all

1

1.2

1.4

1.6

1.8
2.24

S
p

ee
d
u
p

default 4K entries 2KB granularity oracle

Fig. 9. Allow-based protocol optimizations

Optimizing the schemes: To gauge the ceiling of performance
we can expect from an allow-based protocol, we measure the
performance achievable with an oracular allow-based scheme.
Intuitively, the size of replica directory structure is propor-
tional to the efficiency of the scheme and thus, for an oracular
scheme we allow the replica directory entries to be infinite and
exhaustive. Further, it does not incur any latency overheads
to add an entry (in the spirit of oracle knowledge) while
invalidation/removal of entries does incur latency (since this
can never be avoided). With such a configuration, we see
that the performance of oracular scheme is 18.3% and 10.8%
better than the default allow protocol for the top10 and all
benchmarks respectively (Fig. 9, fourth bar).

In reality to achieve near oracular performance, we double
the number of replica directory entries to a fully associative
4K entry structure. We see that the larger structure provides
an average hit rate improvement of 32% and improves perfor-
mance by 2.1% and 1.7% over the default allow protocol for
top10 and all benchmarks respectively (Fig. 9, second bar).

Another optimization we can use is to use coarse-grain
tracking at the replica directory to increase the reach.
When such an optimization is employed benchmarks such
as backprop, graph500, fft, rsbench show gains while stencil,
ocean cp, comd, bfs suffer compared to the default cache-
line level tracking (Fig. 9, third bar). Further nw, sp, barnes
and canneal perform worse than baseline NUMA. This is due
to the additional overhead to invalidate entries from other
sockets when an exclusive request is issued for a larger
granularity. Overall, coarse granularity tracking performs 0.7%
better for top10 benchmarks but performs worse by 1.7% over

11



all benchmarks compared to the default allow protocol. Thus
such a technique is not well suited to improve performance.

We note that the performance of the best variant of the
allow protocol for each benchmark is within 12% and 7% of
the oracular performance for top10 and all benchmarks (16%
better than the baseline NUMA overall).
Sensitivity to inter-socket latency: A number of software-
based techniques – including Carrefour [16], Shoal [35],
AutoNUMA – have been proposed to mitigate NUMA effects;
the net effect of each of these techniques is to reduce the
average inter-socket latency. Therefore, we study the effect
of inter-socket interconnect latencies on the performance of
Dvé. As seen in Fig. 10, even with fairly low 30ns inter-
connect latency (each way), the deny protocol outperforms
the baseline by 19%, 12% and 10% for top-10, top-15 and
all benchmarks respectively. On the other end, with increased
inter-socket latencies of 60ns (as in emerging scalable long
range interconnects like CCIX [9], OpenCAPI [55] and GenZ
[19]), Dvé’s benefits increase as expected.

30405060

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Inter-connect Latency in ns

S
p
ee
d
u
p

top10 top10

top15 top15

all all

allow deny

Fig. 10. Sensitivity to inter-connect latency

Energy: To understand the energy overheads of maintaining a
replica for each location, we measure the energy-delay product
(EDP) of the DRAM subsystem using the Micron datasheet
[46]. We observe that, memory-EDP for memory intensive
benchmarks (backprop, graph500, fft) reduces even with the
overheads of double memory capacity but the geomean over
all benchmarks increases by 43% and 37% for allow and deny
protocols respectively. (Note that we expect the memory-EDP
of Dvé to be even lower when using idle memory as it still uses
energy for refresh, even in a low power (self-refresh) state.)
Moreover, typically memory consumes only a fraction of the
overall system power: about 18% of the total system power
in a 2-socket NUMA system [2]. Using this to calculate the
system-EDP, we find that the system-EDP geomean over all
benchmarks turns out to be lower by 6% and 12% for allow
and deny respectively, due to shorter execution times.

VIII. RELATED WORK

1) DRAM RAS Proposals:
State-of-the-art ECC proposals: A large body of recent work
have proposed several variants of ECC schemes to deal with
errors in the DRAM devices [10], [20], [32], [36], [37], [51],
[73], [79]. Specifically, multi-tier ECC approaches proposed in
[31], [73], [79] separate error detection and error correction
code. AIECC [37] sheds light on the need for channel error

protection (clock, control, command and address buses) and a
holistic ECC based scheme to achieve it.

All these proposals rely on correction bits stored in the
same DIMM/rank/channel and thus cannot correct memory
controller or channel failures as in this work. Dvé can be flex-
ibly paired with any proposed ECC scheme for error detection,
and use the replica to recover from an error. These works
also suffer performance degradation for providing additional
protection while Dvé provides performance benefits.
Non-ECC based DRAM RAS schemes: To detect trans-
mission errors on channels, DDR4 memory controllers use
CRCs and retry transactions if errors are detected [46]. If
errors persist, lanes are quiesced, reset and recalibrated but
these cannot handle hard channel failures. Aside from ECC
based systems, Intel [22], [26] and IBM processors [25] allow
memory to be mirrored across two channels within a memory
controller or across two DIMMs within a channel. While these
mechanisms can tolerate channel failures, they are still subject
to faults in the single memory controller subsystem.

MemGuard [13] uses incremental log hashes for error
detection and a OS created checkpoint for error recovery.
However the recovery is not instant and can lead to loss of up-
dates. Selective word level replication [52] proposes selective
replication of words to mitigate large granularity failures in
DRAM chips with manufacturing defects. As before, all these
mechanisms cause performance degradation for providing at
most channel error protection.
Stacked DRAM RAS schemes: Stacked DRAMs are prone
to failures in dies and TSVs due to their organization, which
resemble chip and channel failures. Adopting conventional
ECC schemes causes performance pathologies in stacked
DRAMs due to the layout of data. To protect against such
errors without causing performance/power overheads a body
of work [12], [29], [33], [43], [50] calls for adding additional
tier-2 code that is an XOR of the data blocks. This XOR block
is then stored in the same stacked DRAM in a manner that
allows regeneration of original block in case of a TSV/die
failure. Although the XOR block is stored in an independent
channel it cannot be accessed independently without the data
block (as it is not a full replica). Even if a replica were used
instead of the XOR block, these works would resemble at best
an Intel mirroring-like approach [26].

2) Mitigating NUMA overheads: Carrefour [16] proposes
OS-driven selective replication of memory read-only or read-
mostly pages to alleviate NUMA overheads. Shoal [35] pro-
posed program analysis to automatically replicate memory
regions across NUMA nodes for mitigating the performance
penalty of remote access.

Architectural solutions for mitigating NUMA has had a long
history, most notably in the cache-only-memory architecture
(COMA) and tertiary caching line of research [3], [61], [75],
[81]. More recently, C3D [23] and Candy [15] use a per-
socket stacked DRAM cache to reduce NUMA interconnect
latencies. All of these works leverage hardware support for
caching remote data and keeping them consistent. None of the
aforementioned works aim to provide fault-tolerance. While

12



Dvé aims to use the replica for improving performance, it’s
primary goal is to provide improved DRAM fault-tolerance.

3) NVM RAS mechanisms: NVMs suffer from high num-
ber of hard errors due to cell wear out and stuck-at faults.
ECP [63], FREE-p [78], PAYG [57] and Chipkill-correct
for NVRAM [80] propose using pointers or error correction
entries to remap failed bits in a line or use variants of ECC.
All these schemes still target cell failures and cannot deal with
larger granularity failures due to errors in shared components.

Dynamically Replicated Memory (DRM) [27] uses a read-
after-write scheme to detect errors. When an error is detected,
the scheme makes a copy to a compatible page with dissimilar
faults. Both copies need to be accessed to service a request. We
find that NVM memory RAS mechanisms are also insufficient
to handle the scope of errors targeted in our work.

4) Exploiting underutilized memory: FMR [56] proposes
replicating data into idle memory – on different ranks in
the same memory controller and uses it to hide DRAM
maintenance latency overheads like refresh, precharge delay,
etc. FMR performs lock step write into the rank replicas within
the same memory controller. This is very similar to the Intel-
mirroring++ scheme implemented in our evaluation.

Workload co-location exploiting workload heterogeneity
and variability has been proposed to improve utilization in the
cloud [42]. However, this is having limited effectiveness given
the dynamic bursty nature coupled with stringent tail latency,
throughput guarantee requirements and increased security con-
cerns. Memory disaggregation has also been proposed to
allow workloads that require high capacity memory to take
advantage of idle remote memory to improve performance
[28], which is orthogonal to our approach.

IX. CONCLUSION

We have presented Dvé, a hardware memory replication
mechanism for achieving both reliability and performance.
We have demonstrated that this unique design point offers
considerably higher memory reliability and can be flexibly
deployed on-demand. Furthermore, our experimental results
indicate that in contrast to existing memory reliability tech-
niques that are detrimental to performance, Dvé provides a
non-trivial improvement in performance.

X. ACKNOWLEDGEMENTS

We thank Nikos Nikoleris, Dan Sorin, Vasilis Gavrielatos,
Jayvant Anantpur and the anonymous shepherd/reviewers
whose feedback helped to refine our ideas and improved the
paper. This work was supported in parts by ARM, through
their PhD Scholarship Program and NSF grant CNS-1718834.

REFERENCES

[1] ARM HPC, “arm-hpc/comd,” https://github.com/arm-hpc/CoMD.
[2] L. A. Barroso, U. Hölzle, P. Ranganathan, and M. Martonosi, The

Datacenter as a Computer: Designing Warehouse-Scale Machines, Third
Edition. Morgan & Claypool Publishers, 2018.

[3] S. Basu and J. Torrellas, “Enhancing memory use in simple coma:
Multiplexed simple coma,” in HPCA, 1998.

[4] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on
a supercomputer,” in SC, 2016.

[5] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[6] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge
University Press, 2003.

[7] S. Blanas, “Near data computing from a database systems perspective,”
https://www.sigarch.org/near-data-computing-from-a-database-
systems-perspective.

[8] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” in ISCA, 2005.

[9] CCIX consortium, http://www.ccixconsortium.com.
[10] S. Cha, O. Seongil, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi,

G. Y. Jin, Y. H. Son, H. Cho, J. H. Ahn, and N. S. Kim, “Defect analysis
and cost-effective resilience architecture for future dram devices,” in
HPCA, 2017.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[12] H.-M. Chen, C.-J. Wu, T. Mudge, and C. Chakrabarti, “Ratt-ecc: Rate
adaptive two-tiered error correction codes for reliable 3d die-stacked
memory,” ACM Trans. Archit. Code Optim., vol. 13, no. 3, Sep. 2016.

[13] L. Chen and Z. Zhang, “Memguard: A low cost and energy efficient
design to support and enhance memory system reliability,” in ISCA,
2014.

[14] W. Chen, K. Ye, Y. Wang, G. Xu, and C. Xu, “How does the workload
look like in production cloud? analysis and clustering of workloads on
alibaba cluster trace,” in 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS), 2018.

[15] C. Chou, A. Jaleel, and M. K. Qureshi, “Candy: Enabling coherent dram
caches for multi-node systems,” in MICRO, 2016.

[16] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: A holistic approach to
memory placement on numa systems,” in ASPLOS, 2013.

[17] D. L. Dill, “The murphi verification system,” in Proceedings of the 8th
International Conference on Computer Aided Verification, ser. CAV ’96.
Berlin, Heidelberg: Springer-Verlag, 1996.

[18] M. Fieback, “Dram reliability: Aging analysis and reliability predic-
tion model,” https://repository.tudelft.nl/islandora/object/uuid:e36c2de7-
a8d3-4dfa-9da1-ac5b7e18614b, 2017.

[19] Gen-Z consortium, http://genzconsortium.org.
[20] S. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, “Duo:

Exposing on-chip redundancy to rank-level ecc for high reliability,” in
HPCA, 2018.

[21] Graph500, “github/graph500,” https://github.com/graph500/graph500.
[22] HP, “Advanced memory protection technologies, technology brief, 5th

edition,” ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf.
[23] C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan, “C3d:

Mitigating the numa bottleneck via coherent dram caches,” in MICRO,
2016.

[24] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: Understanding the nature of dram errors and the
implications for system design,” in ASPLOS, 2012.

[25] IBM, “Power processor-based systems ras, june 27th, 2019,” https://
www.ibm.com/downloads/cas/2RJYYJML.

[26] Intel, “Address range partial memory mirroring,” https:
//software.intel.com/content/www/us/en/develop/articles/address-range-
partial-memory-mirroring.html and https://01.org/lkp/blogs/tonyluck/
2016/address-range-partial-memory-mirroring-linux.

[27] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda, “Dy-
namically replicated memory: Building reliable systems from nanoscale
resistive memories,” in ASPLOS, 2010.

[28] M. G. Ivy Peng, Roger Pearce, “On the memory underutilization:
Exploring disaggregated memory on hpc systems,” in 2020 32st Inter-
national Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2020.

[29] H. Jeon, G. H. Loh, and M. Annavaram, “Efficient ras support for die-
stacked dram,” in 2014 International Test Conference, 2014.

[30] X. Jian, N. DeBardeleben, S. Blanchard, V. Sridharan, and R. Kumar,
“Analyzing reliability of memory sub-systems with double-chipkill de-
tect/correct,” in 2013 IEEE 19th Pacific Rim International Symposium
on Dependable Computing, 2013.

[31] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-power,
low-storage-overhead chipkill correct via multi-line error correction,” in
SC, 2013.

13



[32] X. Jian and R. Kumar, “Adaptive reliability chipkill correct (arcc),” in
HPCA, 2013.

[33] X. Jian, V. Sridharan, and R. Kumar, “Parity helix: Efficient protection
for single-dimensional faults in multi-dimensional memory systems,” in
HPCA, 2016.

[34] I.-J. S. John A. Stratton, Christopher Rodrigues, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “Parboil: A revised
benchmark suite for scientificand commercial throughput computing,”
IMPACT-12-01, March 2012.

[35] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris, “Shoal: Smart
allocation and replication of memory for parallel programs,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15), 2015.

[36] J. Kim, M. Sullivan, and M. Erez, “Bamboo ecc: Strong, safe, and
flexible codes for reliable computer memory,” in HPCA, 2015.

[37] J. Kim, M. Sullivan, S. Lym, and M. Erez, “All-inclusive ecc: Thorough
end-to-end protection for reliable computer memory,” in ISCA, 2016.

[38] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in ISCA, 2014.

[39] L. A. Lastras-Montaño, P. J. Meaney, E. Stephens, B. M. Trager,
J. O’Connor, and L. C. Alves, “A new class of array codes for memory
storage,” in 2011 Information Theory and Applications Workshop, 2011.

[40] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang,
and O. Mutlu, “Adaptive-latency dram: Optimizing dram timing for the
common-case,” in HPCA, 2015.

[41] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardav-
ellas, “Hardware/software techniques for dram thermal management,” in
HPCA, 2011.

[42] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai, “Imbalance in the cloud: An
analysis on alibaba cluster trace,” in 2017 IEEE International Conference
on Big Data (Big Data), 2017, pp. 2884–2892.

[43] G. Mappouras, A. Vahid, R. Calderbank, D. R. Hower, and D. J. Sorin,
“Jenga: Efficient fault tolerance for stacked dram,” in ICCD, 2017.

[44] P. J. Meaney, L. A. Lastras-Montano, V. K. Papazova, E. Stephens,
J. S. Johnson, L. C. Alves, J. A. O’Connor, and W. J. Clarke, “Ibm
zenterprise redundant array of independent memory subsystem,” IBM
Journal of Research and Development, vol. 56, no. 1.2, Jan 2012.

[45] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2015.

[46] Micron, “DDR4 SDRAM Datasheet,” https://www.micron.com/-
/media/client/global/documents/products/data-sheet/dram/ddr4/8gb
ddr4 sdram.pdf.

[47] Micron, “DDR5 SDRAM Whitepaper,” https://www.micron.com/-
/media/client/global/documents/products/white-paper/ddr5 more than
a generational update wp.pdf.

[48] Micron, “Technical note: Uprating semiconductors for high-temperature
applications,” http://notes-application.abcelectronique.com/024/24-
20035.pdf.

[49] A. Moshovos, “Regionscout: exploiting coarse grain sharing in snoop-
based coherence,” in ISCA, 2005.

[50] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel: Efficiently
protecting stacked memory from large granularity failures,” in MICRO,
2014.

[51] P. J. Nair, V. Sridharan, and M. K. Qureshi, “Xed: Exposing on-die error
detection information for strong memory reliability,” in ISCA, 2016.

[52] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: Architectural
framework for assisting dram scaling by tolerating high error rates,” in
ISCA, 2013.

[53] NASA Advanced Supercomputing Division, “Nas parallel benchmarks,”
https://www.nas.nasa.gov/publications/npb.html.

[54] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin,
and M. Hempstead, “Synchrotrace: synchronization-aware architecture-
agnostic traces for light-weight multicore simulation,” in ISPASS, 2015.

[55] OpenCAPI consortium, http://opencapi.org.
[56] G. Panwar, D. Zhang, Y. Pang, M. Dahshan, N. DeBardeleben, B. Ravin-

dran, and X. Jian, “Quantifying memory underutilization in hpc systems
and using it to improve performance via architecture support,” in
MICRO, 2019.

[57] M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error correction for
phase change memories,” in MICRO, 2011.

[58] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proceedings of the Third ACM Symposium on Cloud Computing
(SoCC), 2012.

[59] K. Sangaiah, M. Lui, R. Jagtap, S. Diestelhorst, S. Nilakantan, A. More,
B. Taskin, and M. Hempstead, “Synchrotrace: Synchronization-aware
architecture-agnostic traces for lightweight multicore simulation of cmp
and hpc workloads,” ACM Trans. Archit. Code Optim., Mar. 2018.

[60] Sanghyuk Kwon, Young Hoon Son, and Jung Ho Ahn, “Understanding
ddr4 in pursuit of in-dram ecc,” in 2014 International SoC Design
Conference (ISOCC), 2014.

[61] A. Saulsbury, T. Wilkinson, J. Carter, and A. Landin, “An argument for
simple coma,” in HPCA, 1995.

[62] T. Scharon Harding, “Ecc memory in dram,” https://www.tomshardware.
com/uk/reviews/ecc-memory-ram-glossary-definition,6013.html.

[63] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ecp, not ecc,
for hard failures in resistive memories,” in ISCA, 2010.

[64] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
A large-scale field study,” SIGMETRICS Perform. Eval. Rev., vol. 37,
no. 1, Jun. 2009.

[65] T. Siddiqua, A. E. Papathanasiou, A. Biswas, S. Gurumurthi, I. Corp,
and T. Aster, “Analysis and modeling of memory errors from large-scale
field data collection,” in SELSE, 2013.

[66] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2011.

[67] V. Sridharan and D. Liberty, “A study of dram failures in the field,” in
SC, 2012.

[68] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in ASPLOS, 2015.

[69] Standard Performance Evaluation Corporation, “SPEC CPU 2017,”
https://www.spec.org/cpu2017/.

[70] M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,
M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact leakage-free
support for integrity and reliability,” in ISCA, 2020.

[71] J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey, “Performance
analysis of a reduced data movement algorithm for neutron cross section
data in monte carlo simulations,” in EASC 2014 - Solving Software
Challenges for Exascale, Stockholm, 2014.

[72] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - the
development and verification of a performance abstraction for Monte
Carlo reactor analysis,” in PHYSOR 2014 - The Role of Reactor Physics
toward a Sustainable Future, Kyoto, 2014.

[73] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, “Lot-ecc: Localized and tiered reliability mechanisms for
commodity memory systems,” in ISCA, 2012.

[74] P. G. P. University, “A memo on exploration of splash-2 input sets,”
https://parsec.cs.princeton.edu/doc/memo-splash2x-input.pdf.

[75] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
system support for improving data locality on cc-numa compute servers,”
in ASPLOS, 1996.

[76] C. A. Waldspurger, “Memory resource management in vmware esx
server,” SIGOPS Oper. Syst. Rev., p. 181–194, Dec. 2003.

[77] R. Yeleswarapu and A. K. Somani, “Sscmsd - single-symbol correction
multi-symbol detection for dram subsystem,” in 2018 IEEE 23rd Pacific
Rim International Symposium on Dependable Computing (PRDC), 2018.

[78] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi,
and M. Erez, “Free-p: Protecting non-volatile memory against both hard
and soft errors,” in HPCA, 2011.

[79] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main memory,”
in ASPLOS, 2010.

[80] D. Zhang, V. Sridharan, and X. Jian, “Exploring and optimizing chipkill-
correct for persistent memory based on high-density nvrams,” in MICRO,
2018.

[81] Z. Zhang and J. Torrellas, “Reducing remote conflict misses: Numa with
remote cache versus coma,” in HPCA, 1997.

[82] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu,
“Mini-rank: Adaptive dram architecture for improving memory power
efficiency,” in MICRO, 2008.

14


