
ProtoGen: Automatically Generating Directory Cache Coherence Protocols from
Atomic Specifications

Nicolai Oswald
The University of Edinburgh

nicolai.oswald@ed.ac.uk

Vijay Nagarajan
The University of Edinburgh

vijay.nagarajan@ed.ac.uk

Daniel J. Sorin
Duke University

sorin@ee.duke.edu

Abstract—Designing directory cache coherence protocols is
complicated because coherence transactions are not atomic in
modern multicore processors. A coherence transaction com-
prises multiple messages, and these messages can interleave
with other conflicting coherence transactions initiated by other
cores. To overcome this architectural challenge, we present
ProtoGen, an automated tool for taking the description of a di-
rectory protocol with atomic transactions (i.e., no concurrency)
and generating the corresponding protocol for a multicore
with non-atomic transactions. ProtoGen outputs the finite state
machines for the cache and directory controllers, including
all of the transient states that are possible with concurrent
transactions. We have used ProtoGen to generate complete
MSI, MESI, and MOSI protocols given their stable state
protocol specifications. We have verified the generated protocols
for safety and deadlock freedom using the Murϕ model
checker. Our generated protocols are identical to or better
than manually generated protocols, at times even discovering
opportunities to reduce stalling.

Keywords-cache coherence protocols, design automation,
hardware synthesis

I. INTRODUCTION

Designing a cache coherence protocol for a multicore
processor is a notoriously difficult task. However, when
architects are first introduced to coherence protocols, the
protocols often seem misleadingly simple, because the
protocols appear to have only a small number of clearly
defined stable states for each cache block (i.e., some subset
of the classic MOESI states). As shown in Tables I and II,
the specification for an MSI protocol looks fairly intuitive
and not overly complicated. For each of a small number of
states, the specification describes what happens: (a) when an
access (load, store, or replacement) takes place and (b) when
an incoming coherence message (e.g., an Invalidate) arrives.

Unfortunately, these textbook protocols with just a handful
of stable states are overly simplistic and cannot be applied
to typical multicore processors. Specifically, these protocols
assume that the transition from one stable state to another
stable state is atomic, i.e., the transition happens or appears to
happen instantaneously. Only a simplistic system model (e.g.,
cores connected to a simple atomic bus and a centralized
coherence controller) can provide this atomicity, yet high-
performance multicores employ multi-hop interconnection
networks and distributed directory protocols.

Typical multicore directory protocols are complicated
because of their non-atomic system model. When a cache
performs a coherence transaction to change a block from
one stable state to another, the transaction typically involves
multiple steps (issuing a request, waiting for a response,
etc.) that could potentially interleave with other conflicting
coherence transactions initiated by other caches. Designing
protocols to correctly handle this concurrency is challenging.

The protocol complexity introduced by concurrency is
revealed in the large number of possible transient coherence
states, in addition to the handful of stable states. At each
step in a coherence transaction, the cache usually changes
the state of the block to a different transient state that reflects
that step in the transaction. For example, consider a cache
that has a block in state I(nvalid) and issues a request for
state S(hared). In the interim—between issuing the request
and when a response arrives to complete the transition from
I to S—the cache block will be in an at least one transient
state. Moreover, in addition to the transient states between a
current state and a requested state, there are often transient
states that arise due to coherence requests from other caches
that arrive in this window of time. Even a relatively simple
MSI directory protocol has eighteen transient states, as shown
in Table VI.

In typical coherence protocols with dozens of states, it is
easy for architects to make mistakes. An architect can forget
about a possible coherence message that can arrive for a
block in a certain state. An architect can introduce a bug in
how an incoming message is handled for a block in a certain
state. An architect can fail to think of a possible situation
and end up with too few states. Subtle bugs in the coherence
protocols can seriously affect end users; for example, a bug
in the CCI-400 cache coherent interface caused the Samsung
Galaxy S4 to ship with coherence disabled, with serious
performance/power implications [1]

In addition to these safety problems, a protocol can also
fail to achieve its maximum performance because an architect
can conservatively restrict concurrency in overly complicated
situations. Rather than reason about how to handle a certain
message that arrives for a block in a certain state, it can be
tempting to simply stall that request until the block is in a
stable state.

Table I
SPECIFICATION OF CACHE IN ATOMIC MSI PROTOCOL

Load Store Replacement Forw. GetS Forw. GetM Invalidation
I send GetS to Dir,

receive Data / S
send GetM to Dir, receive
DataNoAck or Data and
Acks / M

S hit send GetM to Dir, receive
DataNoAck or Data and
Acks / M

send PutS to Dir,
receive Put-Ack / I

send Ack to re-
questor / I

M hit hit send PutM to Dir,
receive Put-Ack / I

send Data to re-
questor and Dir / S

send Data to re-
questor / I

Table II
SPECIFICATION OF DIRECTORY IN ATOMIC MSI PROTOCOL

GetS GetM PutS PutM
I send Data to requestor, add requestor

to Sharers / S
send Data to requestor, set
Owner=requestor / M

S send Data to requestor, add requestor
to Sharers

send Data to requestor, send
Invalidations to Sharers, set
Owner=requestor, clear Sharers / M

send Put-Ack to requestor,
remove requestor from
Sharers

M forward GetS to Owner, receive
Data from Owner, add requestor and
Owner to Sharers / S

forward GetM to Owner, set
Owner=requestor

send Put-Ack to requestor
/ I

Thus we have a situation in which we can easily understand
protocol specifications with just the stable states, yet current
multicore system models require that we have many transient
states and the resultant complexity.

In this paper, we present ProtoGen, an automated tool for
taking a stable state protocol (SSP) specification of a directory
coherence protocol and generating a directory protocol with
those same stable states and all of the transient states needed
to maximize protocol concurrency, while preserving safety
(correctness) and preventing deadlocks. ProtoGen accepts
the SSP specification in a domain-specific language and
generates finite state machines for the cache controller and
directory controller.

ProtoGen overcomes the key challenge of protocol
generation—creating cache and directory controllers that
correctly handle incoming coherence messages when transac-
tions are racing—by leveraging the insight that, in a directory
based coherence protocol, racing transactions are serialized at
the directory. By assigning a unique name to every directory-
forwarded request that can arrive at a stable state in a cache,
ProtoGen makes it possible for the directory to convey
this serialization order to the caches. With the caches and
the directory achieving consensus on the order of racing
transactions, ProtoGen is able to generate highly-concurrent
and non-blocking controller actions that are consistent with
this order.

ProtoGen has similarities to prior work on high-level
synthesis of hardware [2], [3], [4] but, to the best of our
knowledge, it is the first tool for generating concurrent cache
coherence protocols given SSP specifications. In this paper,
we show that it correctly infers all of the transient states
and produces verifiably correct high-performance directory
protocols for multicore processors.

In summary, the contributions of this paper are as follows.

• We present ProtoGen1, an automated tool for taking
an SSP specification of a directory coherence protocol
and generating a complete directory protocol with those
same stable states and all of the transient states needed
to maximize protocol concurrency, while preserving
safety and preventing deadlocks.

• We have used ProtoGen to generate high-performance
MSI, MESI, and MOSI protocols given SSP specifi-
cations. We have verified the generated protocols for
safety and deadlock freedom using the Murϕ model
checker [5]. Our generated protocols are identical to
or better than manually generated high-performance
protocols [6], at times even discovering opportunities
to reduce stalling.

• We further demonstrate ProtoGen’s versatility by using
it to generate a complete TSO-CC protocol [7] given
its SSP specification. TSO-CC is an unconventional
protocol that is designed specifically to satisfy the TSO
memory consistency model.

II. BACKGROUND AND RELATED WORK

At its heart, ProtoGen is a method for refining an atomic
specification into a non-atomic implementation. Therefore,
we first discuss prior approaches for realizing the same. We
then discuss how ProtoGen relates to program synthesis based
techniques for synthesizing a complete coherence protocol
given an incomplete one with holes. Finally, we discuss work
that has proposed new coherence protocols for mitigating
the design and verification effort involved.

1https://github.com/icsa-caps/ProtoGen

A. From Atomic Specification to Implementation

Deriving a high-performance concurrent implementation
from an atomic specification is a topic that has received
significant attention and finds application in a number of
areas including databases (high-performance transactions),
programming languages (software and hardware transactional
memory) and hardware synthesis (e.g., Bluespec [8]).

An atomic specification is essentially a sequence of steps (a
transaction) that transforms some state (e.g., a set of objects)
as if it were the only agent modifying the state. Broadly
speaking, there are two approaches to get to a concurrent
implementation from an atomic specification: a blocking
approach (using locks) and a non-blocking approach (without
locks).

Non-blocking techniques [9], because they eschew locking,
typically allow for a higher degree of concurrency. Such
techniques can further be divided into two categories. The
first category (often referred to as lock-free programming)
uses complex algorithms that allow for multiple (conflicting)
transactions to overlap with each other while relying only
on atomic single-word primitives provided by the hardware
(e.g., compare-and-swap) for providing the illusion of atom-
icity. In contrast, optimistic concurrency control allows for
conflicting transactions to overlap speculatively, relying on
the underlying software or hardware runtime to detect and
recover from conflicts. We now focus on techniques that use
atomic specifications for hardware synthesis in general and
coherence protocols in particular.

General Hardware Synthesis. Atomic specifications have
been used for hardware synthesis [10], most notably by
the Bluespec [11], [8] line of work. The essential idea is
to specify the behavior of a hardware module as guarded
atomic actions: rules that get triggered upon a rule condition,
and atomically update multiple pieces of state (e.g., registers,
RAMs). Their compiler would then produce a concurrent
hardware implementation in RTL (Verilog or VHDL). To
this end, the compiler first analyzes the rules in order to
identify rule conflicts (i.e., rules that read and write to the
same state) and then synthesizes a hardware scheduler that
ensures that conflicting rules are not scheduled concurrently
in the same cycle. Thus, the compiler typically produces a
blocking implementation. Furthermore, for practical reasons
the compiler only generates actions that complete in a single
cycle. It is worth noting that there has been some work [12],
[13] that has attempted to lift these restrictions, although it is
unclear whether these have been integrated into the Bluespec
compiler.

Blocking Protocol Synthesis. An SSP protocol can poten-
tially be specified in Bluespec by expressing every SSP
transition as a Bluespec rule. While the Bluespec compiler
will synthesize a concurrent implementation (by ensuring
that conflicting rules are not scheduled concurrently), the

protocol will be blocking in nature. Specifically, any two
racing coherence transactions (to the same cache line) would
be deemed conflicting and therefore completely serialized,
which has the potential to limit performance significantly.
In fact, Atomic Coherence [14] employs a very similar
strategy. It argues for atomic protocols (much like our SSP
specifications), and proposes a mutex based approach (in
hardware) to guarantee atomicity. However, performance was
achieved by leveraging optical interconnects for low-latency
mutexes.

Non-blocking Protocol Synthesis. Dave et al. [2] presented
a case study that showed that realistic non-blocking coherence
protocols can be expressed naturally in Bluespec; they also
showed that the synthesized coherence controllers met the
required timing constraint. However, their case study did
not take an SSP protocol as input; rather it took a correct
and complete non-blocking MSI protocol (with all of the
transient states and concurrency) as input to obtain RTL
(Verilog) output. In other words, their generated protocol had
the same degree of concurrency as the specification.

ProtoGen. Unlike Bluespec, ProtoGen is not a general syn-
thesis tool and is limited to synthesizing directory based cache
coherence protocols. But, by exploiting domain knowledge
about how directory protocols work, ProtoGen is the first
tool that can produce a non-blocking protocol given an SSP.

B. Coherence Protocols via Program Synthesis

TRANSIT [3], [15] allows a protocol designer to specify
only the skeleton of a coherence protocol; the missing
state transitions or holes are synthesized using an iterative
usage model as follows. The designer provides information
that describes each hole via concrete or symbolic (i.e.,
concolic) snippets. TRANSIT then synthesizes each hole
independently from the snippets, thereby sidestepping the
state explosion of synthesizing all holes together. Whether
or not the individually synthesized holes combine to form
a correct protocol is then verified with an external model
checker. If the resulting protocol turns out to be incorrect,
the whole process has to be repeated; indeed, the user has to
integrate counter-examples from the model checker into the
skeleton to better guide the synthesizer in the next iteration.

VerC3 [4] strives to improve automation in the synthesis
process, by relying only on protocol properties without the
user providing example traces or other hints to the synthesizer.
They employ an explicit state model checker for synthesis and
make use of a candidate pruning optimization for significantly
reducing the search space. Despite this, the number of holes
they can synthesize is limited due to state explosion; given
an SSP for an MSI protocol, they are able to synthesize only
12 out of a possible 35 holes.

In contrast to the above approaches that search for the
missing holes, ProtoGen views the problem as refinement
from an atomic specification to an equivalent concurrent

implementation. By exploiting domain knowledge about di-
rectory protocols, ProtoGen can produce a high-performance
non-blocking protocol. Thus, it avoids the state explosion
problem experienced by VerC3 and the user intervention in
TRANSIT.

C. Complexity-aware Coherence Protocols

There have been a number of proposals that have devised
new ways of achieving coherence that mitigate the design and
verification costs of typical coherence protocols. DeNovo [16]
and VIPS [17] are examples of protocols that reduce
coherence protocol complexity by exploiting data-race-free
models to minimize transient states. Fractal coherence [18]
proposes a methodology for designing coherence protocols
that makes them amenable to existing formal verification
tools. Orthogonal to the above work, ProtoGen is not a new
protocol—rather it is a method for generating a complete
non-blocking protocol given an SSP specification.

III. INTUITION FOR PROTOGEN

Before delving into the low-level details of ProtoGen, we
first present a high-level explanation of how it works. As part
of this explanation, we introduce some background material.
Where possible, we adopt the terminology and notation used
in Sorin et al.’s primer on consistency and coherence [6].

A. System Model and Terminology

ProtoGen is designed for multicore processors with flat
directory cache coherence protocols. Thus far, we assume that
the protocols use a subset of the well-known MOESIF states.
Furthermore, we assume typical coherence requests to either
increase permissions (with a “Get” or “Upgrade”) or decrease
permissions (with a “Put”). These protocol assumptions are
likely more conservative than necessary, but we have not yet
explored protocols with other states or request types.

Each core can have one or more levels of private cache,
and there is a last-level cache (LLC) that is shared by all
cores. For simplicity, we describe systems with one level of
private cache, but more levels are possible. The directory
state is colocated with the LLC. We make no assumptions
about the interconnection network, regarding either topology
or whether point-to-point ordering is enforced.

For clarity, we now define several terms that we use
throughout this paper. We consider every cache block and
every directory entry to have a state that consists of its
coherence permission state and possible auxiliary state.
Example coherence permission states are S(hared) and
M(odified), and they reflect a cache’s ability to access a
block or a directory’s knowledge about a block. Auxiliary
state is any state that does not describe permissions, but is
often necessary to correctly transition between two coherence
permission states. A directory entry’s auxiliary state might
include the ID of the current owner of the block and the
set of caches currently sharing the block (the sharer list). A

cache block’s auxiliary state might include a counter used
to keep track of incoming acknowledgments.

If a core wants to perform an access (load, store, or
replacement) that cannot be satisfied by its cache, its cache
initiates a coherence transaction to obtain the desired cache
block in the appropriate coherence state or evict it. A
transaction consists of:

• an initial request message such as GetShared (GetS),
GetModified (GetM), or PutModified (PutM);

• zero or more forwarded requests—such as Forwarded-
GetM or Invalidation messages—that are sent by the
directory in response to incoming requests;

• one or more data responses or acknowledgments. Both
the directory and the cache controller may respond to
incoming coherence messages with data and acknowl-
edgment messages. For example, if a directory with a
block in state I(nvalid) receives a GetS request, it will
respond with Data; and

• state transitions in response to incoming coherence
messages. A cache may change its block state and a
directory may change the state of its entry; these state
changes can include the coherence permissions and/or
the auxiliary state. For example, if a directory receives a
GetS from a cache for a block in state I, it will change
the directory entry’s coherence permission state and its
auxiliary state for tracking sharers.

In our examples, we often consider a transaction from the
point of view of a given cache that initiates the transaction
with a request. We refer to that transaction as the cache’s
“own” transaction. If that cache receives a message that is part
of a transaction initiated by another cache, we refer to that
as an “other” transaction. Similarly we refer to coherence
messages as “own” (e.g., own GetM) and “other” (e.g., other
PutS).

Lastly, we consider each transaction to start or end a
coherence epoch, a window of time during which a cache
has coherence permission to a block. For example, a cache
issues a GetS request to start its own transaction that, when
complete, will begin a Shared epoch at that cache. This
epoch will end either when: (a) the cache completes another
transaction to change its permissions, or (b) another cache
performs a transaction that affects the cache’s permissions.

B. Definition of Coherence

ProtoGen generates coherence protocols that adhere to
certain safety properties. We use the common definition of
coherence, which consists of two invariants. First, for any
memory location at any given time, there is either a single
writer or zero or more readers. This invariant is often referred
to as SWMR, and it means we can divide a block’s lifetime
into epochs, during each of which there is either a single
writer or zero or more (multiple) readers. Second, the value
of a location at the start of an epoch is the same as the

value of the location at the end of its last write epoch. This
invariant is often referred to as the data-value invariant.

Intuitively, these epochs can be in physical time, but it is
also correct for them to be in logical time, in which the two
invariants combine into one single invariant, i.e., sequential
consistency for every memory location [19]. A discussion
of logical time correctness is beyond the scope of this paper,
but numerous protocols have been developed that rely upon
it [20], [21], [22]; the benefit of per-location sequential
consistency is that it can enable greater concurrency.

C. Big Picture

ProtoGen starts with a SSP and creates a complete protocol
with transient states—generating both coherence permission
and auxiliary state—without requiring an atomic system
model that can guarantee physically atomic transactions.
ProtoGen requires that the SSP descriptions for the cache
and directory are correct and complete for an atomic system
model; for example, the SSP must correctly enforce SWMR.

In this discussion, we focus on the generation of transient
coherence permission states, because the issues involved in
generating transient auxiliary state are either the same or
far simpler. Intuitively, auxiliary state is either intimately
tied to the coherence state (e.g., a directory entry in S keeps
auxiliary state to track the sharers) or is “bookkeeping” state
that is uninvolved in races (e.g., a counter for a cache block
to track how many acknowledgments it has received).

To understand how ProtoGen works, first consider a
simplistic protocol without physically atomic transactions
but with no concurrency either and hence logically atomic
transactions (i.e., for any given block of memory, only one
coherence transaction can be active at a time). Generating
transient state specifications for such a protocol is simple;
each transient state just corresponds to a step in the transac-
tion. For example, a cache issuing a GetS request to transition
from I to S has a single transient state, which we will call
IS, that reflects it has issued the request but has not yet
received the response; once it receives a Data response, it
will transition to S.

The challenge for ProtoGen is handling multiple concurrent
transactions for a given block. What happens when a cache
in the middle of a transaction receives a forwarded request
belonging to a concurrent transaction to the same block?
In our above example, what happens when the cache that
issued the GetS receives an Invalidation from another cache
(via the directory) while in state IS? In directory protocols,
the directory is the serialization point, so the key is for
the cache to be able to deduce the ordering of transactions
at the directory. In our example, the cache must deduce
whether its own GetS was ordered at the directory before or
after the other cache’s transaction that led to the incoming
Invalidation. Here, the cache can infer that its own GetS was
ordered at the directory first; otherwise there is no reason for
the directory to have forwarded the Invalidation. Thus, by

simply looking at the incoming forwarded request, ProtoGen
is able to deduce ordering.

But the SSP could have been written such that the same
forwarded message could arrive in two stable states. To deal
with this, ProtoGen preprocesses the input SSP to ensure that
a given forwarded request can arrive at exactly one stable
state (if the input SSP uses the same name for two forwarded
request messages, ProtoGen creates a new name for one of
them). This invariant allows for caches to reliably deduce the
order in which transactions are serialized at the directory by
simply looking at incoming forwarded requests. ProtoGen
uses this ordering information to generate the cache and
directory state machines as described in detail later.

Intuitively, ProtoGen creates transient states for the caches
and directory so that these finite state machines always respect
the ordering of transactions at the directory. By doing so,
ProtoGen creates protocols that are guaranteed to enforce
coherence.

IV. USING PROTOGEN

In this section, we discuss the input, output, and limitations
of ProtoGen.

A. Input

The primary input to ProtoGen is a high-level specification
of a stable state protocol (SSP) described in our domain
specific language (DSL). Our DSL is similar in spirit to other
previously proposed ones for coherence protocols, including
Teapot [23] and SLICC [24]. The specification describes the
protocol with respect to a single cache block, because the
behavior of all blocks is identical, and it essentially contains
the information in Tables I and II, including:
• a list of stable coherence permission states, often a

subset of the MOESIF states;
• the stable auxiliary state at each cache block and each

directory entry;
• a list of accesses (loads, stores, replacements) and the

requests they trigger;
• a list of possible coherence messages (requests, for-

warded requests, responses, and acknowledgments) that
can arrive in each stable state; and

• the transitions from one stable state to another stable
state—including both coherence permission and auxil-
iary state—that occur as a result of incoming coherence
messages.

The DSL enables the designer to define the structure of
any machine (e.g. caches and directories) as well as its
architectural behavioral specifications. To this end, the DSL
supports standard data types like bool, int, and set, but there
are also protocol-specific data types. In particular, the DSL
provides a special type called Data (to represent actual data
in a block of memory). Every machine has two predefined
internal variables: State (denoting the state of the machine)
and ID (the ID of the machine).

Listing 1 shows a snippet of code that uses many of
these data types in defining the cache structure (lines 2
through 7). In line 3, we have initialized State to I. In lines
5 and 6, we have defined and initialized two auxiliary states:
acksReceived and acksExpected.

1 / / Machine d e f i n i t i o n
2 Cache {
3 S t a t e = I ; / / Cache i n i t i a l s t a t e
4 Data b l o c k ;
5 i n t [0 . . NumCaches] a c k s R e c e i v e d = 0 ;
6 i n t [0 . . NumCaches] a c k s E x p e c t e d = 0 ;
7 } s e t [NumCaches] cache ;
8 . . .
9

10 A r c h i t e c t u r e cache {
11 . . .
12
13
14 / / S t o M t r a n s i t i o n
15 P r o c e s s (S , s t o r e){
16 msg = Reques t (GetM , ID , d i r . ID) ;
17 r eq N e t . send (msg) ;
18 a c k s R e c e i v e d = 0 ;
19
20 a w a i t{
21 when GetM NoAck :
22 S t a t e = M;
23 b r e a k ;
24
25 when GetM Ack :
26 a c k s E x p e c t e d = GetM Ack . a c k s E x p e c t e d ;
27
28 i f a c k s E x p e c t e d == a c k s R e c e i v e d{
29 S t a t e = M;
30 b r e a k ;
31 }
32
33 a w a i t{
34 when Inv Ack :
35 a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;
36
37 i f a c k s E x p e c t e d == a c k s R e c e i v e d{
38 S t a t e = M;
39 b r e a k ;
40 }
41 }
42
43 when Inv Ack :
44 a c k s R e c e i v e d = a c k s R e c e i v e d + 1 ;
45 }
46 }
47 . . .
48 }

Listing 1. Snippets from ProtoGen DSL

Our DSL also allows us to specify the behavior of the
caches and directories in response to internal accesses and
incoming coherence messages. Most of these transactions
consist of a request and a response, and specifying these
transactions is straightforward. However, there are two
specification issues that are worth discussing.

First, some requests can lead to multiple possible transac-
tion routes depending on the state of the block in other caches;
our DSL allows the user to specify this. Consider the S to
M transition (lines 14 through 45), in which a cache—upon
receiving a store to a block in shared state—requests Modified
access to the block. If the block is exclusively held by the
requestor and not cached elsewhere, the requestor simply
receives a single response from the directory to complete its
transaction (lines 21 through 23). If, however, the block is

held by one or more other caches, the requestor must wait
for both the response from the directory (containing a count
of the sharers) and the acknowledgments from all caches
that had the block in state S (lines 25 through 44).

This example also leads us to the second issue: some
transactions require the initiating cache to receive multiple
types of messages to complete the transaction. Our DSL
allows the user to specify that multiple messages must arrive.
Coming back to our example, the two relevant messages
are GetM Ack (the message from the directory with the
count), and Inv Ack (invalidation acknowledgment). When
the former arrives (line 25), our DSL allows us to set the
auxiliary state acksExpected; when the latter arrives (line
34), acksReceived is incremented; when they are are found
to be equal, the transaction completes. 2

Configuration parameters. ProtoGen also has inputs that
control the nature of the protocols that it generates. One pa-
rameter controls whether the generated protocol is stalling or
non-stalling. With the former, cache and directory controllers
stall when they receive potentially racing requests, at the
cost of performance (while still preventing deadlocks). With
the latter, the generated protocol avoids stalling whenever
possible at the expense of an increase in the number of
transient states.

Another ProtoGen parameter controls whether the gen-
erated protocol allows for loads or stores to access a
block in a transient state (e.g., a load to a block in a
transient state between S and M), and this input affects the
coherence invariant that the generated protocol guarantees.
Allowing accesses to cache blocks in transient states can
preclude a protocol from enforcing SWMR in physical time
but is compatible with enforcing per-location sequential
consistency.

B. Output

ProtoGen produces fine state machines (FSMs) for the
caches and the directory including the transient states
(containing information similar to Table VI). These FSMs
are expressed in the same DSL and can be translated to
any other format for specifying FSMs. Thus far, we have
implemented a backend to the language of the Murϕ model
checker [5] and translation to other outputs like SLICC [24]
or Verilog is future work.

C. Limitations

First, ProtoGen requires a correctly specified SSP as its
input; it cannot automatically “correct” bugs in the SSP.
Second, ProtoGen cannot generate new protocol actions not
explicitly specified in the SSP. For example, it cannot infer
how atomic read-modify-writes must be implemented without
it being specified in the SSP; likewise, it cannot automatically

2Due to races, an Inv Ack can actually arrive before the GetM Ack,
which is the situation handled by lines 43-44.

deduce the protocol for an unordered network given an SSP
for an ordered network. Third, ProtoGen does not specify
how protocol actions must interact with the interconnect; it
requires the user to manually define virtual channels and
assign messages to channels. Finally, ProtoGen is limited to
directory based protocols.

V. PROTOGEN

Given an SSP, ProtoGen generates a highly concurrent
directory protocol including the transient states. This process
is explained step by step in this section, and we use a running
example of an MSI protocol to illustrate each step. We first
explain this process for generating the cache controller; at
the end of this section, we discuss the minor differences
involved in the process of generating the directory controller.

Unless otherwise noted, we focus on the coherence
permission state, because incorporating the stable auxiliary
state is usually trivial. We only discuss the auxiliary state
when ProtoGen has to generate transient auxiliary state (e.g.,
state for a cache block that records to which other cache to
send the data when its own transaction completes).

A. Preprocessing the SSP

Before generating any transient states, ProtoGen first
preprocesses the SSP specification to ensure the invariant that
a given forwarded request can arrive at exactly one stable
state. If, in an input SSP specification, the same forwarded
request can arrive in two stable states, ProtoGen creates a
new name for one of the forwarded requests.

For some directory protocols, architects might find it
natural to specify their SSPs in a manner that already satisfies
the invariant. For example consider the SSP of the MSI
protocol specified in Table 1. As we can see, each of the three
forwarded requests—Fwd GetM, Fwd GetS and Invalidate—
arrive at exactly one stable state: M, M, and S respectively.

Table III
MOSI SSP: BEFORE PREPROCESSING

Fwd GetS

M send Data to requestor / O
O send Data to requestor

Table IV
MOSI SSP: AFTER PREPROCESSING

Fwd GetS O Fwd GetS

M send Data to requestor / O
O send Data to requestor

On the other hand, consider a MOSI protocol. Architects
might find it natural to specify its SSP such that a Fwd GetS
can arrive at both the M and O states (the relevant snippet
of the SSP is shown in Table III). In such a case, ProtoGen
would rename one of the messages as shown in Table IV. If

the directory receives a GetS and finds the block in O state,
the directory would forward the new O Fwd GetS message.

To see why this renaming is necessary for ProtoGen, let
us consider the following scenario. Consider a cache C0 that
holds a block in O state and wants to write to the block.
Accordingly, it would send a GetM request to the directory
and wait for a response. In the meantime, say there is a
concurrent transaction to the same block: another cache C1

wanting to read the same block issues a GetS to the directory.
The key point to note here is that the directory will forward
the GetS to C0 irrespective of the order in which the two
transactions serialize at the directory. But for ProtoGen to
work, C0 needs to somehow discover the order in which the
racing transactions have serialized at the directory. It is for
this very reason that ProtoGen performs the renaming: if C0

were to receive a Fwd GetS message it can now infer that
its own GetM request must have “won the race”; if C0 were
to receive a O Fwd GetS on the other hand, it can infer that
the other GetS request must have been serialized before its
own GetM.

B. Step 1: Generate Initial State Sets

The key challenge that ProtoGen addresses is to generate
cache controllers that correctly respond to incoming for-
warded requests for a block in a transient state. But for
this, ProtoGen must first know what forwarded requests can
potentially arrive in a transient state.

It is worth noting here that transient states are local to a
cache and not visible to the directory. The directory always
sees any block in a cache as being in a stable state at all
times; it forwards requests to a cache based on the state of
the cache block as it sees it. Therefore, the set of forwarded
requests that can arrive at a transient state is determined by
the set of possible stable states in which the block can be
seen at the directory (while the cache block is in the transient
state).

ProtoGen keeps track of this information with a data
structure called a State Set. ProtoGen creates one State Set
for each stable state, and initially each State Set contains
just its stable state. For an MSI protocol, the State Sets are
initially {I}, {S}, and {M}, and we refer to them as the I , S,
and M State Sets, respectively. (We use bold to distinguish
a State Set from a stable state.) As ProtoGen generates new
transient states, it adds them to one or more State Sets, as
described below.

C. Step 2: Add Transient States in Absence of Concurrency

ProtoGen next adds the transient states required for
non-atomic protocols in the absence of concurrency. If a
transaction from stable state Si to stable state Sj involves
issuing a request and waiting for a single response, ProtoGen
would add a single transient state that reflects the situation
in which the request has been issued but the response has
not yet been received. If the transaction involves multiple

responses, ProtoGen would add a transient state for each
response.

In our MSI protocol, a cache can initiate one of five
transactions types, I → S, I → M , S → M , S → I , and
M → I . The transaction from I to S would lead to the
creation of a transient state that we call IS, that reflects the
situation when the cache has issued the GetS request to the
directory and is awaiting a data response. When the data is
received from the directory, the cache will transition from
IS to S.

Recall that the transaction from I (or S) to M could happen
via two routes depending on the state of the block at the
directory: one route with a single data response (if the block
is in I or M at the directory) and the second route with
multiple responses. To account for this, ProtoGen creates
transient states as shown in Table V. The transaction from
I to M would first lead to the creation of a transient state
that we call IMAD (potentially waiting for data as well as
acknowledgments). If the response received consists of only
data, the cache block will directly transition to M state. If the
response includes both data and a count of acknowledgments,
then the block will transition to another transient state called
IMA (waiting for acknowledgments). When the last of the
acknowledgments is received, the block will transition to M.

Table V
ADDING TRANSIENT STATES (NO CONCURRENCY)

Store DataNoAcks Data + #Acks Last Ack

I
send GetM

to Dir / IMAD

IMAD M IMA

IMA M

When ProtoGen creates a new transient state for a
transaction from stable state Si to stable state Sj , it adds it
to the State Set for both Si and Sj . This “duality” is because
the transient state can behave like either Si or Sj , depending
on what message arrives (i.e., whether the message is one
that could arrive in Si or one that could arrive in Sj). In our
example, state IS thus belongs to the State Set I and the
State Set S. At the end of this step, the State Sets for our
MSI protocol are as follows:
I={I, IS, IMAD, SI,MI},
S={S, IS, SMAD, SI}, and
M={M, IMAD, IMA, SMAD, SMA,MI}.

D. Step 3: Accommodating Concurrency

We now explain how ProtoGen accommodates concurrency
by describing the generated cache controller behavior for
when a forwarded request arrives in one of the transient states
produced in Step 2. In this section, we explain how this is
done for any given transient state. Later in Section V-G, we
present a global picture of how ProtoGen does this for all
transient states.

A cache that has a block in any state in State Set Si,
can receive any forwarded request that the SSP specifies is
possible to arrive in stable state Si. If the message arrives in
that stable state, the block’s state will immediately change
to a stable state (or perhaps remain in Si) as specified in
the SSP. The more challenging scenario is if the forwarded
request arrives in a transient state (belonging to State Set
Si). In our example, an Invalidation arriving in stable state S
is easy to handle; the block immediately transitions to stable
state I. But what if the Invalidation arrives in transient state
IS? Because ProtoGen’s preprocessing step ensures that any
type of forwarded request can arrive only in a single stable
state, ProtoGen can generate the new transient states without
confusion.

Consider a transient state that is part of cache C0’s
transaction Town (triggered by an access Aown) from stable
state Si to stable state Sj . This transient state, which we call
Sij , is part of State Sets Si and Sj , and thus any forwarded
request that can arrive at C0 in state Si or Sj can also
arrive in Sij . ProtoGen considers every one of these possible
forwarded messages and how a cache in Sij would respond
to it. As explained in Section III, the key is knowing in
which stable state that forwarded request can arrive, and thus
inferring the transaction ordering at the directory.

We now consider the two possible scenarios in which a
forwarded request arrives at C0 while it is in a transient state:
either the forwarded request was ordered earlier or later than
C0’s transaction Town.

1) Case 1: Other Transaction Ordered Earlier: If the
arriving forwarded request (Rother) is one that is associated
with state Si, C0 can infer that the directory must have seen
the other transaction before its own request (Rown), i.e.,
Tother → Town at the directory. Moreover, C0 can infer that
when Tother arrived at the directory, the directory must have
seen C0 in state Si. (At this instant C0 is unable to infer
whether or not its own request has reached the directory, but
this is not needed.)

Let us assume that in the SSP the forwarded request
Rother causes C0 to transition from Si to Sl. Upon receiving
Rother, C0 must: (a) respond to this request immediately;
(b) transition to a transient state and logically restart its own
transaction Town as if starting from the stable state Sl. Let
us now discuss the two issues in more detail.

Responding to forwarded request immediately. Once C0

infers that Rother is part of an earlier transaction than Town, it
is critical that C0 respond immediately to Rother. In particular
C0 must not wait for a response for its own request, as this
could potentially lead to a deadlock.

To see why, consider two caches C0 and C1 both wanting
to transition from S to M state, so both caches issue a GetM
to the directory; let us refer to the two racing transactions
as T0 and T1 respectively. Say the GetM from C1 “won the
race” and reached the directory first—i.e., T1 → T0—but

the response from the directory was delayed and instead
C1 received the forwarded GetM request that is part of T0

first. C1, upon seeing the forwarded GetM can infer that its
own request won the race (otherwise the directory would
not have forwarded the GetM), and so it can choose to
stall the incoming forwarded GetM request (more about
stalling in Section V-D2). However, if C0 also chose to delay
the incoming Invalidate (that is part of T1), this will lead
to a circular dependency between T0 and T1 and hence
a deadlock. This explains why C0 must respond to the
Invalidate immediately once it knows that the Invalidate
is part of the earlier transaction.

Transitioning to a suitable transient state. Once C0

responds to the incoming forwarded request, what state
must it transition to? Logically, C0 must appear as if it first
transitioned to Sl and then performed the access Aown. But
the problem here is that C0 had already sent a request Rown

(for access Aown) to the directory when in stable state Si.
Technically, the earlier request must be rescinded and a fresh
request must be sent. However, for most directory protocols
the same memory access in two stable states triggers the same
request to the directory. In such a case—i.e., if the access
Aown triggers the same request Rown from Sl also—there
is no need for C0 to rescind the earlier request and send a
new request from Sl. It can simply move to a transient state
that logically corresponds to the situation in which it has
issued Rown from Sl and is waiting for a response. If such
a transient state does not already exist, ProtoGen creates it.
Say in the SSP the request Rown causes a transition from Sl

to Sm. The transient state to enter would be Slm between
these two stable states, and it would have been identified in
Step 2 (Section V-C).

Figure 1. Cache S to M Transaction with Tother → Town. The shade of
each state denotes the State Set(s) it belongs to. E.g., IMAD is part of I and
M State Sets

In our MSI protocol, consider the transient state SMAD

shown in Figure 1, which denotes that the cache has issued
a GetM request to transition from S to M but has not yet
received a response. If an Invalidation arrives, which is only

possible in stable state S, the cache infers that the other
transaction (involving the Invalidate) was ordered before its
own transaction. ProtoGen looks at the SSP and discovers
that an Invalidate received in state S would send the block
to state I. Logically, ProtoGen must make the cache appear
as if it first went to state I and then performed a store. But
recall that the cache had already issued a GetM request to the
directory, in response to a store in state S. Fortunately, the
SSP reveals that a store in state I results in sending the same
request, i.e., GetM. Thus, there is no need to rescind the
earlier GetM. Further, ProtoGen would check the complete
protocol generated until now to look for a transient state that
denotes the situation in which the cache has issued a GetM
in I and is waiting for a response; it is able to find IMAD,
and so ProtoGen transitions from SMAD to IMAD.

However, in some situations the same access could lead
to two different requests when in two different stable states.
Consider an MSI directory protocol that uses Upgrade
requests. An Upgrade is a special type of request for
transitioning from the S to M state. The difference between
an Upgrade and a GetM is that the former does not need
the data from the directory whereas the latter requires it.
Consider two caches C0 and C1, both wanting to transition
from S to M state, so both caches issue an Upgrade to the
directory; let us refer to the two racing transactions as T0

and T1 respectively. Suppose C1 won the race and reached
the directory first. Logically, C0 must now issue a GetM
as the data it holds in its cache is invalid; it must obtain
the new data written by C1. Thus, this is an example where
the same access (store) can lead to two different requests:
Upgrade (if block in S) or GetM (if block in I). ProtoGen
deals with this issue as follows. When the directory receives
an Upgrade from C0, it infers what happened because it
knows that an Upgrade request cannot possibly arrive in
state I. The directory reinterprets the Upgrade as a GetM,
the request triggered by the same access (store) in state I.

2) Case 2: Other Transaction Ordered After: Once again,
consider a cache C0 that has issued a request to transition
from Si to Sj and is in a transient state that reflects that it
has issued the request but has not received the response. If an
arriving forwarded request (Rother) is one that is associated
with state Sj , C0 can infer that the directory must have seen
C0’s own request (Rown) before the other transaction (i.e.,
Town → Tother at the directory). Moreover, C0 can infer
that when Tother arrived at the directory, the directory must
have seen C0 in state Sj , which is why it forwarded Rother

to C0 in the first place.

Let us assume that in the SSP the forwarded request Rother

causes C0 to transition from Sj to Sk. Upon receiving Rother,
C0 must logically transition to Sk, but C0 is unable to enter
the stable state Sk yet because it is still waiting for a response
to its own earlier request Rown. C0 must honor the ordering
Town → Tother, and there are three approaches to doing so.

Stalling. The most straightforward way to honor this ordering
is by stalling C0 and not having it respond to the forwarded
request Rother until a response to its own request Rown has
been received. Because the later transaction is the one that
is stalled, there is no risk of a deadlock. However, stalling
degrades performance in two ways. First, stalling will delay
the start of the coherence permission epoch that Rother

seeks to initiate. Second, stalling the controller will also
block incoming coherence messages for other cache blocks.

Immediate Transition, Deferred Responses. ProtoGen can
generate cache controllers that achieve greater performance
by not stalling when the forwarded request Rother arrives.
The key observation is that C0 can process Rother—and avoid
having it block its incoming queue—and any subsequent
forwarded requests that arrive for the same block, knowing
they are all ordered after Town. C0 enters a new transient
state Snew. Because Rother causes a transition from Sj to
Sk, the new transient state Snew is inserted into the State Set
of Sk. If the arrival of Rother in Sj would cause the sending
of one or more responses, then C0 defers the sending of
these responses until it has completed its own transaction.

In a similar vein, if any subsequent forwarded request for
the same block (say Rother2) arrives at C0 in Snew, C0 can
infer that Rother2 is part of a transaction that is ordered after
Tother.3 Therefore, upon receiving a forwarded request while
in Snew, C0 behaves analogously to how it behaved when
Rother arrived. It transitions to another transient state Snew2

and, if the arrival of Rother2 in Sk would cause the sending
of one or more responses, then C0 also defers sending those
responses.

A cache that processes incoming forwarded requests
instead of stalling may need transient auxiliary state to
remember where to send the responses it defers. ProtoGen
generates this transient auxiliary state when it generates
cache controllers. It may appear that this state is unbounded,
because each subsequent forwarded request could require
some amount of state. In most directory protocols, however,
the number of forwarded requests that a cache can receive is
limited to three or fewer, before the cache block will reach
a state (e.g., Invalid) in which it cannot possibly receive any
new forwarded requests. If that is not the case, ProtoGen can
limit the number of transactions that the cache can observe
before its own transaction completes (in effect limiting the
size of the transient auxiliary state) and simply stall the
controller when this pending transaction limit (L) is reached.

Immediate Transition and Responses. The solution above,
with deferred sending of responses, preserves the SWMR
invariant in physical time, but more aggressive designs are

3If the network has point-to-point ordering then this is trivially guaranteed;
forwarded requests will arrive at C0 in the order the respective transactions
were ordered at the directory. If point-to-point ordering is not guaranteed,
the directory will have to serialize racing transactions by stalling the second
until the first one completes, which again ensures this invariant.

possible. A design in which response sending is immediate,
and not deferred, still preserves per-location sequential
consistency and is compatible with common consistency
models, including SC. As each forwarded request arrives,
C0 observes that a new coherence permission epoch for the
block begins in logical time. (And all of these epochs are
after the cache’s permission epoch that resulted from Town.)

This design is otherwise identical to the one above with
immediate transitions. The only subtlety is that there are
situations in which an immediate response is impossible
because it requires sending a message whose contents depend
on completing Town. For example, if C0 is awaiting data
for Town and the forwarded request demands the same data
from C0, then C0 must defer sending the response until it
has the data to send. In this case, C0 uses auxiliary state
to remember where to send what messages when sending
becomes possible. ProtoGen creates that transient auxiliary
state for the cache controller.

Figure 2. The I to S transition of the MSI protocol. The IS state belongs
to the State Sets of I as well as S, which is why it is shown in two shades.
The ISI state, on the other hand, belongs to only the State Set I .

An Example with Immediate Transitions and Responses.
Consider cache C0 and the I to S transition of our MSI
protocol. A load to a cache block in state I (a cache miss),
leads to C0 sending a GetS request to the directory and
changing the block state to IS. Recall that state IS corresponds
to the situation in which a GetS has been sent but the cache is
awaiting a response. Hence, it belongs to both I and S State
Sets because the cache block can be seen by the directory
to be in I or S, depending on whether the GetS has reached
the directory.

As shown in Figure 2, if an Invalidation arrives at C0 in
IS, then C0 knows its own transaction was ordered before
the transaction that triggered the Invalidation, because an
Invalidation is only possible in stable state S. A stalling
protocol would defer processing the Invalidation until C0

received the response to its own GetS, but we consider the
more aggressive protocol with immediate transitions and
responses. To avoid stalling, C0 must process the incoming
Invalidation. ProtoGen generates a new transient state which
we call ISI. This transient state gets added to State Set
I , because at this point it is clear to C0 that its block

is logically in state I (but still awaiting a data response
for its request). C0’s own permission epoch has logically
ended (even before the data arrived), and the other cache’s
permission epoch has logically begun. Also, C0 immediately
sends an acknowledgment to the cache that initiated the
transaction that led to the Invalidation. When the data
response eventually arrives to complete C0’s transaction,
C0 first serves its stalled load—which is logically part of its
own epoch—and then transitions to state I.

E. Step 4: Assigning Access Permissions to States

For every state in the protocol, ProtoGen assigns which
accesses (load, store, replacement) are allowed in that state.
For stable states, this assignment is given in the SSP. For
transient states, this assignment is a function of the transient
state’s initial and final stable states (e.g., a transient state in
a transaction from S to M). If the initial and final states both
have sufficient permissions for an access, then the access
can be performed in the transient state. ProtoGen also has
an input parameter that determines whether to permit any
loads and stores in transient states; recall that permitting this
could lead to violations of SWMR in physical time but is
still compatible with per-location sequential consistency.

F. Generating Directory Controller

ProtoGen has been described until now from the perspec-
tive of generating the cache controller. Although the process
of generating the directory controller is quite similar, we
now discuss a few issues specific to generating the directory
controller.

In general, generating the directory is easier, because
the directory has perfect knowledge about the order in
which requests are serialized. Even if a directory entry
is in a transient state (e.g., in an MSI protocol, a GetS
that arrives in state M causes the directory to have to wait
for data from the owner), the directory is able to trivially
deduce that a subsequent request has to be ordered after the
current transaction. Unlike with cache controllers, there is
no possibility of an arriving request being ordered before
one the directory has already seen.

Directory generation, however, poses one unique challenge.
Because our directory controller is non-stalling, there can be
as much concurrency at the directory as there are caches in
the system. (Concurrency at a cache is constrained by its limit
of one outstanding transaction per block.) This concurrency
at the directory raises the possibility of observing requests
in states that would not be possible in atomic protocols.
Specifically, our directories can receive Put requests (PutS,
PutM, etc.) in any state. For example, consider a block in
state S at cache C0 that issues a PutS to the directory. Before
that PutS reaches the directory, cache C1 issues a GetM that
reaches the directory. The GetM changes the directory state
to M, and the directory sends an Invalidation to C0. Later,
C0’s now-stale PutS arrives at the directory which is in state

M; this situation is not possible in an atomic protocol and
thus would not appear in any SSP specification. Furthermore,
there are scenarios like this for every combination of Put
and every state at the directory.

Because there is no good way to specify these scenarios in
an SSP—because they do not occur in an SSP—we leverage
knowledge of how directory protocols work. A stale Put
request “lost” in its race to the directory and the directory
knows that the issuer of the Put had its epoch ended by
another transaction that was ordered before its Put. For
protocols using a subset of the common MOESIF states, it is
correct for the directory to simply acknowledge any stale Put
request, so that the issuer of the Put can complete its stale
transaction. It might also be possible, in some protocols, to
update the directory’s auxiliary state (e.g., by removing a
cache from the Sharer list), but we do not pursue this option;
it is a possible optimization, but not required.

G. Putting It All Together

In this section, we describe how the aforementioned steps
are put together to generate cache and directory controllers.
ProtoGen first preprocesses the SSP and initializes the State
Sets (Step 1). Then, for every stable-to-stable transition
in the SSP, ProtoGen generates a transient state for each
intermediate step in the transition (Step 2). Then, for each
of these transient states, ProtoGen performs the process in
Step 3 to accommodate the possible concurrency in that
transient state. As part of that process, ProtoGen may generate
new transient states. ProtoGen repeats Step 3 on all newly
generated transient states until either no new ones remain
or we reach the pending transaction limit. After all states
are generated, ProtoGen assigns access permissions to every
state (Step 4).

VI. EVALUATION: PROTOCOLS GENERATED WITH
PROTOGEN

To experimentally evaluate ProtoGen, we have used it to
generate several different protocols with different features
and different system model assumptions. Unlike traditional
architectural evaluations that seek to show improvements in
performance, power, etc., this evaluation seeks rather to show
that ProtoGen can successfully generate protocols that are
identical–and, in some cases, arguably superior—to existing
protocols.

A. Stalling Protocols

In our first set of experiments, we used ProtoGen to gen-
erate several stalling protocols from Sorin et al.’s primer [6].
The primer includes specifications of concurrent MSI, MESI,
and MOSI protocols, all of which are stalling. We developed
an SSP for each of these protocols—SSPs that are are vastly
simpler than the specifications in the primer—and ProtoGen
produced concurrent versions of these protocols. For all
three of these protocols, ProtoGen generated the same cache

controller specifications as in the primer, and the directory
controllers were also identical except for one trivial difference
for the MSI and MESI directories.4 All of the protocols
passed Murϕ verification of SWMR and deadlock freedom
with three caches, which is the most caches that Murϕ can
handle without exhausting memory. The results in this section
are perhaps unsurprising but they are reassuring.

B. Non-Stalling Protocols

To test ProtoGen’s ability to generate new directory
protocols with even more concurrency, we used ProtoGen to
generate non-stalling versions of the MSI, MESI, and MOSI
protocols from the previous subsection. It is worth noting that
the protocols generated were fairly non-trivial with 18-20
states and 46-60 transitions. There are no non-stalling MESI
and MOSI protocols in the primer (or specified completely
elsewhere), so there are no comparisons to be made. There
is, however, a non-stalling MSI protocol in the primer, and
we compare our generated protocol to it.

In Table VI, we highlight some differences between our
generated protocol and the protocol in the primer. Entries
in bold are related to the protocol generated by ProtoGen.
Where ProtoGen shows a different behavior than the primer’s
protocol, the transition related to the primer’s protocol is
crossed out. Two interesting differences are observable. First,
the generated protocol is more aggressive, i.e., stalls less often.
Even though the primer’s protocol is “non-stalling”, it still
stalls in some complicated situations (e.g., if a Fwd-GetS or
Fwd-GetM arrives in the states IMAD and SMAD); our
generated protocol does not, since it possesses the additional
transient states IMADS, IMADI , IMADSI and SMADS.
Second, ProtoGen was able to merge some states that were
kept separate in the primer like IMAS = SMAS, IMASI
= SMASI , and IMAI = SMAI .

Verifying non-stalling protocols with a model checker
is difficult, because non-stalling protocols tend to enforce
SWMR in logical time and not physical time. A model
checker seeks to determine whether an invariant is true in
the entire reachable state space of the system, and specifying
a logical time invariant can be difficult. (State space here
refers to all possible states of the entire system, not just the
possible coherence states of a given block of memory.) We
use Murϕ to verify that our protocols do enforce physical
time SWMR except in one well-known situation, which is
when they perform a single load or store for a transaction
whose epoch ended before the data arrived. For example, if
a cache issues a GetS to go from I to S so it can perform
a load, there is the possibility of an Invalidation arriving
while the block is still in state IS; the block transitions to
ISI and the cache seemingly fails to perform its load. This is
a well-known livelock pitfall, and the common and correct

4ProtoGen split a state to more precisely track the sharer list in one rare
situation.

solution is to allow one access (load or store) in physical
time after the invalidation [25] (as in the protocol generated
by ProtoGen). This access logically occurs before the block
is invalidated.

C. An MSI Protocol for an Unordered Network

The MSI protocols we have discussed already were
designed to work correctly on interconnection networks with
point-to-point order. Point-to-point order—which means that,
if node A sends two messages to node B, they arrive in the
order in which they were sent—makes protocol design easier
by eliminating several possible race conditions that could
otherwise occur.

To test ProtoGen, we developed the SSP for an MSI
protocol that does not rely upon point-to-point order. This
protocol adds extra “handshaking” messages to handle the
races that arise. Specifying the SSP for this protocol was
not much more difficult than for the MSI protocol that relies
upon ordering, even with the extra handshaking messages.
ProtoGen generated the concurrent protocol from the SSP
and thus saved us from having to manually deal with this
complexity.

D. TSO-CC

TSO-CC [7] is a recently developed coherence protocol
that is tailored for use in systems that support the TSO mem-
ory consistency model. Conventional protocols are designed
to support any consistency model and thus conservatively
avoid any behavior that could violate sequential consistency
(SC), e.g., by enforcing SWMR in physical time. TSO-CC,
by contrast, exploits the relaxed nature of TSO to avoid
sharer tracking. In doing so, it breaks physical time SWMR
but honors TSO.

The TSO-CC paper is accompanied by a complete protocol
specification with concurrency that is designed to work
correctly even if the network is unordered. We wanted to
see if we could use ProtoGen to generate a complete TSO-
CC protocol with concurrency but leveraging point-to-point
ordering.

The first step was to develop an SSP specification that
can leverage point-to-point ordering. This was reasonably
straightforward given the complete TSO-CC specification; it
was a question of selecting the stable state transitions and
eliminating “handshakes” to exploit point-to-point ordering.

We then used ProtoGen to generate the complete protocol
with concurrency. Using the verification methodology of
Banks et al. [26], we verified that our complete protocol
correctly enforces TSO. The key takeaways from this
study are twofold. First, ProtoGen can be used to generate
unconventional protocols such as TSO-CC. Second, it also
showcases ProtoGen’s utility in transforming a complex
protocol and making it work for a different system model.
Our protocol modification was easy to make at the SSP level,
whereas it would have been much more difficult to generate

Table VI
MSI NON-STALLING PRIMER VS. PROTOGEN

Load Store Replacement Fwd-GetS Fwd-GetM Inv Put-
Ack

Data
(ack=0)

Data
(ack>0)

Inv-
Ack

Last
Inv-Ack

I
send

GetS to
Dir/ISD

send
GetM to

Dir/IMAD

ISD stall stall stall send Inv-Ack
to Req/ISDI -/S

ISDI stall stall stall -/I

IMAD stall stall stall
stall

-/IMADS
stall

-/IMADI -/M -/IMA ack–

IMA stall stall stall -/IMAS -/IMAI ack– -/M
IMAS

=
SMAS

stall stall stall send Inv-Ack
to Req/IMASI ack–

send Data
to Req

and Dir/S
IMASI

=
SMASI

stall stall stall ack–
send Data

to Req
and Dir/I

IMAI
=

SMAI
stall stall stall ack– send Data

to Req/I

S hit
send

GetM to
Dir/SMAD

send PutS
to Dir/SIA

send Inv-Ack
to Req/I

SMAD hit stall stall
stall

-/SMADS
stall

-/IMADI
send Inv-Ack
to Req/IMAD -/M -/SMA ack–

SMA hit stall stall -/SMAS
-/IMAS

-/SMAI
-/IMAI ack– -/M

M hit hit
send

PutM + Data
to Dir/MIA

send Data
to Req

and Dir/S

send Data
to Req/I

IMADS stall stall stall
send

Inv-Ack to
Req/IMADSI

send Data
to Req

and Dir/S
-/IMAS ack–

IMADI stall stall stall send Data
to Req/I -/IMAI ack–

IMADSI
stall stall stall

send Data
to Req

and Dir/I
-/IMASI ack–

SMADS hit stall stall
send

Inv-Ack to
Req/IMADSI

send Data
to Req

and Dir/S
-/IMAS ack–

MIA stall stall stall
send Data

to Req
and Dir/SIA

send Data
to Req/IIA -/I

SIA stall stall stall send Inv-Ack
to Req/IIA -/I

IIA stall stall stall -/I

a complete TSO-CC protocol at the concurrent protocol level
that is able to leverage point-to-point ordering.

E. Discussion

Our current ProtoGen implementation has not been op-
timized for performance, but was designed for flexibility
during the development process. Nevertheless, runtimes are
always well less than one second on an Intel i5.

Although one could argue that many of the protocols
in this section already existed and generating them is not
practically useful, automatic generation is still far faster and
less error-prone than designing protocols by hand. Moreover,

it is exciting to observe that ProtoGen could handle an
unconventional protocol like TSO and uncover additional
concurrency in non-stalling protocols.

VII. CONCLUSIONS

We have developed ProtoGen to help architects design
directory cache coherence protocols. ProtoGen simplifies the
design process by requiring the architect to specify only the
stable state protocol with atomic transactions. At its heart,
ProtoGen is a method for refining an atomic specification into
a non-atomic implementation. In contrast with other general
techniques, ProtoGen exploits domain knowledge about how

directory protocols work—most importantly, the fact that
coherence transactions serialize at the directory—to enable
it to generate highly-concurrent non-blocking protocols

We have shown, for a variety of protocols, that ProtoGen
successfully generates the finite state machines for cache and
directory controllers. Furthermore, ProtoGen has generated
protocols with at least as much concurrency as those found in
existing protocols, suggesting that generated protocols need
not sacrifice performance compared to manually designed
protocols.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Michael Pellauer, and
the anonymous reviewers for their valuable comments. This
work was supported by EPSRC under grants EP/M027317/1
and EP/L01503X/1 to The University of Edinburgh and
by the National Science Foundation under grant CCF-142-
1167. Daniel Sorin was supported by fellowships from the
Royal Academy of Engineering, the Scottish Informatics &
Computer Science Alliance, and the Leverhulme Trust.

REFERENCES

[1] “Coherency was broken and manually disabled in galaxy
s4,” https://www.anandtech.com/show/7164/samsung-exynos-
5-octa-5420-switches-back-to-arm-gpu, note = Accessed:
2018-04-10.

[2] N. Dave, M. C. Ng, and Arvind, “Automatic synthesis
of cache-coherence protocol processors using bluespec,” in
MEMOCODE, 2005.

[3] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim,
M. M. K. Martin, and R. Alur, “TRANSIT: specifying
protocols with concolic snippets,” in PLDI, 2013.

[4] C. J. Banks, M. Elver, R. Hoffmann, S. Sarkar, P. Jackson, and
V. Nagarajan, “VerC3: A library for explicit state synthesis of
concurrent systems,” in DATE, 2018.

[5] D. L. Dill, “The Murphi Verification System,” in CAV, vol.
1102, 1996.

[6] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on
memory consistency and cache coherence,” Synthesis Lectures
on Computer Architecture, vol. 6, no. 3, 2011.

[7] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed
cache coherence for TSO,” in HPCA, 2014.

[8] “Bluespec system verilog,” http://bluespec.com/, note = Ac-
cessed: 2018-03-30.

[9] M. Herlihy and N. Shavit, The art of multiprocessor program-
ming. Morgan Kaufmann, 2008.

[10] J. Staunstrup and M. R. Greenstreet, “From high-level descrip-
tions to VLSI circuits,” BIT, vol. 28, no. 3, 1988.

[11] Arvind and X. Shen, “Using term rewriting systems to design
and verify processors,” IEEE Micro, vol. 19, no. 3, 1999.

[12] N. Dave, Arvind, and M. Pellauer, “Scheduling as rule
composition,” in MEMOCODE, 2007.

[13] M. Karczmarek and Arvind, “Synthesis from multi-cycle
atomic actions as a solution to the timing closure problem,”
in ICCAD, 2008.

[14] D. Vantrease, M. H. Lipasti, and N. Binkert, “Atomic co-
herence: Leveraging nanophotonics to build race-free cache
coherence protocols,” in HPCA, 2011.

[15] R. Alur, M. Raghothaman, C. Stergiou, S. Tripakis, and
A. Udupa, “Automatic completion of distributed protocols
with symmetry,” in CAV, 2015.

[16] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honar-
mand, S. V. Adve, V. S. Adve, N. P. Carter, and C. T. Chou,
“DeNovo: Rethinking the memory hierarchy for disciplined
parallelism,” PACT, 2011.

[17] A. Ros and S. Kaxiras, “Complexity-effective multicore
coherence,” in PACT, 2012.

[18] M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal coherence:
Scalably verifiable cache coherence,” in MICRO, 2010.

[19] L. Lamport, “How to make a multiprocessor computer
that correctly executes multiprocess programs,” IEEE Trans.
Comput., vol. 28, no. 9, Sep. 1979.

[20] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen,
R. M. Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D.
Hill, and D. A. Wood, “Timestamp snooping: An approach
for extending smps,” in ASPLOS, 2000.

[21] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Memory
coherence in the age of multicores,” in ICCD, 2011.

[22] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and
T. M. Aamodt, “Cache coherence for gpu architectures,” in
HPCA, 2013.

[23] S. Chandra, B. Richards, and J. R. Larus, “Teapot: A domain-
specific language for writing cache coherence protocols,” IEEE
Trans. Software Eng., vol. 25, no. 3, 1999.

[24] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, “Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” SIGARCH Computer Architecture
News, vol. 33, no. 4, 2005.

[25] J. Kubiatowicz, D. Chaiken, and A. Agarwal, “Closing the
window of vulnerability in multiphase memory transactions,”
in ASPLOS, 1992.

[26] C. J. Banks, M. Elver, R. Hoffmann, S. Sarkar, P. Jackson,
and V. Nagarajan, “Verification of a lazy cache coherence
protocol against a weak memory model,” in FMCAD, 2017.

https://www.anandtech.com/show/7164/samsung-exynos-5-octa-5420-switches-back-to-arm-gpu
https://www.anandtech.com/show/7164/samsung-exynos-5-octa-5420-switches-back-to-arm-gpu
http://bluespec.com/

