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Abstract— The performance of a ROS application is a func-
tion of the individual performance of its constituent nodes.
Since ROS nodes are typically configurable (parameterised),
the specific parameter values adopted will determine the level
of performance generated. In addition, ROS applications may
be distributed across multiple computation devices, thus pro-
viding different options for node allocation. We address two
configuration problems that the typical ROS user is confronted
with: i) Determining parameter values and node allocations
for maximising performance; ii) Determining node allocations
for minimising hardware resources that can guarantee the
desired performance. We formalise these problems with a
mathematical model, a constrained form of a multiple-choice
multiple knapsack problem. We propose a greedy algorithm for
optimising each problem, using linear regression for predicting
the performance of an individual ROS node over a continuum
set of parameter combinations. We evaluate the algorithms
through simulation and we validate them in a real ROS
scenario, showing that the expected performance levels only
deviate from the real measurements by an average of 2.5%.

I. INTRODUCTION

ROS (Robot Operating System) [1] is a widely used frame-
work for creating robotics software. A ROS application is a
collection of software processes called nodes, that commu-
nicate with each other through message passing. Each node
typically performs a specific task, e.g. sensing, planning, nav-
igation, etc. A ROS node (task) is typically parameterised,
where parameter values determine the content and frequency
of the messages sent by the node. Therefore, parameters not
only determine the performance of the node, but also the
amount of computational resources required. For example,
consider a ROS node implementing the navigation task of
a mobile robot. By increasing the controller frequency of
this task, we can increase the number of velocity commands
per second sent to the robot wheels, thereby enhancing the
quality (performance) of the navigation, but at the cost of
increased CPU utilisation. In addition, ROS applications may
be distributed, i.e. run across multiple computation devices,
so nodes could be allocated to any of these devices.

Given this context, the ROS user is confronted with the
complex task of configuring the ROS system as a whole in
order to obtain a desired overall performance. This involves:
(i) selecting the values of parameters affecting individual
ROS nodes; (ii) allocating ROS nodes to computation de-
vices. Figure 1 illustrates different configurations for a ROS
system and the associated performance generated.

However, the overall performance of a ROS application is
system-specific and hard to quantify in general. For example,
in our case study (Section IV), performance is a function
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Fig. 1. Example of ROS system configurations and obtained performance.

of essential requirements (e.g. avoiding collisions between
agents, minimising travel time to reach target goals), as well
as more sophisticated preferences (e.g. minimising close-
encounters and hindrance between agents, minimising the
time to infer the true agent goals). We assume that the ROS
user typically has a good knowledge of the system and is able
to quantify the local performance of individual ROS nodes
for a given parameter value data point. Consider again a ROS
node implementing the navigation task of a mobile robot.
The user can quantify the positive effect on navigation upon
increasing controller frequency (e.g. increases linearly up to a
point and then saturates). Furthermore, the user also has good
knowledge about how important the ROS nodes are in terms
of how much they contribute to the overall performance. If
we assume that the overall performance can be represented as
the weighted sum of the individual performance of the nodes,
the user can provide a good estimate of those weights.

In this paper we propose an approach! that allows ROS
users to study and configure their systems. We first perform a
characterisation of the ROS system and use linear regression
analysis [2] to learn for each individual node how its perfor-
mance (and resource requirement) varies as a function of its
parameters. We then tackle the following two problems:

o Determining the parameter values and node allocations

that maximise the overall system performance.

o Determining the node allocations that minimise the

hardware required, given the parameter values.

These problems can be modelled as a constrained variant
of the multiple-choice multiple knapsack problem. We pro-
vide a greedy algorithm to solve each problem, the first one
uses a performance gradient, and the second one is based
on the CPU requirement of the nodes. Our evaluation shows
that the greedy solutions are within 1% of the optimal solu-
tion. Further evaluation on a real ROS case study validates
our proposed model, with the observed performance values
within 2.5% deviation of the expected ones.

ICode available at: https://github.com/ipab-rad/perf_ros



II. PROBLEMS DEFINITION

We model a general ROS system composed of N nodes
and C' computers. ROS nodes form a directed graph G,, =
(N, E), where pair of nodes (n,m) € N communicate
through message-passing edges. An edge e,,, € E is
labelled with the bandwidth required, which depends on the
size and frequency of the messages being sent, and is defined
by a function b : e, ,,, = R. Computers form an undirected
graph G, = (C, L), where each computer ¢ € C has a
given CPU capacity defined by a function R : ¢ — N.
Computers can be of two types, embedded on a robot, or
external — we call them servers. Network links between
pairs of computers (c, z) € C' are defined as I, € L, so that
each link between computers supports one or more message-
passing edges between nodes. The capacity of a link is given
by its maximum bandwidth, which is defined by a function
B : .. — R. Depending on the type and location, computers
can communicate using either wireless or wired links.

ROS nodes can have parameters, some of them are con-
figurable and others are internal and cannot be changed.
Configurable parameters generate different node settings.
Thus a node n € N will be defined by a set of one or
more settings, where the total number of settings depends
on the type and number of parameters affecting the node. A
given setting for a ROS node ny, k € N, is characterised
by its CPU utilisation and the performance level generated,
represented by the functions U, P : nj, — R. We normalise
the CPU utilisation of any node setting to a ‘baseline’ com-
puter. We also normalise the capacity of all other computers
in the system in the same way. The performance level of
a ROS node is a function of the content and frequency
of the messages sent. However, determining this relation
automatically can be hard. Our approach assumes that a
system expert manually quantifies performance levels for a
small number of settings for each node. Then, we interpolate
any other node setting via regression (Section IV-B).

Given the previous definitions, we model our two con-
figuration problems as a constrained form of a multiple
knapsack problem. In addition, Problem I also assumes the
multiple-choice generalisation — note that for Problem 2
parameter values for nodes are given, so only one setting per
node is considered. These individual problems (i.e. multiple
knapsack, multiple-choice) are well-known in the literature
([3] [4]), however we consider both at the same time (for
Problem 1) along with a set of special constraints that
distinguish our formulation from previous work.

Our objective hence is to find a set of feasible allocations
A of ROS nodes to computers (i.e. those that satisfy all the
system constraints), and also: a) maximise the overall system
performance for Problem I — remember that we assume
the overall performance as the weighted sum of the perfor-
mance of the nodes; b) minimise the total computer capacity
required for Problem 2. Furthermore, each node must be
allocated to exactly one computer, but each computer could
contain more than one node depending on its capacity. Next,
we provide the mathematical description of the problems.
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where:

o Acp, = 1 represents that the setting k£ of node n has

been allocated to computer ¢ (0 otherwise).

e P,, is the performance level generated by the setting k

of node n.
e w, is the weight of node n in the overall performance
(note that the value is the same for any setting).

e U,, is the CPU utilisation of the setting k of node n.

e R, is the CPU capacity of computer c.

o bl is the bandwidth required by edge e, which is

supported by network link /.

e B; is the maximum bandwidth of network link /.

The first set of constraints (3) ensures that the nodes
allocated to a computer do not exceed its capacity. The
second set of constraints (4) guarantees that the bandwidth of
any network link is not exceeded. The third set of constraints
(5) ensures that every node is allocated to exactly one
computer — note that since a ROS node cannot assume two
different settings at the same time, it iS not necessary to
add an extra restriction to guarantee that exactly one setting
of each node is allocated. The last set of constraints (6)
ensures that the overall value for any combination of weights
for the nodes is always the same. Finally, we add two new
sets of constraints to the model, which specifically apply to
distributed ROS systems.

Residence constraints: restrict the particular subset of
computers C’ C C, to which a given node n may be
allocated. This makes sense, for example, when nodes are
directly connected to sensors/actuators on a given robot.

neN A celC = A, =1 ®)
Coresidence constraints: restrict the subset of valid alloca-
tions such that pairs of nodes (n,m) must always reside on

the same computer. In practice, this may be required when
the long latency of a network link is not tolerable.

nmeNANc,zeC: (A, Azm,) = c=2 )



III. ALGORITHMIC SOLUTIONS

We now describe the two greedy algorithms that solve
the optimisation problems proposed. Both algorithms pro-
vide near-optimal solutions (see Section V-B). In addition,
the solutions found are always feasible (i.e. satisfy all the
constraints) for any ROS system. However, finding solutions
may depend on the specific constraints of each system.

A. Problem 1: maximising performance

The first greedy algorithm uses a heuristic based on the
performance gradient, VP, of the configurable nodes (i.e.
those with configurable parameters). We assume that there
are M <= N configurable nodes. Each point in the gradient
vector is determined by the CPU utilisation of the nodes,
VP(Uy,...,Uy,), and the value for each point is given by
the best relative increment in performance for a unit of CPU
utilisation — note that the performance level corresponding
to each CPU utilisation value can be obtained by applying
regression analysis (Section IV-B). The procedure is de-
scribed in Algorithm 1 and consists of two parts: i) an initial
allocation of nodes that satisfies the system constraints; ii) an
allocation refinement that attempts to maximise the overall
performance by relocating nodes and updating configurable
nodes using the performance gradient, when possible.

Algorithm 1 Greedy heuristic Problem 1

1: while BW _constraints satisfied do
2 A + allocate nodes with Res_constraints

3 A + allocate nodes with CoRes_constraints

4 A + allocate remaining nodes

5. if BW _constraint —satisfied then

6 return

7: Neons = select configurable nodes from N

8: UPGRADE_CONF_NODES(A, Nconf)

9: C'gyyy = select computers from C' where R..free ==
10: for c in Ofu” do

11: A + move any n with U,, <U,

12: UPGRADE_CONF_NODES(A, Ncons)
13: Update Cfull
14: for ¢ in Cfu” do

to 6fuzz

tmazx

15: A < move any n to 6fu”
16: UPGRADE_CONF_NODES(A, Ncons)
17: return A

The initial allocation (lines 1-6) assumes that: i) con-
figurable parameters are set to their minimum values, thus
generating the lowest CPU utilisation and performance level;
ii) the ROS system is able to work with this configuration;
iii) R, is fixed for all computers. Then, nodes with resi-
dency (Res) constraints are allocated to the corresponding
computers. Next, nodes with coresidency (CoRes) constraints
are allocated, prioritising nodes with highest CPU utilisation
and computers with largest capacity. Finally, the remaining
nodes are allocated using the same prioritisation policy. Note
that if all the bandwidth (BW) constraints are satisfied, the
allocation order (outline above) always guarantees a solution.

Algorithm 2 UPGRADE_CONF_NODES(A, Neont)

1: Voue = (1

2: for n in Ngop s do

3: if U,, <U,,,,. then
4: Vaue-add(n)

5. while V,,, # [] do

6:  Upn, =VP(U,..,Up)
7: if U,, <U,,,,. then
8: c= A(n)

9: if R..free > 0O then
10: Up,+=1

11: else

12: Vaue-del(n)

13: else

14: Vaue-del(n)

15: return

In allocation refinement (lines 7-16), first configurable
nodes are upgraded following Algorithm 2, which selects
nodes based on the performance gradient (note that ¢ =
A(n) gets the currently allocated computer of node n) and
increases the CPU utilisation of the currently selected node
by one unit in each iteration. The process stops when no
more increments are possible, because nodes reached their
maximum CPU utilisation (U, , which can be obtained via
regression) or computers reached their maximum capacity —
R, free is the current free capacity of computer c. Then (lines
9-12, Algorithm 1) nodes that did not reach their maximum
utilisation allocated to computers that reached the maximum
capacity (we called them full computers, C'¢,,;;) are moved to
computers that did not C full)- Algorithm 2 is called again to
fill up the new CPU capacity generated. Finally (lines 13-16,
Algorithm 1), the set of full computers is updated and any
node from full computers, having reached its maximum CPU
utilisation or not, is moved to a computer with enough free
capacity to contain it. Algorithm 2 is called for the last time,
possibly allowing to further improve the overall performance.

Note that to move nodes, selections are also made ac-
cording to the gradient. Furthermore, computers are selected
by maximum capacity and always guaranteeing that new
allocations do not violate any previously satisfied constraints.

B. Problem 2: minimising computer capacity

The second greedy algorithm uses a simple heuristic that
attempts to allocate nodes with highest CPU utilisation to
computers with lowest capacity first (it is based on previous
work [5]). In addition, it assumes that the initial capacity of
any server in the system is 0, thus being increased when
required. The procedure is described in Algorithm 3.

Initially nodes with residency constraints are allocated.
Since residency constraints may imply running nodes in
computers whose capacity cannot be increased (e.g. robot’s
on-board computer), we allocate these nodes first to guaran-
tee their allocation. Then the remaining nodes are allocated,
A(n) = ¢, following the described heuristic while satisfying



Algorithm 3 Greedy heuristic Problem 2
1: Npae = sort nodes by max CPU_utilisation
2: Cppin = sort computers by min capacity
3: A « allocate nodes with Res_constraints
4: for n in N4, do

5 for ¢ in C,,;,, do

6 if n satisfies CoRes_constraints in ¢ then
7: if R..free >= U,, then

8: A+ A(n) =c

9 else if c.type == server then

10 R. +=U,, — R..free

1 A<+ A(n)=c

2: if A(n) == NULL or BW _constraint —satisfied then
13: return
14: return A

coresidency constraints. If at some point the selected com-
puter is a server and cannot allocate the currently selected
node, its capacity is increased to exactly satisfy the required
CPU utilisation for the node (line 10). Note that if all the
bandwidth constraints are satisfied, finding solutions only
depends on the coresidency constraints of the system.

IV. CASE STUDY

We now present a real ROS distributed system that is
a particular instantiation of the general model presented
in Section II. The system is composed of two types of
agents: autonomous robots with on-board processing and
sensing capabilities; and humans. Each agent is pursuing a
goal (i.e. a spatial position in the scenario) while avoiding
collisions with other agents. In addition, an external server
has access to network cameras which can track people inside
the environment. Robots infer the goals and future motion of
other agents using tracking data and online sensor processing
(see [6] for more info). Server and robots communicate
wirelessly whereas network cameras and server connect
through Ethernet, thus defining the network graph G..

Figure 2 shows the node graph G,, of the case study,
where multiple ROS nodes are interconnected through ROS
topics and services. Some nodes within the robot namespace
may run on the server, thus potentially improving the overall
performance. In addition, edges between nodes are labelled
with the expected range of message frequencies, which can
be easily translated to the required bandwidth.

We now describe briefly each ROS node, highlighting
those with critical parameters (one per node) that can gen-
erate different settings, thus modifying their performance.

Parameterised Nodes:

o Tracker: One instance per network camera that forms
part of a distributed person tracking algorithm [7]. The
critical parameter is the output frame rate. The higher
the frame rate, the more accurate the tracking.

e Model: Provides intention-aware predictions for future
motion of interactively navigating agents, both robots
and humans. A higher number of modelled agent goals
will lead to more accurate goal estimates.
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Fig. 2. Case study: Node graph, G,, composed of one Experiment node,
one Tracker node per network camera, and six nodes per robot.

e AMCL: The Adaptive Monte Carlo Localisation [8] re-
lies on laser data and a known map of the environment.
The number of particles the algorithm may use during
navigation defines the localisation robustness.

e Navigation: Avoids detected obstacles and plans a path
given a costmap, finally producing the output velocity
the robot must take. The higher the controller frequency,
the more reactive and smooth the navigation is.

Non-Parameterised Nodes:

o Experiment: A server node that basically coordinates all
robots taking part in the experiment.

o Environment: Combines information generated by the
local robot, other robots or other nodes (i.e. Tracker).

e Planner: Generates a navigation costmap (used by the
Navigation node) that encodes the future motion of all
agents with respect to other agents’ motion given their
inferred target goals from the Model.

o YouBot_Core: A set of ROS packages and nodes (e.g.
etherCAT motor connectivity, internal kinematic trans-
formations, interface with the laser scanner, etc) that
enables the robots (KUKA youBots) to function.

A. System characterisation

In order to test our algorithmic solutions, we characterised
each node in Figure 2 using common monitoring tools from
Linux (e.g. htop) and ROS (e.g. rgt). Table I summarises
the measured values. Columns two and three show residence
and coresidence constraints. Column four shows the settings
selected by the system expert for each configurable node.
The next three columns show the average values of CPU
utilisation, message frequency and bandwidth required for
each node setting — note that there is only one setting for
non-parameterised nodes. The last two columns represent the
performance level for each node setting and the weight (w,,)
of each node, both quantified by the system expert.

The robots’ on-board computers are 1.6GHz Intel Atom
dual core with 2GB RAM. The server used is a 3.30GHz Intel
i5 quad core with 16GB RAM. All the CPU measurements
are normalised to the robot CPU capacity, with a value of
100. The server capacity was estimated based on the results
provided by SPEC CPU2006 [9]. The networks employed
are a wireless 802.11ac at 300Mbps, and a 1Gbps Ethernet.



TABLE I
ROS NODES CHARACTERISATION

Node Res CoRes Parameters CPU util. Freq (Hz) BW (KB/s) Performance | Weight
Experiment server - - 1 10 1 100 0.05
Tracker server - Output freq: 10 15 20 25 80 120 160 200 | 10152025 | 1.0 1.52.02.5 | 40 70 90 100 0.2
Environment - - - 1 10 0.5 100 0.05
Model - - Num. goals: 4 3500 10000 17 40 60 10 10 10 555 20 70 100 0.2
Planner - Navigation - 1 10 0.5 100 0.05
AMCL - - Particles: 200 500 3000 19 41 66 252525 111 20 50 100 0.2
Navigation - Planner Controller freq: 2 10 20 2539 50 210 20 0.10.51.0 10 65 100 0.2
Youbot_Core | robot - - 16 10 0.5 100 0.05

B. Regression analysis

Given the values for the parameter configurations (node
settings), CPU utilisation and performance level in Table
I, we obtained the linear regression graphs relating them
for the four configurable nodes: Tracker, Model, AMCL and
Navigation. Figure 3 shows the relationship between the
parameter values and the performance level generated, and
Figure 4 between CPU utilisation and performance.
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Fig. 3. Linear regression graphs: parameter values vs performance level.

Tracker Model

100 100
g 80 / @ 8
e / 2 /
g e g o
5 a0l y = 66,62In(x) + 56,308 S a0 y =63,707In(x) + 132,16
3 R?=0,9922 b R?=0,9977
a 2 a 20

0 0
0% 50% 100% 150% 200% 250% 0% 20% 40% 60% 80%
CPU utilisation CPU utilisation
AMCL Navigation

100 100
g 80 | ¥=135.0%455.126x+4.6383 2w
g Ri=1 H
£ £ y = 361.46x - 79.023 /
£ 60 £ 60
£ E R?=0.9966
£ 40 f w0
g 20 g" 20

7
0 0

0% 20% 40% 60% 80% 0% 10%  20%  30%  40%  S0%  60%
CPU utilisation CPU utilisation

Fig. 4. Linear regression graphs: CPU utilisation vs performance level.

Note that all the regression graphs are based on four sam-
ples at most, which we find to be sufficient as the regression
coefficients (R?) are “1” or close enough to “1”, meaning
that the selected samples fit well in a curve. Furthermore,
in the experiments reported (Section V-C), the solutions
provided by simulation, which are based on predicted values
obtained via regression, match the behaviour of the the real

system, validating the accuracy of the predictions. However,
other ROS systems may require more samples to obtain a
regression model that fits the real system properly.

The regression equations in Figure 4 are used in Problem
1 to obtain the performance gradient. In Problem 2, we
also use the graph relating the parameter values and CPU
utilisation — this and other regression graphs are not shown
but are available on the online repository. Finally, it is worth
noting that assigning different performance levels for the
nodes in Table I will generate different regression graphs,
which in turn might affect the allocation solutions provided
in both problems. Our methodology helps the user to explore
different combinations in order to make the best choice.

V. EVALUATION

In this section, we first define a set of system instances of
increasing size derived from the case study presented. Then,
we evaluate our algorithmic solutions with the objective of
answering the following research questions:

e RQI: How well do our greedy heuristics perform on the

system instances compared to the optimal solutions?

e RQ2: How well do the ideal allocation solutions pro-
vided by our two algorithms translate into real config-
urations of the case study?

e RQ3: How would the real system behave if we modify
the parameter values provided by our algorithms?

A. System instances

In order to obtain different instances of our case study,
we only need to add robots and/or cameras to the baseline
system (i.e. one robot, one camera), as dashed lines show in
Figure 2. Increasing these elements, the total number of ROS
nodes will change accordingly, thus producing more chal-
lenging problems. Table II summarises the set of instances
analysed, including the total number of nodes (Nodes) and
configurable nodes (cNodes) present in each case.

TABLE I
SYSTEM INSTANCES CONSIDERED

Instance | Computers | Robots | Cameras | Nodes | cNodes
1 2 1 8 4
2 2 1 2 9 5
3 2 1 3 10 6
4 3 2 1 14 7
5 3 2 2 15 8
6 3 2 3 16 9
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performance. All values are normalised to the optimal solution (value = 1).

B. Simulation: algorithms analysis

We first analyse the solutions provided by our two greedy
algorithms comparing them with the corresponding optimal
solutions for the instances described in Table II. Remember
that optimal solutions will be given by allocations of node
settings to computers that: i) maximise the overall perfor-
mance for Problem I — note that individual performance
values for a given node setting are obtained by applying
the regression equations in Figure 3; ii) minimise the total
CPU capacity required for Problem 2 — note that in this
case we set the maximum value for each node parameter,
which translates into the maximum performance (and CPU
requirement) possible. The optimal solution for each case
was obtained by executing brute force algorithms, which
required several hours to complete for some instances.

Answering RQI, we found that both heuristics provide
near-optimal solutions for all the instances analysed. Figure
5 shows the results for Problem 1, where values for the
greedy heuristic (Expected) are normalised to the optimal
ones (value “1” for all the instances). As it can be seen, the
difference with the optimal solution for Problem 1 is less
than 1% on average. For Problem 2, the average difference
is less than 0.1% — the differences being negligible, they
are not shown in a graph.

C. Case study: behaviour analysis

Given the previous results, we now compare the behaviour
of the case study with the expected values. For each instance
in Table II, we configure the ROS nodes in the real system
with the parameter settings and the specific allocation pro-
vided by the two algorithmic solutions. Then, we check if the
real system matches a specific configuration by monitoring
the frequencies of the messages sent by the ROS nodes.
If the observed frequency values are close to the expected
ones (obtained from Table I or by regression analysis) for all
the nodes, the real system matches the given configuration.
Otherwise, the expected/observed frequencies can differ due
to: a) overloaded computers; b) approximation errors in the
system characterisation and/or regression analysis.

In our case, the observed frequencies for all the instances
analysed and for both problems deviate less than 3% on
average from the expected ones, which answers RQ2 and
validates our approach, that is, the accuracy of the system
characterisation and the regression analysis performed.
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Fig. 6. Problem 1, Instance 1: Comparison of different node settings when
not increasing (CPU=100) and when increasing (CPU+) the robot’s capacity.
Values are normalised to the baseline configuration (performance = 1).

Furthermore, given the observed frequencies, we estimate
the real system performance for the nodes, Peqsureds DY
applying the following formula:

Fmeasured

(10)

Pmeasured = Pe:vpected X
Fempected

where P,;pecteq 15 the expected performance predicted by
our algorithms, Fi;pccieq 1S the expected frequency for each
ROS node and F),eqsureq 18 the observed frequency during
the experiment. For Problem 1, results are also included in
Figure 5 (Measured), where measured performance values
only deviate by 2.5% on average from the expected ones.
For Problem 2 we obtained similar results (not shown).

Finally, we analyse the effect on the case study behaviour
when increasing some of the parameter values provided
by our algorithms. In particular, we consider several node
settings for Instance 1 when nodes in the robot domain are
forced to run in the robot. Table III shows the configuration
provided by Algorithm 1 (Baseline) and the three modifica-
tions considered; only configurable nodes are shown.

TABLE III
PARAMETER SETTINGS CONSIDERED FOR INSTANCE 1

Configuration | Model (goals) | AMCL (particles) | Nav. (Hz)
Baseline 80 200 15
Mod. 1 200 300 16
Mod. 2 3500 1000 18
Mod. 3 10000 3000 20

Figure 6 shows the results, where CPU=100 means that
the robot capacity does not change. Recall that increasing
the parameter values causes the CPU utilisation of each node
to increase. For CPU=100, this translates into an overloaded
computer, even for the first modification (Mod. I). Answering
RQ3, this parameter modification leads to the CPU capacity
constraint not being satisfied, which degrades performance,
further validating our approach. The figure also shows the
performance improvement if the CPU capacity were to be
increased (CPU+) as required.

VI. DISCUSSION

Finally, we briefly discuss two important issues referred
to previously: i) the quantification of individual performance
for the nodes; ii) the relationship between the individual per-
formance of the nodes and the overall system performance.



In the first case, since a ROS node could have a complex
relationship between the parameter values and performance
generated, instead of giving the ROS user the responsibility
of assigning performance levels, it might be possible to
consider developing methods to automate the process ([10],
[11]). However, applying such methods is orthogonal to our
proposal which we reserve for future work.

In the second case, we have assumed a linear contribution
of the individual performance of each node to the overall
value (expressed via node weights), which seems to work
well for our case study. However, this relationship might
be non-linear for more complex systems. In such a case, it
might be possible to perform a sensitivity analysis [12] based
on the individual contributions to determine the relationship
more accurately, but we leave it for future work.

VII. RELATED WORK

This work is a generalisation of our previous proposal [13].
Whereas we address system configuration over a continuum
set of parameter combinations, the previous work only as-
sumes a small number of parameter configurations (called
variants). This important consideration offers much more
flexibility to the ROS user and has increased the efficacy
of our greedy solutions, bringing them closer to optimal.

There are many other prior works addressing task alloca-
tion in distributed robotics. A comprehensive taxonomy can
be found in [14], where problems are categorised based on:
i) the degree of interdependence of agent-task utilities; and
ii) the system configuration, which in turn is based on an
earlier taxonomy [15]. According to these taxonomies, the
two problems discussed in this paper fall in the category of
Cross-schedule Dependencies (XD). Other works based on
the linear assignment problem [16] assume a single task per
agent [17], [18], [19]. In our case, the number of tasks is
equal or greater than the number of agents. In [20], [21]
several agents are needed to complete each task, which is a
subset of our problem. Finally, in [22] heterogeneous tasks
and multiple instances for each task are assumed, but it does
not consider different configurations of the same task.

To summarise, no previous work in robotics addresses
all the following considerations: a constrained, distributed,
heterogeneous system with more tasks than agents and a
continuum set of different configurations for the tasks.

VIII. CONCLUSIONS

We have proposed an approach for automatically configur-
ing ROS applications. The approach is based on performing a
system characterisation and applying linear regression to get
the configuration that can optimise the system, either max-
imising performance or minimising the hardware resources
required. We have modelled these optimisation problems
mathematically and we have proposed two greedy algorithms
to solve them, whose solutions deviate from the optimal by
less than 1% on average. We have validated our algorithms
in a real ROS environment, observing an average difference
between estimated and measured performance of 2.5%.
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