Increasing Cache Capacity via Critical-words-Only
Cache

Cheng-Chieh Huang
Institute of Computer Systems Architecture
University of Edinburgh, Edinburgh, UK
cheng-chieh.huang@ed.ac.uk

Abstract—Current processors have multiple levels of caches.
Choosing the right cache size for each level is critical for
performance. The first-level cache (L1) is typically small, in order
to match the speed of the processor. The lower level caches, on
the other hand, are typically large, in order to reduce capacity
misses. However, situations may arise in which the size of a lower
level cache cannot be increased beyond a point — for example,
recent Intel multi-core processors (including Nehalem and Sandy
Bridge) have only 256 kB private L2 caches per core — which
adversely affects the performance of benchmarks which have
large working set sizes.

In this paper, we propose a novel cache design known as the
critical-words-only cache (co-cache) for increasing the effective
cache capacity. Our approach involves rethinking the notion of
cache blocks; instead of storing all the words that belong to a
cache block, we only store the critical words, where the critical
words are the words that are generally accessed before the others.
QOur experiments show that with our design a 256 kB L2 performs
as well as a 512 kB conventional L2 cache on average.

I. INTRODUCTION

Current processors have multiple levels of caches. Choos-
ing the right cache size for each level is critical for perfor-
mance. The first-level cache (L1) is typically small, in order
to match the speed of the processor. The lower level caches, on
the other hand, are typically large, in order to reduce capacity
misses.

How well a lower level cache is able to reduce capacity
misses depends on how well the working set fits into the cache.
Ideally, the cache should be large enough to fit the working set,
but situations may arise in which the size of the lower level
cache is significantly lesser than the working set. For instance,
several modern multi-core processors (including Intel Nehalem
and Sandy Bridge) choose to support L2 caches that are private
to each core; although it would be desirable to have a large
private L2, this might not be possible, as increasing the size
of per core L2 has a multiplicative effect on the overall area.
Indeed, the above processors support only 256 kB of L2 cache
per core.

Is a 256 kB L2 large enough to reduce capacity misses?
Figure 1 shows the miss-rates incurred by SPEC benchmarks
as the size of the L2 cache is varied from 128 kB through 4

This work is supported by UK India Education and Research Iniative
Thematic Partnership Award UKUTP201100256 and the Centre for Numerical
Algorithms and Intelligent Software, funded by EPSRC grant EP/G036136/1
and the Scottish Funding Council to the University of Edinburgh.

Vijay Nagarajan
Institute of Computer Systems Architecture
University of Edinburgh, Edinburgh, UK
vijay.nagarajan@ed.ac.uk

MB. As we can see, with a 256 kB L2 cache, the average miss-
rate is greater than 50%. In fact, for programs such as galgel
and omnetpp which have a miss-rate of over 90%, we found
that bypassing the L2 cache and directly accessing the LLC
proved to be more performance-efficient than accessing the
L2 cache. This is because accessing the L2 in such situations
ceases to provide any performance benefit, since the L2 miss
rate is high; to make matters worse, it also adds the latency of
a wasteful L2 access to the critical path. As the size of L2 is
increased, however, we observe that the miss-rate significantly
decreases in some benchmarks.

100%
0% 7% ===
80% -

~
70% e \
60% b
50%

2
s
9 B,
£ 40%
30%
0% T — ey
00 x""\ W.2n
10% A R
0% *— ==.o
128kB 256kB 512kB imMB 2MB 4MB
L2 size
— ¢ = galgel mesa
coemgm=csoplex e (S parser
perlbmk omnetpp

—— gverage (33 SPEC benchmarks)

Fig. 1. Miss rate versus L2 cache size: as the size of the L2 cache (8-way)
is increased from 128 kB through 4 MB, the local miss-rate significantly
decreases. For this experiment 32 kB (4-way) L1 cache was used.

From the above example it is clear that a lower level
cache that is too small compared to the working-set size could
potentially hurt performance. In such situations, is there a way
in which the cache can be used more effectively? In this paper,
we propose a novel cache design for increasing the effective
cache capacity. Although our design is applicable for any lower
level cache, i.e. any cache other than L1, in this work we
restrict ourselves to L2 caches.

We observe that not all words belonging to an L2 cache
block are accessed around the same time — a subset of the
words, in fact, are consistently accessed sooner than the others.
We refer to the former as critical words and the latter as non-
critical words. Our key idea stems from the realization that,
if the time interval between the critical word accesses and the
non-critical word accesses is at least as high as the latency of
accessing the lower level cache (or memory), then an L2 that
caches only the critical words of each block could potentially
perform as well as a conventional L2 that caches the full block.
This is because, whenever any of the critical words in L2 are

int X[8];

while (exit)

L1 block X L1 block X

¢ el oo fefo]e]"]

o - - -

for (inti =0;i<4;i+=2)
{
in1=X[il;
in2=X[i+1];
Compute(inl,in2);

//load X[0]
/Nload X[1]
//100 cycles of execution

/I X evicted from L1 cache
} // X evicted from L1 cache

Fig. 2. Example to illustrate the idea of critical words

accessed, the L2 could additionally request the full cache block
from the lower level and have it sent to the L1 — in time before
any of the non-critical words are accessed by the processor. We
call such a cache design which stores only the critical words
for every block, the Critical-words-Only cache (co-cache), and
we denote the number of critical words per block as the depth
of the co-cache. In the ideal case, a co-cache of depth 1, will
perform as well as a conventional cache with full-sized blocks.

An Example. We illustrate our idea with a simple example
shown in Figure 2. For this example, let us assume a two-level
cache organization with a block size of 8 words. Furthermore,
let us assume that the cache block containing array X is cached
in L2 throughout, but is only cached in the L1 when executing
the inner for loop (as it is evicted from the L1 soon after).
Consequently, every time X 0] is loaded within the inner for
loop, it causes an L1 miss, which in turn causes block X to be
transferred from L2 to L1. Then, X [0] and X [1] are loaded and
the loaded values are used to perform some computation which
takes 100 cycles. Subsequently, X[2] and X [3] are loaded (and
SO on).

In this example, X[0] and X[1] constitute the critical
words, as these are accessed sooner than the other words in
the block. This example sheds light on the reason behind this
observation of criticality: typically not all words within a block
are accessed together; often one or two words are loaded and
the loaded values are used to perform some computation before
loading the subsequent values.

It is also important to note the above pattern repeats itself
across each iteration of the outer while loop. The example also
sheds light on the reason for this repeatability: often, like in
this example, the same piece of code is responsible for causing
misses to a given block in the L1 cache. Consequently, critical
words for a particular block are often accessed in regular
patterns.

Figure 2 (right) illustrates how an L2 that is organized as
a co-cache of depth 2 achieves the same performance as that
of the conventional L2 with 8 words per block. When X 0] is
accessed in the co-cache, it triggers a request to fetch full block
X from memory. By the time the processor requests X|[3]
after performing the computation (which takes 100 cycles),
the block would have been fetched from the memory, as the
memory latency is 80 cycles.

Contributions and Paper Organization. In this paper, we
consider the problem of how best to use a lower-level cache
whose size is much smaller than the working-set size. Our
contributions are as follows:
e We observe that a subset of words from a cache block —
the critical words — are consistently accessed sooner than

L2 cache
ower-level Memory(80 cycles)

co-cache

Lower-level Memory(80 cycles)

others. We demonstrate this with the help of an empirical
study (§II), in which we also demonstrate that the above
critical words are predictable.

e We exploit this observation by proposing a novel cache
design called co-cache (§III), which is a lower-level cache
comprising only the critical words of every cache block, and
thus uses the available cache size more effectively.

e We show how the L2 can be engineered as a co-cache
(8III-B). For predicting critical words, we have a simple
critical words predictor (§III-A), in which we add addi-
tional tag bits to the L1 cache (<500 bytes overhead) for
remembering the order in which words are accessed; thus
our design requires no complex prediction table.

e Whereas the co-cache is effective in situations in which the
size of the L2 is significantly smaller than the working-set
size, a conventional cache might perform better in situations
where the working-set fits in the cache. For this reason, we
propose the adaptive co-cache (aco-cache), a scheme for
reconfiguring back to a conventional cache if the working
set is determined to fit within L2.

e We describe our evaluation methodology in §IV. Among
other things, we discuss how we model the co-cache ac-
cess latency (§IV) and the space overhead of the co-cache
(§UI-D).

e Our experiments (§V) with SPEC2000 and SPEC2006
benchmarks show that a 256 kB L2 used as a co-cache
(aco-cache) of depth 2 can achieve up to 36.8% (36.8%)
speedup and on average 5.3% (6.1%) speedup compared to a
conventional 256 kB L2 cache. As for multi-core workloads,
the co-cache (aco-cache) in a 4-core system shows up
to 29.3% (29.3%) speedup and on average 7.3% (8.1%)
speedup across 32 randomly generated workload groups.

II. MOTIVATION: EMPIRICAL STUDY

Clearly, the effectiveness of our idea hinges on whether or
not each L2 cache block can be split into critical and non-
critical components. In addition to this, we should be able to
predict the critical words for each cache block — only then
would we be able to know what to cache in the proposed co-
cache.

A. Critical Words vs Non-critical Words

We conducted an experiment to ascertain whether, for each
L2 cache block, a subset of words (the critical words) are
consistently accessed before the others (as opposed to all
words being accessed around the same time). To this end, we
performed a cache simulation study in which we simulated a
4-way L1 of size 32 kB of 64 bytes block size across the SPEC
benchmarks. Since the goal of the study is to better understand

WordUsage

0 70 100 130 160 190 220 250

280 Infinity
Instructions
galgel mesa
parser e perlbmk
* soplex omnetpp

=——+—average(33 SPEC benchmarks)

Fig. 3. The times (in terms of dynamic instruction count) at which the words
within a block are first accessed; the time at which the first word is accessed
is taken to be 0.

the properties of L2 accesses, simulating a finite L2 cache will
only limit coverage; so we simulated an infinite L2 of 64 bytes
block size. Whenever there is an L1 miss, the corresponding
cache block is brought into the L1 from the L2, and the word
that caused the miss is accessed. We start time at this instant,
and measure the times at which the other words belonging to
the same cache block are subsequently accessed. We use the
dynamic instruction count as the measure of time.

As we can see from the result in Figure 3, on average,
the second word is accessed after 100 dynamic instructions,
whereas the third word is accessed after about 500 dynamic
instructions (not shown in the figure). Assuming a CPI of 1,
this would mean than the third word is accessed around 500
cycles after the first word. It is worth noting that this is likely
greater than the memory latency, and definitely greater than
the L3 latency if there is an L3 cache. Thus, we can infer
from this study that generally the first 2 words are accessed
much earlier than the rest of the words; in other words, there
is very good evidence for the first 2 words being the critical
words. The reason for this behavior can be explained by the
fact that applications typically read a couple of words, after
which they would likely use the above words that are read
to perform some computation, before reading the next set of
memory words, and so on.

B. Critical Words Predictability

To check if the critical words are predictable, we remember
for every memory block, the word address that caused the L1
miss (the 1st critical word) and also the word subsequently
accessed (the 2nd critical word). When the same memory block
results in an L1 miss and is brought back into the L1 again,
we compare the recorded addresses with the actual addresses
of the Ist and 2nd critical words.

In our study, the average predictability of the 1st critical
word is 65.4% across all benchmarks. For some benchmarks,
such as galgel and omnetpp the critical words are extremely
predictable with close to 100% predictability. On the other
hand, for benchmarks such as mesa and parser the predictabil-
ities are in the order of 60.0% and 49.4% respectively. It is
important to note, however, that even for benchmarks with
relatively poor predictabilities, they are still significantly better
than the expected predictability of 12.5% if the critical words

were uniformly distributed. We also measure the percentage
of times both critical words are predicted correctly — as we
can see this is about 62.5% across all benchmarks. From this
we can infer that, in general, when the first critical word is
predicted correctly, the prediction for the second critical word
is also correct. The reason for this behavior can be explained
by the fact that generally the same piece of code is responsible
for causing L1 misses to a given memory block. Consequently,
the critical words are accessed in a regular pattern and hence
predictable.

C. Useful Words vs Critical Words

Despite the presence of spatial locality, not always do
all the words belonging to a cache line end up being used;
a number of techniques [1]-[5] leverage this observation to
improve cache performance. For instance, Line Distillation [3]
attempts to discard such unused words in a cache line to
improve cache capacity. While our idea of exploiting critical
words is closely related to the idea of exploiting useful words,
there is one crucial difference. Techniques that exploit useful
words benefit from cache lines in which not all the words
in the cache line are used, i.e. the more unused words the
better. In contrast, our idea exploits the factor of time; for
example, even if all the words from a cache line are used, we
can still benefit as long as some of the words in this cache line
are accessed sooner than others. We conduct an experiment to
find out, on average, how many words are accessed in a block
before its eviction (i.e. word usage of the block). As shown
in Figure 4, the average word usage is 4.3 words per block
across all benchmarks, which amounts to 53.8% of the original
block size. Intuitively, this ratio corresponds to the maximum
benefit that is possible by exploiting useful words (cache that
is about half the size of the original cache can perform as
well as the original cache). On the other hand, the benefit that
can be derived by exploiting critical words is dependent on
the latency of accessing the lower level: lesser the latency,
lesser the number of critical words (which is the word usage
for critical words based techniques). Figure 4 shows the word
usage for various latencies. As we can see, even with as high
a latency as 160 cycles, the number of critical words (and
thus the average word usage) is 2.1 words, which amounts to
26.25% of the original size (cache that is quarter the size of
the original cache can perform as well as the original cache).
From the above study, it is clear that exploiting critical words
has potential for greater savings in comparison to useful words.

4.5
3.5

25

2
1

uw CW(100) CW(100) CW (130) CW (160)

Word usage per block

UW: Useful Words CW (latency): Critical Words in Latency

Fig. 4. Useful words filtering versus critical words filtering

III. HARDWARE

A critical component of our design is the critical words
predictor, which we introduce first. Next, we show how we en-
gineer the L2 cache as a critical-words-only cache (co-cache).
A conventional cache might perform better than the co-cache
if the cache size is large enough to fit the working-set; for this
reason we introduce a reconfiguration scheme called adaptive
co-cache (aco-cache), for dynamically choosing between the
co-cache or conventional cache based on the workload’s miss-
rate. Finally, we discuss the area overhead of our design.

cache block i co-cache block
tag tag data :
: | word-ids (2 words) | :
: tag data
data word-ids | (2 words)
(8 words) tag prav
word-ids | (2 words)
tag data
word-ids | (2 words)
.......................... P —————
(a) (b)

(c)

L1 block (being replaced)
data block FR

WO | W1 | W2 | W3 | W4 | W5 | W6 | W7 1|5

co-cache block _ wid.
Fig. 5. (a) cache block in a conventional cache (b) 4 blocks in a co-cache
(c)Block placement — FR: Footprint registers (§ III-A)

A. Critical Words Predictor

We use a simple predictor, in which we simply remember
the order in which the words of a cache block are accessed in
the L1 and use it as our prediction — our approach is similar to
the predictor used in [3]. In order to remember the identities
of the critical words, we add additional tag bits — the footprint
registers — to each L1 cache block. For example, for a 32 kB
cache size, with a 64B block size, and a depth of 2 (which
means 2 critical words per block), we require just two 3-bit
footprint registers per cache block to remember the critical
words — which amounts to only 384 bytes overhead. Thus, our
predictor design does not require any prediction table, and its
area overhead is relatively minimal.

B. Co-cache Structure and Implementation

The co-cache is a cache organization for caching only the
critical words for every cache block. Its organization is similar
to a traditional cache, except in the following respects. For the
purpose of this discussion let us assume all caches use write-
back policy:

e Checking for hit/miss. Since the co-cache caches only the
critical words from each cache block, we need to be able to
identify what words are currently cached. For this purpose,
each block in the co-cache is associated with additional
word-ids which stores the identities of the words that are
currently cached, as shown in Figure 5 (b). Note that the
word-ids would also need to be compared as part of tag

TABLE 1. ACCESSING THE CO-CACHE

If there is a miss in L1, the fetching request is sent to both

1 | co-cache (for partial block containing the critical words) and the L3
(for the whole block).

If the co-cache access is a hit, the partial block in the co-cache is

2 | brought back to L1 and satisfies processor’s request. If the co-cache
access is a miss, the processor waits for the whole block to be
brought from L3.

When the requested (whole) block returns from L3, it will be placed
3 | in L1, but not in the co-cache '. If the co-cache access had resulted
in a hit (in step 2), the whole block will replace the previously present
partial block in L1.

checking. In other words, adding the word-ids has the same
effect of increasing the tag size of each cache block. We
model the delay of this increased tag size in our experiments
(§IV) and find that this is negligible.

e Accessing the co-cache. It is worth noting that even if
the requested word is found in the co-cache, the request
has to be forwarded to the lower level in order to bring the
remaining (non-critical) words to L1. Consequently, upon
an L1 miss, both the L2 (functioning as a co-cache) and the
lower-level are accessed. If the requested word is found in
the co-cache, the requested word and the other critical words
are sent to the L1; later, the rest of the words would arrive
from the lower-level. On the other hand, if the requested
word in not found in the L2 co-cache, the processor will
have to wait until the whole block arrives from the lower-
level. Thus, accessing the co-cache proceeds as detailed in
Table 1.

e Updating the co-cache (block placement). When a cache
block is replaced from the L1, we need to decide what words
from the block need to be cached in the L2 co-cache. We use
the output of our critical words predictor (footprint registers)
and only cache those words that are marked as critical (as
shown in Figure 5(c)). It is worth noting that all blocks in
the L1 should have at least one access that caused the block
to be fetched, so footprint registers cannot be empty.

e Mis-prediction handling. It is worth noting that since the
processor forwards the request to lower level memory for
the full block data, this would automatically handle the case
in which the critical words are mis-predicted.

e Handling write backs. When the L1 writes back dirty data
to the L2 co-cache, since the co-cache cannot hold the full
block, the dirty block will also have to be written to the L3.

e Cache coherence. In contrast to conventional cache co-
herence (with local L1/L2 and shared L3), ensuring cache
coherence with a L2 co-cache involves one minor change.
When a block with read-write permissions is evicted from
the L1, since the co-cache cannot hold the full block, the
co-cache will in turn have to write the block back to the
L3. However, in doing so, the block in L3 will have to be
maintained in read-only state as the co-cache continues to
hold part of the block.

C. Adaptive Co-cache

A co-cache targets situations in which the size of the L2
is significantly smaller than the working set size. However,
when the working-set size does fit in the cache, a conventional
cache might perform better. Thus, it would be beneficial to
have an scheme for switching back to a conventional cache

IThe co-cache is exclusive with respect to the L1

if the working-set is small enough to fit the L2. We call this
adaptive co-cache (aco-cache).

Obtaining miss-rates. This design requires that we obtain
the miss-rate of a conventional cache while we are operating
in co-cache mode. In order to achieve this, we make use of
shadow tags [6], [7] to monitor the cache miss-rate. In contrast
to a conventional cache, the shadow tags only perform tag
operations — i.e they only keep the information of blocks but
not their data.

Scheme. In our proposed aco-cache scheme, we start in co-
cache mode, but keep monitoring the miss-rate of the conven-
tional cache with the shadow tags. At relevant checkpoints,
we compare the miss-rate with a pre-defined threshold; if the
measured miss-rate is lower than a threshold, we reconfigure
the cache back to conventional cache mode. With regard to
the checkpoints, these can be placed either by the software
(operating system or compiler) or the hardware. In this paper,
we assume the latter — specifically, we assume a hardware
monitoring unit [7] which simply checks the miss rate every
fixed number of instructions.

Reconfiguration: hardware. In principle, performing this
reconfiguration is as simple as coalescing the (partial) blocks
of the co-cache and turning off [8] the additional tags and
word-ids; for instance, 4 blocks of the co-cache can be
coalesced into 1 conventional block in the example shown
in Figure 5 (b). There are two ways to do this: set-based
reconfiguration [8], [9] or way-based reconfiguration [10]. We
use the set-based reconfiguration (that configures 4 co-cache
sets to 1 conventional cache set), as this requires no change
in associativity (we wanted to avoid a design in which the co-
cache’s associativity is higher than the conventional cache).

Reconfiguration: single vs multiple transitions. Our recon-
figuration scheme allows only a single transition: from the
co-cache to the conventional cache (if the working set fits
L2). Another alternative is to allow multiple back-and-forth
transitions between the co-cache and the conventional cache
depending on the program phase behavior. However, we chose
the former, primarily because of the cost associated with a
single reconfiguration transition. Reconfiguration involves the
following costs. First, the cost of flushing all dirty L2 blocks 2.
Second, invalidating the L2 blocks that were flushed. Third,
updating the L3 coherence directories. Fourth, performing
the circuit changes associated with the reconfiguration [9]. It
is worth noting that since the L2 cache is larger than LI,
the reconfiguration cost of the above steps could be more
expensive than prior work which had considered a similar
scheme for L1 caches [9]. In addition to the cost issue, another
reason why we considered a simple scheme is as follows. Our
motivation for adaptive co-cache is to ensure that workloads
whose working-set sizes already fit into the conventional L2 do
not incur any slowdown due to our co-cache; in other words,
this is simply a fail-safe option for benchmarks that already
perform well with a conventional cache. A more sophisticated
fine-grained reconfiguration scheme is therefore beyond the
scope of this paper.

2Since all blocks are read-only in co-cache (§III-B), flushing operation only
applies when transitioning from conventional cache to co-cache

TABLE II. ARCHITECTURAL PARAMETERS

Processor
L1 I/D caches

3GHz, 4-core, in-order superscalar (4-issue)
each 32 KB/4way, 2-cycle
L2 cache 256 KB/8 way, 12-cycle
Co-cache 256 KB/8 way, 12-cycle (§IV), depth 2
Reconfg. threshold 40%
ToL3 bus 12 GB/s, single core; 48 GB/s, 4-cores

L3 cache 16MB (4-core)/4MB(single core), 16way, 40-cycle
Memory DDR3-2000, 9-9-9
Memory Bus 1GHz, 8-byte, single core

2GHz, 8-byte, 4 cores

TABLE IIL L2 MISS-RATES
A (above than 70%) B (40 - 70%) C (less than 40%)
2.applu 3.art 7.facerec | l.apsi 4.bzip22k | S.crafty 6.eon 10.gzip
8.galgel 9.gcc2k | 14.parser 18.twolf | 12.mesa 15.perlbmk
11.mcf 13.mgrid | 20.vpr 22.bzip2 23.gcc | 19.vortex 24.gromacs
l16.sixtrack 17.swim | 27.leslie3d 32.hmmer 26.sjeng 25.gobmk
21.wupwise 29.Gems 28.calculix
30.milc 31.soplex
33.omnetpp

D. Space Overhead

Each cache block in the co-cache requires additional space
for the word-ids. Also, with the same data array size, a co-
cache has more sets compared to a conventional cache —
consequently, more tag and status registers are required for
those extra sets. On the L1 side, word-ids are again required to
identify the words brought from the co-cache, in the transition
period before the full block is back from the lower-level.
Besides, footprint registers are also required to remember the
critical words for prediction. Thus, for a co-cache with a
depth of 2, every block in L1 cache needs 2 word-id registers
and 2 footprint registers. If we consider a 32 kB L1 (4-
way, 64B block), a 256 kB L2 (8-way, 64B block), and 5-bit
status registers, the additional overhead of using the L2 as a
co-cache amounts to 36.75kB (predictor: 0.75KB, additional
tags: 36kB). An aco-cache additionally requires shadow tags
to monitor the cache miss-rate, which requires around 8 kB
space, bringing the overall overhead to 44.75kB overall. The
co-cache (aco-cache) only adds 2.2% (2.2%) overhead to L1
and 13.4% (16.4%) overhead to L2. Thus, to consider 179KB
in a 4-core system, it is less than 1% in overall cache hierarchy
(L1s+L2s+L3).

IV. EVALUATION METHODOLOGY

We implemented our technique in the gem5 cycle accurate
simulator [11] and the default architectural parameters are
shown in Table II. We used a depth of 2 for the co-cache
experiments as we found that this was the depth that gave the
best performance results.

Workloads We evaluated our technique across the SPEC
benchmark suite (20 from SPEC2000 and 12 from SPEC2006)
with ref input. We used all programs except those we could
not get to compile and/or run correctly in our infrastructure.
Recall that the co-cache is most effective for programs without
sufficient L2 cache capacity to accommodate their working sets
(i.e L2 miss-rate is high). Accordingly, we show L2 miss-rates
for these benchmarks in Table III. As we can see, with a 256
kB L2 cache, 14 of the 33 programs have an L2 miss-rate of
greater than 70%.

Co-cache’s access latency. The co-cache does not involve tag
searching operations, since the co-cache increases the number
of sets but not the associativity. However, the co-cache requires
additional tag bits: 6 additional bits for identifying the critical

words, and also the additional tags bits due to increase in the
number of sets. We use CACTI to model the effect of the
increased tag size on the access latency. Our results shows
that the increased tag access latency is negligible (less than
0.1 ns), and can be overlapped with data access like in the
conventional cache.

V. RESULTS
A. Performance Improvement

The primary goal of our evaluation is to to compare the
performance of the L2 used as a co-cache (aco-cache) with
the conventional cache. We evaluate the performance of the
following configurations:

e baseline. Conventional cache, 256 kB/8 way/64B.

e [.2-320kB / L2-512kB. Conventional cache, 320 kB/10
way/64B (resembles the aco-cache area) and 512 kB/8
way/64B.

e bypassing / auto-bypassing. In bypassing scheme, the L2
cache is bypassed to reduce the access latency to the lower
level memory (i.e. No L2 cache). Auto-bypassing auto-
matically selects the better-performing alternative between
accessing L2 and bypassing L2 for that benchmark.

e co-cache / aco-cache. The proposed design, 256 kB/8
way/16B.

The speedups (normalized to the baseline) are shown in
Figure 6 . From these result, we can see that bypassing (No
L2) provides speedup for some benchmarks with high miss-
rate (as shown in Table III) such as soplex (speedup of 2.1%).
In comparison, we observe that the co-cache provides much
better speedups — for example speedups of 36.8% for soplex.
On average, co-cache provides a speedup of 5.3% whereas
bypassing incurs a slight slowdown (about 1% slower).

However, in some benchmarks the co-cache is slower than
the baseline — for example, gromacs is 11.8% slower. This is
because the 256 kB L2 in gromacs incurs low miss-rate and
hence already provides good performance. This is one of the
reasons we proposed the aco-cache; recall that the aco-cache is
able to reconfigure the co-cache back to a conventional cache
depending on the miss-rate. With the aco-cache, the average
speedup is 6.1% which is better than the speedup provided
by doubling the conventional cache size (5.0%). Most of the
benchmarks which incur a performance loss with the co-cache
have now improved significantly with the aco-cache — for
example, gromacs which was 11.8% slower now performs as
well as the conventional cache. Also note that the speedup
incurred with auto-bypassing is only 2.7% and is significantly
lesser than the co-cache/aco-cache speedups.

B. Sensitivity to L2 Size

Figure 7 shows the performance as the size of L2 is
varied. As we can see, for the lower sizes (128 kB, 256 kB,
512 kB) the co-cache performs better than a conventional
cache. However, for the larger cache sizes (1 MB, 2 MB)
the conventional cache performs better. As we mentioned in
previous section, this is because, as the size of the cache is
increased, the conventional cache starts becoming more and
more effective, and its miss-rate drops. On the other hand,
the co-cache performance will be dependent on whether or

not the particular benchmark displays criticality. Motivated by
this observation, we show the performance results of aco-cache
which could be configured into a conventional L2 or a co-
cache depending on benchmark’s miss-rate. As we can see,
this performs significantly better than the other two, especially
when the size is neither too small nor large.

120%
115%
110%

105%

speedup (gmean)

100%

95%
128kB 256kB 512kB imMB 2MB

L2 size

=~ conventional == co-cache aco-cache

=== aco-cache(oracle) === Auto bypassing(oracle)

Fig. 7. Sensitivity to cache size

C. Sensitivity to Lower Level Latency

In this experiment, we want to examine our technique’s
sensitivity to lower level latency. Therefore, instead of a 3-
level cache hierarchy, we remove the L3 cache and use a
SimpleMemory (i.e. fixed access latency) module in gem5 and
vary its latency. In our 3-level cache hierarchy, the average
latency of L3 + memory (i.e. L2 miss latency) is about 100
cycles. Therefore, we vary the latency from 30 cycles through
240 cycles.

In this experiment, all results are normalized to the baseline
(256 kB conventional cache). In addition to overall speedup
results, we also show co-cache speedups under different L2
miss-rate groups that are shown in Table III. As we can see
from Figure 8, the speedup of group A benchmarks (high miss-
rate) increase with increase in latency. Since these benchmarks
have high miss-rate, a co-cache hit becomes all the more
important with increasing latency. However, for benchmarks
from group C (low miss-rate), co-cache would lose more
performance because most of accesses are already hits in the
baseline configuration.

Overall, the speedup of the co-cache first increases from
5.2% to 5.9% and then decreases to 1.1% when the latency
is varied from 30 cycles to 240 cycles. Since the aco-cache
enables L2 to choose between co-cache and conventional
cache based on L2 miss-rate, it provides a relatively consistent
speedup (5.5% to 7.4%). This shows that aco-cache can
continue to work even if the access latency to lower level
memory is high such as a no-L3 system.

D. Prefetcher Effects

Hardware data prefetching is a technique to predict miss
stream and fetch blocks before they are accessed. If the
prefetcher brings data into the L3, our technique is orthogonal
to it. However, if the prefetcher brings data into the L2, this
cannot directly apply to our L2 (co-cache) as the co-cache
only holds partial blocks (critical words). As an alternative,
we can have the prefetcher bring data into the L1 instead,
with the potential downside of prefetcher induced L1 cache

leslie3d calculix
m[2-320kB

gromacs gobmk sjeng

Bypassing AutoBypassing(256kB)

Gems milc soplex hmmer

132.8%,136.8%,136.8%

85%

omnetpp
W aco-cache(256kB)

gmean(33*)

mL2-512kB W co-cache(256kB)

Fig. 6. Performance Improvement — due to space constraints, only SPEC2006 benchmarks are shown, but the gmean is across all 33 benchmarks.

120%

115%

110%

105%

100% /H\N

95%

speedup(gmean)

90%

85%
30 60 920 120 150 180 210 240

latency(cycles)

== co-cache(overall) === aco-cache(overall) co-cache(group A)

==ge== CO-cache(group B) ==p== co-cache(group C)

Fig. 8. Performance improvement with different latencies — Group A, B, C
are defined in Table III.

pollution. In this experiment, we apply a stride prefetcher
to L2 in our baseline system to see if our alternative (co-
cache + L1 prefetcher) can still improve over the baseline
(prefetcher in L2). With the prefetcher included, some of the
benchmarks no longer experience significant capacity misses.
In other words, for such benchmarks there is no problem to
solve. Nonetheless, despite using a prefetcher, a significant
number of benchmarks (19 out of the 33) continue to suffer
from capacity misses. We are able to get 6.3% (up to 36%)
speedup if we consider these 19 benchmarks (3.4% speedup if
we consider all 33 benchmarks). From this result, we believe
that the co-cache/aco-cache can continue to boost performance
even under the presence of a prefetcher.

E. Energy Impact

In this section, we discuss the energy impact of our
technique. We use CACTI [12] to model co-cache’s power
consumption. In CACTI, we use itrs-hp cell and 32 nm
technology. The access mode is set to fast in L1 and normal
for L2 and L3. The co-cache potentially has both static and
dynamic energy overheads compared to conventional cache.

120%

>

<y

2

- . I

L

E hikil

©

s 8%
Group A Group B Group C Overall
W 256kB m 512kB cocache M acocache

Fig. 9. Dynamic energy comparison (the lower the better)

With regard to static energy, the aco-cache induces ad-
ditional space overhead of 44.75kB as described in §III-D.
On a 4-core system, this amounts to 179KB overhead, which
is a mere 1% space overhead if we consider the overall
cache hierarchy (L1s+L2s+L3). Therefore, the increase in
static power is about 1%. However, since co-cache (aco-cache)
improves the performance by 5.3% (6.1%), there is an overall

reduction in static energy of 4.2% (5.3%) with the co-cache
(aco-cache).

With regard to dynamic energy, the co-cache requires
simultaneously accessing the L3 even for L2 co-cache hits
and the aco-cache requires additional accesses to shadow tags
for obtaining miss-rate (as in §III-C). As we can see from
Figure 9, because most of accesses in group A (high miss-rate
benchmarks) miss in the L2 and go to the L3, the co-cache
(aco-cache) only causes a moderate increase of 6.8% (7.5%) in
dynamic energy. In group B and group C, the dynamic energy
overhead increases to 18.5% and 16.9% respectively. However,
the aco-cache improves the energy overhead (compared to
co-cache) in group C by reconfiguring back to conventional
mode and shows almost no energy overhead. It is worth
noting that the monitoring will be turned off [8] after the
decision to reconfigure it as a conventional cache. Overall,
the dynamic energy overhead of aco-cache is 6.8%. If we
consider the total energy impact (static + dynamic), there is a
3.8% (5.0%) improvement with the co-cache (aco-cache), as
the static energy dominates dynamic energy.

130%

125%

120%

115%
5 110%

£ 105%

& 100%
=m il b
90%

7-6-12-11 30-2-33-4 27-7-33-1 4-29-27-24 gmean(32)
22-28-5-15 11-25-7-15 9-18-9-33 11-31-11-5 28-30-3-2

H 320kB H co-cache aco-cache

Fig. 10. Multi-core workloads — Due to space constraints, only 9 workload
groups are shown, but the gmean is over the 32 workload groups

F. Multi-core Workloads

In this section, we study how our co-cache design performs
under multiprogrammed workloads. We randomly generate 32
workload groups, with each group consisting of 4 workloads
(the numbers identify the benchmark programs as shown in Ta-
ble III). The 4-core system configuration is shown in Table II.
The speedup results are shown in Figure 10. We use the sum of
each workload’s IPC (throughput metric) and normalize them
to 256 kB baseline. As we can see, the co-cache is up to 29.3%
faster than the baseline and on average 7.3% (8.1% for aco-
cache) faster than the baseline, whereas the 320kB size cache
(that resembles aco-cache in area) only provides 1.1% speedup.
Since this is comparable to the speedups we obtained with our
uniprocessor workloads, this shows that the co-cache continues
to work well under multi-programmed workloads. One inter-
esting observation here is that aco-cache performs consistently
better than the co-cache with multiprogrammed workloads for
most cases. We believe this is because aco-cache benefits
here from two reasons. First, like before, aco-cache avoids
performance loss for conventional-preferring benchmarks. In
addition to this, since conventional caches cause lesser traffic

on the L3 bus, this frees up bandwidth which can be potentially
exploited by co-cache-preferring benchmarks.

VI. RELATED WORK

Our idea is inspired by the classic critical word first [13]
technique for reducing miss penalty, in which, instead of
providing the full cache block, the word causing the miss
(the critical word) is provided first. Recent works [14], [15]
adapted this idea to reduce the access latency by proposing a
memory system that is able to service the critical words faster.
In contrast to the above works which seek to reduce the access
latency, we seek to increase the cache capacity in the lower
level caches.

Useful words fetching. A number of works exploit the fact
that not all words belonging to a cache line end up being
used; only a subset of the words — the useful words — end
up being used. Several prior works [1], [2], [4], [S] focus on
predicting these useful words and fetching only these. Kumar
et al. [1] first observed that not all words belonging to a cache
block end up being used, i.e spatial locality is not always
high in all cache blocks. They exploit this observation to
improve the miss-rate of a sectored cache [16] — which is
a design to optimize bandwidth by fetching only sub-blocks.
However, the performance with this technique is still worse
than the conventional cache because of the low useful words
predictability. To improve that, Chen et al. [4] and Pujara et
al. [5] proposed more accurate PC-based predictors to provide
better predictability. While the above techniques focus on
primarily reducing bandwidth, the recently proposed amoeba
cache [2] also focus on the performance. They do this by
allocating a suitable number of entries for each cache block
depending on the number of consecutive useful words in that
block. We consider these techniques to be orthogonal to our
work. While our co-cache works by retaining the critical words
when a block is replaced from the higher level, the above
techniques work by only fetching useful words. In other words,
it would be possible to integrate our technique with any of the
above, which we leave for future work.

Useful words filtering. Qureshi et al. [3] proposed Line
Distillation to achieve better performance. They use a separate
word-organized cache (WOC) as a victim cache which caches
only the useful words. When a block is replaced from the
higher level, they filter the useful words and put it in the
WOC. In doing so, the cache is utilized more effectively which
in turn leads to better performance. The downside to this
approach is the complexity of supporting WOC. WOC is a
highly associative cache — compared to a cache with 64 byte
blocks, a WOC with 8-byte words increases associativity by 8
times.

Our approach, like Line Distillation, is a filtering approach;
however, we exploit critical words rather than useful words.
Even if all words in a cache block end up being used (i.e
spatial locality is high), we can still benefit as long as the
critical words are accessed before the non-critical words, as
we illustrated in the limit study in §II-C. Indeed, we found that
for most benchmarks the number of critical words is only 2 —
which is why caching only these is sufficient. In other words,
we do not need the complexity of having to deal with blocks of
various degrees of spatial locality. Thus, unlike WOC used in
Line Distillation, our approach does not increase associativity.

VII. CONCLUSION

In this paper, we proposed a cache design called critical-
words-only cache for increasing cache capacity of an L2
cache. Our design is based on the observation that for every
L2 cache block, a subset of words (the critical words) are
accessed sooner than the others. In contrast to a conventional
L2, a co-cache only caches the critical words for each cache
block. Our experimental results provide evidence to support
the hypothesis that a co-cache is able to utilize the cache
space more effectively, especially in situations in which the
cache size is significantly less than the working-set size.
However, in situations in which the cache size is larger than the
working-set size, a conventional cache could perform better.
For this reason, we also proposed adaptive co-cache (aco-
cache) that can dynamically choose to behave like a co-cache
or a conventional cache. In our experiments, a 256 kB L2
organized as an aco-cache performed as well as a 512 kB
conventional L2 cache on average.

REFERENCES

[1] S. Kumar and C. B. Wilkerson, “Exploiting spatial locality in data
caches using spatial footprints,” in ISCA, 1998, pp. 357-368.

[2] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and
L. Shannon, “Amoeba-cache: Adaptive blocks for eliminating waste in
the memory hierarchy,” in MICRO, 2012, pp. 376-388.

[3] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation:
Increasing cache capacity by filtering unused words in cache lines,”
in HPCA, 2007, pp. 250-259.

[4] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate and
complexity-effective spatial pattern prediction,” in HPCA, 2004, pp.
276-287.

[5] P. Pujara and A. Aggarwal, “Increasing the cache efficiency by elimi-
nating noise,” in HPCA, 2006, pp. 145-154.

[6] R. K, T. Warrier, and M. Mutyam, “Skipcache: miss-rate aware cache
management,” in PACT, 2012, pp. 481-482.

[71 M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423-432.

[8] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-v dd : A circuit technique to reduce leakage in deep-submicron
cache memories,” in ISPLED, 2000, pp. 90-95.

[9] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“An integrated circuit/architecture approach to reducing leakage in deep-
submicron high-performance i-caches,” in HPCA, 2001, pp. 147-157.

[10] D. H. Albonesi, “Selective cache ways: On-demand cache resource
allocation,” in MICRO, 1999, pp. 248-.

[117] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1-7, 2011.

[12] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to model
large caches,” 2009.

[13] J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach (5. ed.). Morgan Kaufmann, 2012.

[14] E.J. Gieske, “Critical words cache memory: exploiting criticality within
primary cache miss streams,” Ph.D. dissertation, Cincinnati, USA, 2008.

[15] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang,
R. Illikkal, and R. Iyer, “Leveraging heterogeneity in dram main
memories to accelerate critical word access,” in MICRO-45, 2012, pp.
13-24.

[16] A. Seznec, “Decoupled sectored caches: Conciliating low tag imple-
mentation cost and low miss ratio,” in ISCA, 1994, pp. 384-393.

