
Boomerang: a Metadata-Free Architecture for
Control Flow Delivery

Rakesh Kumar Cheng-Chieh Huang Boris Grot Vijay Nagarajan
Institute of Computing Systems Architecture

University of Edinburgh
{rakesh.kumar, cheng-chieh.huang, boris.grot, vijay.nagarajan}@ed.ac.uk

Abstract—Contemporary server workloads feature massive
instruction footprints stemming from deep, layered software
stacks. The active instruction working set of the entire stack
can easily reach into megabytes, resulting in frequent front-
end stalls due to instruction cache misses and pipeline flushes
due to branch target buffer (BTB) misses. While a number of
techniques have been proposed to address these problems, every
one of them requires dedicated metadata structures, translating
into significant storage and complexity costs.

In this paper, we ask the question whether it is possible
to achieve high-performance control flow delivery without the
metadata costs of prior techniques. We revisit a previously pro-
posed approach of branch-predictor-directed prefetching, which
leverages just the branch predictor and BTB to discover and
prefetch the missing instruction cache blocks by exploring the
program control flow ahead of the core front-end. Contrary
to conventional wisdom, we find that this approach can be
effective in covering instruction cache misses in modern CMPs
with long LLC access latencies and multi-MB server binaries.
Our first contribution lies in explaining the reasons for the
efficacy of branch-predictor-directed prefetching. Our second
contribution is in Boomerang, a metadata-free architecture for
control flow delivery. Boomerang leverages a branch-predictor-
directed prefetcher to discover and prefill not only the instruction
cache blocks, but also the missing BTB entries. Crucially, we
demonstrate that the additional hardware cost required to
identify and fill BTB misses is negligible. Our experimental
evaluation shows that Boomerang matches the performance of the
state-of-the-art control flow delivery scheme without the latter’s
high metadata and complexity overheads.

I. INTRODUCTION

Modern server software stacks are organized as layered
services, each implementing complex functionality. Because
of this, server workloads tend to have multi-MB instruction
footprints that defy private instruction caches, causing frequent
long-latency accesses to lower cache levels. Similarly, the large
number of branches associated with such massive instruction
working sets exceed the capacity of practical single-level BTBs,
resulting in either frequent pipeline flushes or necessitating
dedicated high-capacity second level BTBs. In the case of both
instruction caches and BTBs, frequent misses considerably
degrade core performance by exposing the fill or flush (in the
case of a BTB miss) latency.

The front-end bottleneck in servers is not a new phenomenon
and has been highlighted by a number of studies over the
years [1], [2], [3], [4], [5], [6], [7]. Mitigation techniques for

both instruction cache (L1-I) and BTB misses generally rely
on sophisticated hardware prefetchers, as software solutions
such as code layout optimizations [8], provide only partial
improvements due to complex control flow and massive code
footprints in server workloads.

On the instruction cache side, state-of-the-art prefetchers
for servers rely on temporal streaming to record and replay
long sequences of instructions [9], [10], [7], [11]. While highly
effective at eliminating L1-I misses, for maximum coverage,
these techniques require 100s of KBs of metadata to store and
index the temporal streams. On the BTB side, both spatial and
temporal correlating prefetchers have been proposed to move
BTB entries from a large second level BTB to a small first
level [12], [13]. In order to capture the tens of thousands of
branch targets that are typical of server workloads, the second-
level BTBs also necessitate well over 100KB of storage.

Whereas the above works have looked at the instruction cache
problem and the BTB problem separately, recent research has
looked at addressing both together [14]. Specifically, it makes
the critical observation that control flow is common across
the different structures, and dedicated history-based instruction
and BTB prefetchers implicitly replicate it in their respective
histories. Because instruction cache blocks carry the branch
instructions with their targets or offsets, the authors suggest
using a temporal-stream-based instruction prefetcher to fill the
BTB by extracting branch information from prefetched cache
blocks. The resulting scheme, called Confluence, dispenses
with dedicated BTB metadata (i.e, a second BTB level) but
still requires expensive metadata for the instruction prefetcher.

In this paper, we ask the question whether it is possible
to achieve high-performance control flow delivery without
the metadata costs of prior techniques. In other words, is it
possible to solve both the instruction cache problem and the
BTB problem, with no additional metadata beyond what is
already contained in a modest-complexity core? An affirmative
answer to this question would enable high-performance control
flow delivery in emerging many-core [15] and many-thread [16]
RISC processors that optimize for silicon efficiency and avoid
the use of area-hungry structures in favor of additional cores
or threads [17].

Our key contribution is in demonstrating that the previously-
proposed idea of branch-predictor-directed prefetching [18],
[19] can be successfully applied in the server context and
used to fill both the instruction cache and the BTB usingTo Appear in HPCA, Austin, USA; February, 2017

only the existing structures inside the core, namely the
BTB and the branch predictor, thus eliminating the need for
additional metadata. The result is not only powerful, but is also
contrary to conventional wisdom, since prior work in the server
instruction prefetching space has held that branch-predictor-
directed prefetching suffers from two fundamental drawbacks
that limit its usefulness in the server space. The two drawbacks
are (i) the limited accuracy of the branch predictor that limits
its ability to cover long LLC access delays and (ii) the need
for massive BTB capacity to capture the branch target working
set.

We present detailed evidence demonstrating that neither of
these issues is significant and that, indeed, branch-predictor-
directed prefetching can effectively fill the instruction cache
in advance of the core front-end even with large LLC delays.
We then present Boomerang, a metadata-free control delivery
architecture that uses a state-of-the-art branch-predictor-directed
prefetcher to fill both the instruction cache and the BTB. We
discuss practical issues and optimizations in the design of
Boomerang, showing that its cost and complexity is negligible.

An evaluation of Boomerang on a set of traditional and
scale-out server workloads in the context of a 16-core RISC
processor reveals that Boomerang eliminates nearly all BTB-
related pipeline flushes, and reduces front-end stall cycles
by 50-75%. In doing so, Boomerang improves performance
by 27.5%, on average, over the baseline. More importantly,
Boomerang averages similar performance to the state-of-the-
art (Confluence) without the latter’s metadata cost and higher
overall complexity.

II. MOTIVATION

A. Importance of Control Flow Delivery in Servers

Contemporary server workloads are characterized by massive
instruction footprints stemming from deep, layered software
stacks. As an example, consider a typical web server deploy-
ment, consisting of the web server itself, a caching layer, CGI,
a database, and an OS kernel responsible for network I/O and
scheduling. The active instruction working set of the entire
stack can easily reach into megabytes, resulting in frequent
front-end stalls due to instruction cache misses. Similarly, the
large code footprint can contain tens of thousands of active
branches that can cause pipeline flushes if their targets are not
found in a BTB.

The performance degradation caused by massive instruction
working sets of commercial and open-source server software
stacks has been highlighted by a number of studies over the
years [1], [5], [6], [3]. Moreover, a recent characterization study
at Google suggests that the problem is getting worse [4]. The
authors highlight a search workload with a multi-megabyte
instruction working set that has expanded at a rate of 27% per
year for several years running, doubling over the course of
their study [4].

To quantify the opportunity in eliminating front-end stalls
and pipeline flushes stemming from instruction cache and BTB
misses, we study a set of enterprise and open-source scale-out
applications using a full-system microarchitectural simulator.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Nutch Streaming Apache Zeus Oracle DB2 Avg

S
p

e
e

d
u

p

Perfect L1-I Perfect BTB

Figure 1. Opportunity in improving control flow delivery on server workloads.

The baseline core is configured with a 2K-entry BTB and a
32KB L1-I. Complete workload and simulation parameters can
be found in Section V. As Figure 1 shows, eliminating all
L1-I misses improves performance by 11-47%, with another
6-40% performance improvement attained by eliminating all
BTB misses.

In the quest for higher core performance, we next examine
techniques for mitigating instruction cache and BTB misses.

B. Mitigating Instruction Misses

Spracklen et al. [20] were the first to provide a detailed
microarchitectural analysis of the sources of instruction cache
stalls in commercial server workloads. A particular problem
identified in the work is that of discontinuities resulting from
non-sequential control flow. Such discontinuities challenge next-
N-line prefetchers, necessitating control-flow-aware prefetch
techniques.

Prior work has proposed using the branch predictor to
anticipate future control flow and prefetch cache blocks into
the L1-I ahead of the fetch stream [18], [19]. A particular
strength of such an approach is its low cost and complexity,
since it exploits existing BTB and branch predictor structures.
However, branch-predictor-directed prefetch was proposed in
the context of SPEC workloads with modest instruction working
sets. On the server side, researchers have argued that the vast
code footprints of server workloads defy capacities of practical
BTBs, rendering branch-predictor-based approaches ineffective
due to their inability to discover discontinuities [20]. Another
challenge for branch-predictor-driven approaches is presented
by the limited accuracy of branch predictors, which must predict
many branches ahead of the fetch stream to cover large LLC
access latencies [9].

Because of the aforementioned challenges, instruction
prefetchers for servers have introduced dedicated prefetcher
metadata that is entirely decoupled from branch prediction
structures [20]. State-of-the-art server instruction prefetchers
are based on the principle of temporal streaming, whereby
entire sequences of instructions are recorded and, subsequently,
replayed by the prefetcher to fill the cache ahead of the fetch
stream [9], [10], [7], [11]. While extremely effective at eliminat-
ing instruction cache misses, temporal-stream-based prefetchers

2

incur large metadata storage costs due to massive instruction
working sets of server workloads and high redundancy across
streams. For instance, Proactive Instruction Fetch requires over
200KB of prefetcher metadata per core [10] .

Recent work has attempted to reduce the storage require-
ments of temporal streaming. RDIP [7] correlates a set of
targets with an execution context, effectively reducing some
of the metadata redundancy. Nonetheless, RDIP still requires
over 60KB of dedicated metadata storage per core. Another
approach, SHIFT, proposes to virtualize the metadata in
the LLC and share it across cores executing a common
workload [11]. With an 8MB LLC, SHIFT requires over 400KB
of metadata storage, which is amortized among the cores
executing a common workload. If multiple workloads share
a CMP, they each necessitate their own prefetch metadata,
placing additional pressure on the LLC.

To summarize, state-of-the-art instruction prefetchers for
servers are effective but, despite recent efforts to make them
practical, incur significant costs associated with storing and
managing the metadata.

C. Mitigating BTB Misses

Providing the instruction cache with correct blocks is only
part of the challenge; the other part is feeding the core with
the right sequence of instructions. To do so, modern processors
employ conditional branch predictors and branch target buffers
to predict discontinuities and redirect the fetch stream to the
target address.

The large instruction footprints in server workloads place
significant pressure on the BTBs, which requires multiple
bytes per entry to precisely identify branch PCs and their
targets. In contrast, branch direction predictors mandate only
a small amount of state per branch and can often deal with
aliasing. As a result, recent work has shown that minimizing
mis-speculation-induced flushes requires maintaining 16-32K
BTB entries, costing up to 280KB of state per core [14].

Several approaches have suggested augmenting a low-latency
first-level BTB with a large-capacity second level BTB and a
dedicated BTB transfer engine for moving entries between
BTB levels. One such approach, called Bulk Preload and
implemented in an IBM z-series processor, relies on a 24K-
entry second-level BTB and uses spatial correlation to preload a
set of spatially-proximate entries into the first level upon a miss
there [12]. Another approach, PhantomBTB, forms temporal
streams of BTB entries and virtualizes them into the LLC [13].
Both designs incur high storage overhead (in excess of 200KB
per core) and rely on misses in the first-level BTB to trigger
fills, thus exposing the core to the high access latency of the
second BTB level.

Recent work has suggested an effective way to mitigate
the cost and performance overheads of hierarchical BTBs.
Noting that instruction cache blocks effectively embed the
BTB metadata for the branches they contain, Confluence
proposes using a temporal-stream-based instruction prefetcher
to fill both the instruction cache and the BTB, the latter by
predecoding incoming cache blocks and extracting branch

targets from branch instructions inside the cache block [14].
By avoiding the need for a dedicated second BTB level and a
dedicated BTB prefetcher, Confluence greatly reduces the cost
of a high-performance front-end. However, it still relies on a
temporal-stream-based instruction prefetcher that itself incurs
high metadata costs.

III. TOWARD METADATA-FREE CONTROL FLOW DELIVERY

In this paper, we ask the question whether it is possible
to achieve high-performance control flow delivery without
the staggering metadata costs of prior techniques. Reducing
metadata costs is particularly important for emerging many-core
and many-thread server processors, such as Cavium Thunder-
X [15] and Oracle T-Series [16], that seek to maximize the
number of hardware contexts on chip, thus delivering better
performance per unit area and per watt over conventional
server CPUs [17]. To maximize these metrics, many-core and
many-thread server processors eschew high microarchitectural
complexity, including massive BTBs and vast metadata stores,
while still relying on out-of-order cores to meet stringent per-
thread performance requirements of online services.

To provide effective control flow delivery in such designs, we
revisit the previously proposed idea of branch predictor-directed
prefetching [19], as it does not require any metadata beyond
what is already present in a core – a single-level BTB and a
branch predictor. However, as noted in the previous section,
prior work on server instruction prefetching has dismissed
branch predictor-directed prefetching on the basis of two
concerns:

1: The branch predictor must predict a large number of
branches correctly in order to run far enough ahead of the
core front-end so as to cover the large LLC delays in many-
core NUCA processors [9]. Because branch predictor
accuracy decreases geometrically with the number of
branches predicted, covering large LLC delays while
staying on the correct path is infeasible.

2: The BTB must capture a large branch target footprint to
discover discontinuities [20]. With a small BTB, frequent
BTB misses will lower prefetch coverage and cause
frequent pipeline flushes, preventing the branch predictor
from running ahead of the core front-end.

A. Does Branch Prediction Accuracy Limit Coverage?

In order to understand to what extent the branch predictor
affects prefetch coverage, we assess the benchmarks from
Figure 1 with a state-of-the-art TAGE branch predictor [21]
and FDIP [19] as branch-predictor-directed prefetcher. FDIP
decouples the L1-I from the front-end via a deep fetch target
queue (FTQ), and uses the BTB and branch predictor ensemble
to fill it. To isolate the effect of the branch predictor, we
use a near-ideal 32K-entry BTB. Detailed microarchitectural
parameters can be found in Section V.

Figure 2 compares a TAGE-based FDIP prefetcher to
PIF [10], a state-of-the-art temporal streaming instruction
prefetcher with private metadata. We study a range of LLC
access latencies and use percentage of front-end stall cycles

3

0%

20%

40%

60%

80%

100%

1 10 20 30 40 50 60 70

Fr
ac
tio
n	
of
	C
yc
le
s	
Co
ve
re
d

LLC	Latency

PIF FDIP	TAGE FDIP	2-bit FDIP	Never-Taken

Figure 2. Percentage of front-end stall cycles covered by FDIP for different
branch predictors and LLC access latencies.

covered as a metric of choice. We use the stall cycles covered
metric over the more common misses covered metric to
precisely capture impact of in-flight prefetches – the ones
which have been issued but the requested block has not arrived
to L1-I when needed by the fetch unit. Our metric captures stall
cycles only on the correct execution path, since wrong-path
stalls do not affect performance.

As shown in the figure, FDIP with TAGE performs nearly
identically to PIF over a range of LLC access latencies. For
very small LLC access latencies, PIF’s coverage actually lags
behind that of FDIP because PIF monitors the retire stream
to advance the prefetcher. As a result, PIF is exposed to the
pipeline latency upon a branch mispredict; in contrast, FDIP
immediately redirects the prefetcher to the correct path.

To better understand the result, we plot the breakdown of
sources of miss cycles for various prefetchers normalized to a
no-prefetch baseline in Figure 3. We model a 16-core NUCA
processor with a mesh-based interconnect, yielding an average
LLC access latency of 30 cycles. In the figure, we focus on
three prefetcher configurations: next line (NL), FDIP 32K,
and PIF 32K. We breakdown the sources of misses into three
categories: (i) sequential, (ii) discontinuities due to conditional
branches, and (iii) discontinuities due to unconditional branches,
which include function calls and returns.

As observed in prior work, sequential misses dominate,
accounting for 40-54% of all miss cycles in the no-prefetch
baseline. This explains why simple next-N-line prefetchers are
extremely effective, as also observed in prior work on server
instruction cache prefetching [20]. FDIP 32K covers the vast
majority of cache misses across all three categories, delivering
essentially identical coverage as PIF within each category.

While the TAGE branch predictor is quite accurate, it is not
perfect. So how does FDIP attain such high coverage across a
large LLC latency range despite the mispredicts? The answer
lies in the fact that most Taken conditional branches have
targets within a few cache lines of the branch instruction. As
Figure 4 shows, nearly 92% of all taken branches have targets
within four blocks of the current one. Because of the short
offset, correctly predicting these branches is not essential for

high coverage of conditional discontinuities. For such short
backward branches, the targets are typically already found in
the cache, while for forward branches, a prefetcher running far
enough ahead will reach the cache block containing the target
of the branch by simply following the fall-through path.

With sequential and conditional branches largely covered, the
unconditional branches are the remaining source of discontinu-
ities. The targets of these branches tend to be far away from the
branch instruction itself, which is why next-N-line prefetchers
generally fail to provide any coverage in this category. However,
because these branches are unconditional, following them in
FDIP does not depend on branch predictor’s accuracy, thus
guaranteeing high coverage for these discontinuities regardless
of the branch predictor.

To confirm this intuition, we pair FDIP with a naive “never-
taken” predictor that, for each conditional branch, simply
follows the fall through path. We also evaluate FDIP with
a simple bimodal predictor. To focus the study on the effects
of branch predictor on FDIP, we use these two predictors only
to drive FDIP; the back-end is still using TAGE to guarantee
that pipeline resets due to branch mispredicts are identical to
the baseline FDIP+TAGE configuration.

Figure 2 shows the results of the study. As expected, FDIP
with the “never taken” predictor attains much of the coverage
benefit of FDIP with TAGE. In other words, while a good
branch predictor is essential to avoid pipeline squashes, even
a naive branch predictor coupled with FDIP can be highly
effective in covering discontinuities.

B. Does BTB Size Limit Coverage?

We next consider the BTB as a potential bottleneck. A small
BTB may limit coverage by failing to discover discontinuities
and by causing pipeline flushes due to branch mispredicts, thus
preventing the branch predictor from running sufficiently far
ahead of the core front-end.

Figure 5 shows FDIP’s stall cycle coverage as a function of
the BTB size and the LLC access latency. We use the same set
of workloads as before and pair FDIP with the TAGE branch
predictor. As the figure shows, going from a 32K to 2K BTB
results in a 12% drop in stall cycle coverage. The reduction
is relatively modest, and can be explained by the insight in
Section III-A that most misses are due to a combination of
sequential and conditional branches, and these can be covered
by following the straight-line path. Thus, the difference in
coverage between a large and small BTB must be attributed to
unconditional branches. Because the targets of unconditional
branches tend to reside far from their branch instructions, a
BTB is essential to uncover these discontinuities.

To validate the intuition, we revisit Figure 3, this time
focusing on the three FDIP configurations featuring 2K-, 8K-,
and 32K-entry BTB. As expected, the largest difference in stall
cycle coverage between a 2K- and 32K-entry BTB is due to
unconditional branches. For instance, on Nutch, the 32K-entry
BTB FDIP configuration improves coverage over the 2K-entry
BTB by 3.4%, 2% and 7% for sequential, conditional and
unconditional branches, respectively.

4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

B
a

se
 2

K
B

T
B

N
e

x
t-

Li
n

e
 2

K
B

T
B

F
D

IP
 2

K
B

T
B

F
D

IP
 4

K
B

T
B

F
D

IP
 8

K
B

T
B

F
D

IP
 1

6
K

B
T

B

F
D

IP
 3

2
K

B
T

B

P
IF

 3
2

K
B

T
B

Nutch Streaming Apache Zeus Oracle DB2 Avg

P
e

rc
e

n
ta

g
e

 o
f

M
is

s
C

y
cl

e
s

Sequential Conditional Unconditional

Figure 3. Source of miss cycles.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

Pe
rc
en
ta
ge
	o
f	T

ak
en
	C
on
di
tio
na
l	B

ra
nc
he
s

Branch	 Distance	in	Cache	Blocks

Nutch Streaming Apache Zeus Oracle DB2

Figure 4. Taken Conditional Branch jump distance in number of cache blocks.

0%

20%

40%

60%

80%

100%

1 10 20 30 40 50 60 70

Fr
ac
tio
n	
of
	C
yc
le
s	
Co
ve
re
d

LLC	Latency

BTB32K BTB16K BTB8K BTB4K BTB2K

Figure 5. Percentage of front-end stall cycles covered by FDIP for different
BTB sizes as a function of LLC latency

C. The Big Picture

As discussed in Section II, there are two major bottlenecks
in the control flow delivery for server workloads that led to
the rise of storage intensive prefetchers: L1-I misses and BTB
misses. It is important to not only mitigate both of these

bottlenecks, but to do so while avoiding the high metadata
costs and complexity overheads incurred by prior techniques.

So far, we have demonstrated that a branch-predictor-directed
prefetcher can replace the storage intensive state-of-the-art
instruction prefetechers without compromising on L1-I miss
coverage. The branch-predictor-directed prefetching is effective
because the branch prediction accuracy is not a concern, since
only conditional branches require a branch predictor and those
tend to have short target offsets. Thus, branch mispredictions
have little or no effect on L1-I miss coverage. Large BTBs
are useful in discovering unconditional discontinuities, which
account for only 16%, on average, of front-end stall cycles in
a FDIP-enabled system with a 2K-entry BTB.

While a branch-predictor-directed prefetcher is effective
in mitigating L1-I miss stalls, it does not tackle the BTB
miss problem. As our opportunity study in Figure 1 shows,
eliminating these misses leads to a performance improvement
of up to 40%. The state-of-the-art approaches to capture this
performance opportunity incur 100s of KB of storage overhead.

To avoid these massive storage overheads, we propose
Boomerang - a metadata-free control flow delivery architecture
that augments a conventional branch-predictor-directed front
end to identify and resolve BTB misses, in addition to
instruction cache misses. In doing so, Boomerang eliminates
the front-end stalls associated with L1-I misses and the pipeline
flushes caused by the BTB misses.

IV. BOOMERANG

Boomerang provides a unified solution to the L1-I and
BTB miss problems while relying exclusively on the existing
in-core metadata. For mitigating instruction cache misses,
Boomerang leverages an existing branch-predictor-directed
prefetcher, FDIP [19]. For resolving BTB misses, Boomerang
exploits an insight made in prior work that the BTB can
be populated by extracting branches and their targets from
incoming cache blocks [14]. Unlike the prior work, however,
Boomerang discovers and fills BTB misses using existing in-
core structures and small augmentations to the FDIP prefetcher.

5

Branch

Predictor

Branch Prediction Unit
Branch

Target

Buffer (BTB)

Return

Address

Stack

Last Level Cache (LLC)

level 1 Instruction Cache (L1-I)

Fetch Engine

FTQ

d
e

m
a

n
d

 fe
tch

fe
tch

 re
sp

o
n

se

L1
 m

iss

d
e

m
a

n
d

BTB prefill

Predecoder

…
cache block

branches

Prefetch

Buffer

prefetch

L1-I request

priority mux

Prefetch Engine

BTB Prefetch Buffer

BTB

Miss

Buffer

BTB-miss probe
Priority:

a) Demand fetch

b) BTB-miss probe

c) prefetch probe

BTB miss

p
re

fe
tch

p
ro

b
e

Figure 6. Boomerang microarchitecture. New components in light blue. (FTQ:
Fetch Target Queue.)

Figure 6 shows the microarchitecture of Boomerang. The
baseline components, including FDIP, are shown in dark grey,
while Boomerang additions are in light blue. As Boomerang
builds upon FDIP, we first describe the baseline FDIP mi-
croarchitecture. Next, we detail the additional components
necessary to detect and prefill the BTB misses. Finally, we
discuss the trade-offs and optimizations in the Boomerang
microarchitecture.

A. Baseline: FDIP

FDIP employs a decoupled front-end where the fetch engine
is decoupled from the branch prediction unit (consisting of
the branch predictor, BTB and return address stack) by means
of a deep fetch target queue (FTQ). Each FTQ entry holds
fetch address information for a basic block which is defined as
a sequence of straight-line instructions ending with a branch
instruction1. The branch prediction unit makes a basic block
prediction every cycle and pushes it to the FTQ. The fetch
engine reads the head of FTQ and issues N demand-fetch
requests to L1-I, where N is the fetch width. A typical in-order
fetch engine waits for a response from L1-I, before issuing
subsequent requests. Therefore, in case of an L1-I miss, the
fetch engine needs to stall until the instructions are returned
from the lower cache levels.

The prefetch engine is a critical component of FDIP that
is responsible for prefetch address generation. As new basic
block fetch addresses are inserted into the FTQ, the prefetch
engine scans them to discover the L1-I blocks that will be
accessed by the fetch engine in the near future. For every new
L1-I block discovered, the prefetch engine sends a prefetch
probe to the L1-I. The prefetch probe simply checks if the
block is present in L1-I or in the prefetch buffer. If the block

1This definition of basic block is slightly different from a conventional
single-entry single-exit straight-line code

is already present, no further action is taken. However, if the
probed block is missing, it is fetched from the lower levels
of caches and is inserted into the L1-I’s prefetch buffer. A
subsequent demand-fetch hit in the prefetch buffer moves the
block to L1-I.

Unlike the fetch engine, the prefetch engine does not require
a response from the L1-I; therefore, it can sustain a high issue
rate for prefetch probes, even if the probes miss in the L1-I.
This attribute allows the prefetch engine to run far ahead of
the fetch engine. Moreover, as the prefetch engine operates
at a cache block granularity, it issues only a single prefetch
probe for all the basic blocks residing in that cache block. This
allows the prefetch engine to further race ahead of the fetch
stream. As long as the prefetch engine is sufficiently ahead
of the fetch engine, it can hide all of the L1-I misses through
timely prefetching.

B. Boomerang Overview

While FDIP is effective in solving the front-end (frequent
L1-I misses) problem, the overall performance still suffers
because of pipeline flushes due to frequent BTB misses for
eventually taken branches. Boomerang goes a step ahead of
FDIP and prefills not only the missing L1-I blocks but also
the missing BTB entries. By prefilling the BTB, it reduces the
number of pipeline flushes and hence unblocks both front-end
and back-end bottlenecks.

In order to fill the BTB, Boomerang first needs to detect
that a BTB miss has occurred. Unfortunately, a conventional
instruction-based BTB interprets all BTB lookups that miss
in the BTB as a non-branch instruction. In other words,
such a BTB design cannot distinguish between a non-branch
instruction and a genuine BTB miss. Therefore, Boomerang
leverages a different BTB organization – a basic-block-based
BTB [22], which stores BTB entries at basic block granularity.
This design guarantees that each BTB entry contains exactly
one branch, whose target is another BTB entry. Therefore, if a
BTB lookup fails to return a valid entry, it is guaranteed to be
a genuine BTB miss.

Upon detecting a BTB miss, because the target and the
basic block size of the missing entry are not known, the branch
prediction unit stops feeding the FTQ with new entries until the
BTB miss is resolved. The following actions are then executed
to resolve the BTB miss:

1) A BTB miss probe for the cache block containing the
starting address of the missing BTB entry is issued to
the L1-I.

2) The corresponding cache block is fetched from L1-I or
from the lower cache levels if not present in L1-I.

3) The cache block is sent to a predecoder that extracts all
the branches and their targets.

a) If branches are found after the starting address of
missing BTB entry: the first such branch is the
terminating branch of the missing BTB entry. A
new BTB entry is created and stored in BTB.

b) If no branch is found after the starting address of
missing BTB entry: a BTB miss probe for the next

6

sequential cache block is issued and the process
above repeats starting from step 2.

Furthermore, the BTB entries corresponding to the branches
inside the predecoded cache block(s), except for the branch
terminating the missing BTB entry, are stored in the BTB
prefetch buffer. Whenever the BTB is accessed, the BTB
prefetch buffer is accessed in parallel. On a hit to the BTB
prefetch buffer, the corresponding entry is moved to the BTB.
The remaining entries are replaced in a first-in-first-out manner.

Once the BTB miss is resolved, the branch prediction unit
resumes its normal operation of feeding the FTQ.

C. Boomerang: Details

1) Prefetching Under a BTB Miss: As described above,
Boomerang stops filling the FTQ on discovering a BTB miss,
thereby potentially losing prefetch opportunities if the branch
turns out to be not taken. In this section, we discuss the
alternative design choices that can be opted for on a BTB
miss.
No prefetch. As described in the previous section, the simplest
design choice is to stop feeding the FTQ once the branch
prediction unit detects a BTB miss. However, this approach
results in missed prefetching opportunities and a loss of
coverage if the branch is not-taken after the BTB miss
resolution.
Unthrottled prefetching. In this design point, the branch
prediction unit speculatively assumes that the branch corre-
sponding to the missing BTB entry is not going to be taken and
continues to feed the FTQ sequentially until the next BTB hit.
However, such unthrottled prefetching can potentially pollute
the L1-I prefetch buffer by over-prefetching on the wrong
path. Moreover, wrong-path prefetching wastes bandwidth at
the LLC and in the on-chip interconnect, which can cause a
degradation in processor performance.
Throttled prefetch. This design point provides a balance
between the lost opportunities in not prefetching on a BTB
miss and potentially over-prefetching in Unthrottled prefetch.
To capture the opportunity for sequential prefetching under
a BTB miss, Throttled prefetch issues a prefetching request
for next N sequential cache blocks if the BTB miss cannot
be filled from the L1-I. Therefore, if the branch is not-taken
following BTB miss resolution, prefetching opportunity is not
lost due to next-N-block prefetching. On the other hand, if
the branch is taken, the number of uselessly prefetched cache
blocks is limited to just the next-N.

In our study, we found that Throttled Prefetch using the next-
2-blocks policy outperforms other policies. A study showing the
trade-offs of the design space is presented in Section (§VI-E1).

2) BTB miss probe prioritization: Because a BTB miss
causes the branch prediction unit to stop feeding the FTQ, it
also stops L1-I prefetching once the prefetch probes for the
pending FTQ entries have all been issued. However, if the
BTB miss can be resolved before all the prefetch probes have
been sent, the branch prediction unit can again start feeding

Processor 16-core, 2GHz, 3-way OoO
128 ROB, 32 LSQ

Branch Predictor TAGE [21] (8KB storage budget)
Branch Target Buffer 2K-entry

L1 I/D 32KB/2way, 2-cycle, private
64-entry prefetch buffer

L2 NUCA cache shared, 512KB per core, 16-way, 5-cycle
interconnect 4x4 2D mesh, 3 cycles/hop

Memory latency 45 ns
Table I

MICROARCHITECTURAL PARAMETERS

Web Search

Nutch Apache Nutch v1.2
230 clients, 1.4 GB index, 15 GB data segment

Media Streaming

Darwin Darwin Streaming Server 6.0.3
7500 clients, 60GB dataset, high bitratez

Web Frontend (SPECweb99)

Apache Apache HTTP Server v2.0
16K connections, fastCGI, worker threading model

Zeus Zeus Web Server
16K connections, fastCGI

OLTP - Online Transaction Processing (TPC-C)

Oracle Oracle 10g Enterprise Database Server
100 warehouses (10GB), 1.4 GB SGA

DB2 IBM DB2 v8 ESE Database Server
100 warehouses (10GB), 2GB buffer pool

Table II
WORKLOADS

the FTQ and prefetching can continue uninterrupted. Thus, it
is essential to resolve the BTB misses as early as possible.

To ensure swift resolution of BTB misses, Boomerang
prioritizes BTB miss probes over pending prefetch requests.
As shown in Figure 6, the L1-I request priority mux steers a
BTB miss probe to L1-I before any prefetch probe generated
by the prefetch engine. This prioritization facilitates a fast
resolution of BTB misses and reduces the likelihood of stalling
L1-I prefetching.

V. METHODOLOGY

We evaluate Boomerang on a set of enterprise and open-
source scale-out applications listed in Table II using
Flexus [23], a full system multiprocessor simulator. Flexus,
which models SPARC v9 ISA, extends the Simics functional
simulator with out-of-order(OoO) cores, memory hierarchy, and
on-chip interconnect. We use SMARTS [24] multiprocessor
sampling methodology for sampled execution. Samples are
drawn over 32 billion instructions (2 billion per core) for each
application. At each sampling point, we start cycle accurate
simulation from checkpoints that include full architectural
and partial microarchitectural state consisting of caches, BTB,
branch predictor, and prefetch history tables. We warm-up the
system for 100K cycles and collects statistics over the next 50K
cycles. We use ratio of the number of application instructions to
the total number of cycles (including the cycles spent executing
operating system core) to measure performance. This metric
has been shown to be an accurate measure of server throughput
[23]. The performance is measured with an average error of
less than 2% at a 95% confidence level.

Our modeled processor is a 16-core tiled CMP. Each core
is 3-way OoO resembling an ARM Cortex-A57 core. The

7

microarchitectural parameters are listed in Table I. We model
a 2K-entry BTB, which is a practical size for a single-cycle
access latency.

A. Control Flow Delivery Mechanisms

We compare the efficacy and storage overhead of the
following state-of-the-art control flow delivery mechanisms.
Discontinuity Prefetcher (DIP): DIP records the control
flow discontinuities that result in L1-I misses in a discontinuity
prediction table. For maximum L1-I miss coverage, the table
needs to store upto 8K entries. Spracklen et al. [20] proposed
to complement DIP with a Next-4-Line prefetcher to cover
the sequential misses. We found that Next-2-Line prefetcher
works better than Next-4-Line due to higher prefetch accuracy
in our settings. Therefore, we use a Next-2-Line prefetcher
along with an 8K entry discontinuity prediction table.
Fetch Directed Instruction Prefetch (FDIP): As described
in Section IV-A, FDIP decouples the branch prediction unit
from the fetch engine by means of a fetch target queue (FTQ).
The instruction prefetches are issued from the FTQ entries.
We model a 32-entry FTQ with each entry holding the start
address of a basic block and its size. We use a basic block-
oriented BTB to drive FDIP. On a BTB miss, FDIP enqueues
a single sequential instruction address into the FTQ per cycle
and access the BTB with the this sequential address until the
next BTB hit.
Shared History Instruction Prefetch (SHIFT): SHIFT is a
temporal-stream-based instruction prefetcher that records the
correct-path instruction history and replays it to predict future
instruction accesses [11]. SHIFT virtualizes the instruction
history metadata into the LLC and shares it among all cores
executing a common workload. For high L1-I miss coverage,
SHIFT requires at least a 32K-entry instruction history and an
8K-entry index table.
Confluence: Confluence, the only other technique that tackles
both L1-I and BTB misses, relies on SHIFT for instruction
prefetching. Confluence predecodes the prefetched L1-I blocks,
identifies branch instructions, and inserts them into the BTB.
We model Confluence as SHIFT augmented with a 16K-entry
BTB, which provides a generous upper bound on Confluence’s
performance [14]. Our storage calculation assumes a 1K-entry
block-oriented BTB per the original Confluence design.
Boomerang: As described in Section IV, Boomerang employs
FDIP for L1-I prefetching and augments it with BTB prefilling.
Like FDIP, Boomerang employs a 32-entry FTQ. Furthermore,
Boomerang uses a throttled prefetch approach that prefetches
the next-2 sequential cache blocks on a BTB miss that is not
filled from the L1-I. Also, our evaluated Boomerang design
employs a 32-entry BTB prefetch buffer.

VI. EVALUATION

In this section, we first evaluate how effective Boomerang
is in delivering control flow, i.e. reducing pipeline squashes
and front-end stall cycles, compared to other alternatives.
Second, we evaluate the performance benefits attained owing
to Boomerang’s control flow delivery. Third, we compare the

storage cost of Boomerang with other control flow delivery
mechanisms. Then, we assess the efficacy of throttled (next-N-
block) prefetching and finally, evaluate Boomerang’s sensitivity
to LLC latency.

A. Branch Misprediction Squashes

The BTB misses and branch direction/target mispredictions
are the two major sources of pipeline squashes. Figure 7 shows
the number of pipeline squashes per 1K instructions coming
from these two sources for different prefetching schemes.
On average, both BTB misses and branch mispredictions are
equally responsible for pipeline squashes as can be seen for
prefetching schemes that don’t target reducing BTB misses, i.e.
Next-line, DIP, FDIP and SHIFT. Moreover, the contribution
of BTB misses in overall squashes is especially evident in
DB2, where about 75% of pipeline squashes are caused by
BTB misses.

Only Boomerang and Confluence target BTB misses and
their associated pipeline squashes. Both techniques are able
to eliminate more than 85% of BTB miss-induced squashes.
Compared to Confluence, Boomerang is generally more effec-
tive, exceeding Confluence’s squash reduction by over 10%, on
average. The reason Boomerang is more effective is because
it detects every BTB miss and fills it, thus ensuring that the
execution stays on the correct path. In contrast, Confluence
does not detect BTB misses; rather, it relies on a prefetcher to
avoid them altogether. The downside of Confluence’s approach
is that if an L1-I prefetch is incorrect or not timely (i.e.,
has not reached the L1-I before the front end), the branches
corresponding to the block are absent from the BTB. In these
circumstances, Confluence’s front end follows a sequential
instruction stream, as if there were no branch instructions
present.

By eliminating BTB misses, Boomerang and Confluence
achieve almost 2x reduction in total squashes compared to all
other configurations. It is also important to note that some of
the eliminated BTB misses can still cause pipeline squashes
due to direction/target misprediction. For example, as shown
in Figure 7, on average SHIFT sees 10.22 squashes per 1K
instructions due to branch direction/target mispredictions. This
number rises to 11 squashes per kilo-instruction for Confluence
due to additional direction and target mispredictions incurred
by the prefilled BTB entires. However, as evident from the
figure, the incidence of these additional squashes is negligible.

B. Front-end Stall Cycles Covered

To show the effectiveness of different L1-I prefetching
techniques, we present the number of front-end stall cycles
covered by them in Figure 8. The average coverage is similar for
all control-flow-aware prefetchers; however, there are important
differences across the individual benchmarks. On average,
Boomerang eliminates 61% of the stall cycles performing
similarly to Confluence, which covers 60% of stall cycles.
Upon closer inspection, we find that Boomerang performs
better than Confluence on four out of six applications: Apache,
Nutch, Streaming and Zeus. On these, Boomerang benefits from

8

0
5
10
15
20
25
30
35
40

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Nutch Streaming Apache Zeus Oracle DB2 Avg

Sq
ua
sh
es
/k
ilo
	in
st
ru
ct
io
ns

Branch	Direction/Target	Misprediction BTB	Misses

Figure 7. Number of pipeline squashes per kilo instructions with a 2K-entry BTB.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Nutch Streaming Apache Zeus Oracle DB2 Avg

St
al
l	C
yc
le
	C
ov
er
ag
e

Figure 8. Front-end stall cycles covered with a 2K-Entry BTB over no-prefetch baseline.

fast accesses to local state (i.e., its branch prediction structures).
In contrast, the SHIFT prefetcher that Confluence relies on
must access LLC-embedded history metadata. Therefore, every
time SHIFT mispredicts an instruction cache block access
sequence, it first needs to load the correct sequence from the
LLC before starting issuing prefetches on the correct path. In
contrast, Boomerang can start issuing prefetches on the correct
path as soon as a misprediction is detected.

On the two other applications, Oracle and DB2, Boomerang
is surpassed by Confluence. The reason for Boomerang’s
inferior coverage is a high BTB miss rate, which forces
Boomerang to frequently stall for prefilling each BTB miss.
Because no BTB-directed instruction prefetches are generated
while a BTB miss is pending, instruction stall cycle coverage
suffers.

It is also interesting to note that FDIP and SHIFT provide
slightly better coverage than Boomerang and Confluence, even
though the latter rely on the respective former mechanisms for
instruction prefetching. The reason for this seeming paradox
lies in the fact that the data in Figure 8 shows only the correct-

path stall cycles covered. Meanwhile, wrong-path accesses may
prefetch instruction blocks on the eventually-correct path, thus
effectively reducing stall cycles. As FDIP and SHIFT go on the
wrong path more frequently than Boomerang and Confluence
due to more frequent BTB misses (Figure 7), their wrong-path
prefetches lower the stall cycles on the correct path.

C. Performance Analysis

Figure 9 shows the performance improvements for different
instruction supply mechanisms over a baseline without any
instruction/BTB prefetching. The results follow those of
Figure 7 and Figure 8. Boomerang, on average, provides 28%
speedup over the baseline, outperforming Confluence by 1%.
Similar to the stall cycle coverage results, Boomerang lags
behind Confluence on Oracle and DB2 due to lower stall
cycle coverage. For Zeus and Apache, Boomerang significantly
outperforms Confluence due to the combination of higher stall
cycle coverage and fewer pipeline squashes.

It is worth noting that the complete control flow delivery
mechanisms, Boomerang and Confluence, outperform the

9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

N
ex
t	L
in
e

D
IP

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Nutch Streaming Apache Zeus Oracle DB2 Avg

Sp
ee
du
p

Figure 9. Speedup with a 2K-Entry BTB over no-prefetch baseline.

instruction prefetchers, including state-of-the-art SHIFT and
DIP, by a large margin, averaging 11%, by eliminating pipeline
squashes on top of the instruction cache stalls. This result
underscores the advantage of complete control flow delivery
as opposed to just L1-I prefetching.

D. Boomerang vs Confluence: Storage, Complexity and Energy

We first compare the storage requirements of Boomerang and
Confluence. The baseline architecture, without any prefetching,
maintains a BTB and branch predictor to guide the instruction
fetch engine. An FTQ of a few entries is employed to buffer
the fetch addresses before they can be used to access the L1-I.
A prefetch buffer is usually employed by L1-I prefetchers to
limit L1-I pollution.

Given all the components in baseline, Boomerang requires
minimal additional hardware to enable both L1-I and BTB
prefetching. First, it needs a deeper FTQ to detect and prefetch
the missing L1-I and BTB entries ahead of the core front-end.
Each FTQ entry contains the start address of the basic block
(46-bits) and its size (5-bits). Boomerang uses a 32 entry FTQ
therefore requiring 204 bytes of storage. Second, Boomerang
employs a 32 entry BTB prefetch buffer to avoid BTB pollution.
Each buffer entry contains a tag (46-bits), target address (30-
bits, maximum offset in SPARC), branch type (3-bits) and
basic block size (5-bits). Therefore, the 32 entry BTB prefetch
buffer requires 336 bytes of storage. Thus, the total storage
requirement of Boomerang is 540 bytes.

Confluence, on the other hand, employs a 32K-entry in-
struction history table and an 8K-entry index table for L1-I
prefetching. To store the index table, Confluence extends the
LLC tag array, requiring 240KB of dedicated storage. The
instruction history table is virtualized into the LLC. As such,
it does not require dedicated storage but does result in a lower
effective LLC capacity.

On the complexity side, we argue that Boomerang is
considerably simpler than Confluence. The complexity of
Confluence stems from the following factors:
System Level Support: Confluence reserves a portion of
physical address space to store instruction history in LLC.

Furthermore, the cache lines holding the history metadata
must be pinned. To fulfill these requirements Confluence
requires system-level support. Boomerang, on the other hand,
is transparent to the software stack.
LLC Tag Array Extension: Confluence extends LLC tag
array to store the index table. Therefore, the storage cost
becomes a factor of LLC size in addition to instruction history
size. For an 8MB LLC and 32K entry instruction history, the
LLC tag array extension results in 240KB of storage overhead.
On the contrary, Boomerang does not require any changes to
LLC.
Workload Consolidation: Confluence virtualizes instruction
history in LLC and shares it among all the cores to reduce
per core storage overhead. However, this technique is effective
only when all the cores are running the same application. As
the number of applications running on the CMP increases,
Confluence needs to store one instruction history table per
application in LLC, reducing the effective LLC capacity by
over 200KB with each additional application. Boomerang does
not carve LLC capacity in any way.
Increased On-chip Interconnect Traffic: As the instruction
history and index tables are stored in LLC, Confluence
generates additional network traffic to retrieve the prefetching
metadata from LLC. Boomerang, on the other hand, uses only
core-private state from its local BTB and branch direction
predictor.
History Generation: Confluence relies on one of the cores
to generate instruction history which is then shared among
all the cores to issue prefetches. If the history generator core
switches to a housekeeping task, such as garbage collection,
the history generation will suffer, which might adversely affect
the prefetch accuracy in other cores. Prefetch generation in
Boomerang, on the other hand, is private to each core and
hence, is not affected by the activities of other cores.

All the above factors make Confluence significantly more
complex than Boomerang, whose only control logic require-
ments are for:

• Halting fetch address generation on a BTB miss.

10

1

1.1

1.2

1.3

1.4

1.5

1.6

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

N
on

e
1	
Bl
oc
k

2	
Bl
oc
ks

4	
Bl
oc
ks

8	
Bl
oc
ks

Nutch Streaming Apache Zeus Oracle DB2 Avg

Sp
ee
du
p

Figure 10. Boomerang’s performance sensitivity to next-N-block prefetching on BTB misses.

• Prioritizing BTB misses over other prefetch requests.
• Looking up an entry in the BTB prefetch buffer in parallel

with the BTB.
• Issuing prefetches for next-2-lines on a BTB miss.

Even though complexity is not straightforward to quantify, in
practice it has a large impact on design decision.

In terms of energy-efficiency, Boomerang has an advantage
over prior techniques, including Confluence, because it does not
introduce any dedicated storage-intensive hardware structures
or cause additional metadata movement. In general, however,
prior work has shown that even for storage-intensive prefetchers,
the energy costs comprise a small fraction of the processor’s
total power budget [25].

E. Sensitivity Analysis

1) Next-N-line prefetches on a BTB Miss: As discussed
in Section IV-C1, on a BTB miss that cannot be prefilled
from L1-I, Boomerang issues prefetch for next two sequential
cache blocks in addition to the block that contains the missing
BTB entry. Figure 10 shows the sensitivity of performance to
the number of next-N-blocks prefetched. As the figure shows,
prefetching next-2-blocks provides optimal performance. The
effect of prefetching next-N-blocks is notable especially in DB2,
where prefetching next-2-blocks provide 12% performance
improvement over not prefetching at all. It is also important to
note that prefetching more than two blocks generally results
in performance degradation compared to next-2-blocks as
erroneous prefetches delay the useful blocks.

Streaming is an exception where not prefetching any block
provides the maximum performance. Prefetching next-N-blocks
degrades performance because the majority of these blocks
end up being discarded, and thus polluting network and LLC
bandwidth and L1-I prefetch buffer. Next-1-block prefetching
performs worse than next-2 and next-4-block prefetching due
to the taken branches. These branches skip the next sequential
block and jump to the blocks following it. Therefore, the next-
1-block prefetching suffers from particularly poor accuracy as it

1

1.1

1.2

1.3

1.4

1.5

Ne
xt
	Li
ne

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Ne
xt
	Li
ne

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Ne
xt
	Li
ne

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Ne
xt
	Li
ne

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Ne
xt
	Li
ne

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Ne
xt
	Li
ne

FD
IP

SH
IF
T

Co
nf
lu
en
ce

Bo
om

er
an
g

Nutch Streaming Apache Zeus Oracle DB2

Sp
ee
du
p

Figure 11. Performance at a lower LLC round-trip latency.

fails to prefetch useful blocks, whereas next-2 and next-4-block
prefetching does bring in some useful blocks even for taken
branches.

2) Effect of LLC Round-trip Latency: Figure 11 shows
the speed up of the different techniques under a lower LLC
round-trip latency. In particular, we model a wide crossbar
interconnect that lowers the average LLC round-trip latency
from 30 cycles in the mesh down to 18 cycles.

As the figures shows, the general trends remain the same
as in a mesh-based NOC. Boomerang maintains its slight
performance advantage over Confluence even at the lower LLC
latency. The absolute benefits of all schemes reduce, however,
because the L1-I misses are now less costly due to the lower
LLC latency.

VII. CONCLUSION

Effective control flow delivery is crucially important for
server workloads with their massive instruction footprints. In-
deed, instruction cache and BTB misses can cause a significant
performance degradation. Although there have been a number
of techniques proposed to address the control flow delivery
bottleneck, every one of them requires separate metadata

11

structures, translating into significant storage and complexity
costs.

This work introduced Boomerang, a metadata-free archi-
tecture for control flow delivery. Boomerang leverages a
branch-predictor-directed prefetcher that uses existing in-core
metadata for solving the instruction cache problem. Contrary to
conventional wisdom, we have shown that a branch-predictor-
directed prefetcher can be effective in discovering the future
instruction stream despite limited branch predictor accuracy
and a modest BTB storage budget. Our second contribution
is in demonstrating that BTB misses can be identified and
filled by the branch-predictor-directed instruction prefetcher
at minimal additional cost and complexity. By eliminating
BTB misses, Boomerang is able to avoid a large fraction of
performance-degrading pipeline flushes. Our results show that
Boomerang is able to match the performance of Confluence,
the state-of-the-art control-flow delivery scheme, without its
associated storage and complexity costs.

VIII. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

helpful comments. This work is supported by EPSRC grant
EP/M001202/1 to the University of Edinburgh.

REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a
modern processor: Where does time go?,” in International Conference
on Very Large Data Bases, pp. 266–277, 1999.

[2] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on modern
hardware,” in ASPLOS, pp. 37–48, 2012.

[3] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in International Symposium on Computer Architecture, pp. 184–
195, 2009.

[4] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley,
G. Wei, and D. M. Brooks, “Profiling a warehouse-scale computer,” in
International Symposium on Computer Architecture, pp. 158–169, 2015.

[5] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E.
Baker, “Performance characterization of a quad pentium pro SMP using
OLTP workloads,” in International Symposium on Computer Architecture,
pp. 15–26, 1998.

[6] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso,
“Performance of database workloads on shared-memory systems with
out-of-order processors,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 307–
318, 1998.

[7] A. Kolli, A. G. Saidi, and T. F. Wenisch, “RDIP: return-address-
stack directed instruction prefetching,” in The 46th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-46, Davis, CA,
USA, December 7-11, 2013, pp. 260–271, 2013.

[8] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-
Pey, P. G. Lowney, and M. Valero, “Code Layout Optimizations for
Transaction Processing Workloads,” in International Symposium on
Computer Architecture, pp. 155–164, 2001.

[9] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal Instruction Fetch Streaming,” in International Symposium on
Microarchitecture, pp. 1–10, 2008.

[10] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive Instruction Fetch,”
in International Symposium on Microarchitecture, pp. 152–162, 2011.

[11] C. Kaynak, B. Grot, and B. Falsafi, “SHIFT: Shared History Instruction
Fetch for Lean-core Server Processors,” in International Symposium on
Microarchitecture, pp. 272–283, 2013.

[12] J. Bonanno, A. Collura, D. Lipetz, U. Mayer, B. Prasky, and A. Saporito,
“Two Level Bulk Preload Branch Prediction,” in International Symposium
on High-Performance Computer Architecture, pp. 71–82, 2013.

[13] I. Burcea and A. Moshovos, “Phantom-btb: a virtualized branch target
buffer design,” in Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2009, Washington, DC, USA, March 7-11, 2009,
pp. 313–324, 2009.

[14] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: Unified Instruction
Supply for Scale-Out Servers,” in International Symposium on Microar-
chitecture, pp. 166–177, 2015.

[15] ThunderX ARM Processors: Workload Optimized Processors for Next
Generation Data Center and Cloud Applications. www.cavium.com/
ThunderX ARM Processors.html.

[16] Oracle SPARC T5-2 Server. www.oracle.com/servers/sparc/t5-2/index.
html.

[17] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-out
Processors,” in International Symposium on Computer Architecture, 2012.

[18] I.-C. K. Chen, C.-C. Lee, and T. N. Mudge, “Instruction Prefetching
Using Branch Prediction Information,” in International Conference on
Computer Design, pp. 593–601, 1997.

[19] G. Reinman, B. Calder, and T. Austin, “Fetch Directed Instruction
Prefetching,” in International Symposium on Microarchitecture, pp. 16–
27, IEEE, 1999.

[20] L. Spracklen, Y. Chou, and S. G. Abraham, “Effective Instruction
Prefetching in Chip Multiprocessors for Modern Commercial Applica-
tions,” in 11th International Symposium on High-Performance Computer
Architecture, pp. 225–236, 2005.

[21] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” J. Instruction-Level Parallelism, vol. 8,
2006.

[22] T. Yeh and Y. N. Patt, “A comprehensive instruction fetch mechanism for
a processor supporting speculative execution,” in International Symposium
on Microarchitecture, pp. 129–139, 1992.

[23] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[24] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in International Symposium on Computer Architecture, pp. 84–95,
2003.

[25] J. N. Amaral and J. Torrellas, eds., International Conference on Parallel
Architectures and Compilation, ACM, 2014.

12

www.cavium.com/ThunderX_ARM_Processors.html
www.cavium.com/ThunderX_ARM_Processors.html
www.oracle.com/servers/sparc/t5-2/index.html
www.oracle.com/servers/sparc/t5-2/index.html

	Introduction
	Motivation
	Importance of Control Flow Delivery in Servers
	Mitigating Instruction Misses
	Mitigating BTB Misses

	Toward Metadata-Free Control Flow Delivery
	Does Branch Prediction Accuracy Limit Coverage?
	Does BTB Size Limit Coverage?
	The Big Picture

	Boomerang
	Baseline: FDIP
	Boomerang Overview
	Boomerang: Details
	Prefetching Under a BTB Miss
	BTB miss probe prioritization

	Methodology
	Control Flow Delivery Mechanisms

	Evaluation
	Branch Misprediction Squashes
	Front-end Stall Cycles Covered
	Performance Analysis
	Boomerang vs Confluence: Storage, Complexity and Energy
	Sensitivity Analysis
	Next-N-line prefetches on a BTB Miss
	Effect of LLC Round-trip Latency

	Conclusion
	ACKNOWLEDGEMENTS
	References

