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ABSTRACT
The memory consistency model (MCM), which formally
specifies the behaviour of the memory system, is used by pro-
grammers to reason about parallel programs. It is imperative
that hardware adheres to the promised MCM. For this rea-
son, hardware designs must be verified against the specified
MCM. One common way to do this is via executing tests,
where specific threads of instruction sequences are generated
and their executions are checked for adherence to the MCM.
It would be extremely beneficial to execute such tests under
simulation, i.e. when the functional design implementation
of the hardware is being prototyped. Most prior verification
methodologies, however, target post-silicon environments,
which when applied under simulation would be too slow.

We propose McVerSi, a test generation framework for fast
MCM verification of a full-system design implementation
under simulation. Our primary contribution is a Genetic
Programming (GP) based approach to MCM test generation,
which relies on a novel crossover function that prioritizes
memory operations contributing to non-determinism, thereby
increasing the probability of uncovering MCM bugs. To
guide tests towards exercising as much logic as possible, the
simulator’s reported coverage is used as the fitness function.
Furthermore, we increase test throughput by making the test
workload simulation-aware. We evaluate our proposed frame-
work using the Gem5 cycle accurate simulator in full-system
mode with Ruby. We discover 2 new bugs due to the faulty
interaction of the pipeline and the cache coherence proto-
col. Crucially, these bugs would not have been discovered
through individual verification of the pipeline or the coher-
ence protocol. We study 11 bugs in total. Our GP-based
test generation approach finds all bugs consistently, therefore
providing much higher guarantees compared to alternative
approaches (pseudo-random test generation and litmus tests).

1. INTRODUCTION
Shared-memory multiprocessors are now ubiquitous, with

programmers being exposed to an increasingly heterogeneous
landscape of multiprocessor systems. In order to write correct
parallel programs, the programmer must reason in terms of
the provided memory consistency model (MCM) [1]. The
MCM is a specification, providing guarantees about how the
underlying memory system should behave.

The relationship between weaker MCMs and processor

implementations can be seen as a “chicken-and-egg” prob-
lem. While many existing weak MCMs are the product of
desired microarchitectural optimizations (MCM formalized
after implementation), it is equally desirable that new opti-
mizations do not violate a specified MCM of an architecture.
For example, write-buffers, in the absence of any other vis-
ible optimizations, give rise to Total Store Order (TSO), as
in e.g. x86 [2]. On the other hand, recent work proposes
designing consistency directed cache coherence protocols,
e.g. TSO-CC [3] has been designed specifically with TSO in
mind.

Problems arise, however, when the programmer believes
they are working with a particular model, but the hardware ex-
hibits behaviour weaker than the promised MCM: either the
model is incorrect, or the hardware contains bugs – both sce-
narios are undesirable. Recent work has uncovered problems
with deployed CPUs [4], and GPUs [5] using litmus testing.
While a proof of MCM correctness of the functional design
implementation (e.g. cycle accurate model) would provide
the highest possible guarantees, unfortunately the complex-
ity to achieve such a feat is usually not cost-effective [6].
Nonetheless, there exists a wealth of literature on memory
system and MCM verification, which all help to raise the
designer’s confidence in the implementation.

Various methodologies can be applied at different stages
of the design development. In the pre-silicon design phase,
approaches based on formal methods are usually applied to
abstract models of components of a design. For example,
model checking of coherence protocols has been studied
extensively [7, 8, 9, 10, 11, 12, 13, 14]; consistency properties
verified are commonly based on derived properties, such as
the Single-Writer–Multiple-Reader (SWMR) [15] invariant.
Another example is the recently developed PipeCheck [16]
tool, which is a domain-specific MCM model checker for
pipeline abstractions. Applying any of these techniques to
as many components as possible is essential, to avoid an
implementation based on faulty component specifications.

In the final design implementation, however, the compo-
sition and interaction of the components must remain safe
with respect to the MCM. With individual component verifi-
cation, this is often overlooked. For example, one of the bugs
discovered in our evaluation (MESI,LQ+IS,Inv1) would not

1The coherence protocol fails to forward invalidation to the Load
Queue (LQ), leading to reordered reads (§5.3).



have been discovered through individual verification of either
pipeline or coherence protocol.

Consequently, full-system MCM verification is required.
This has arguably been achieved in the post-silicon environ-
ment using a testing based approach [17, 18, 19, 20, 21, 22].
Tests consist of threads of instruction sequences, which are
executed in the full-system and their results checked for ad-
herence to the MCM. There are various approaches to test
generation, ranging from random [20] to user-directed [17].
Post-silicon approaches can afford to execute large tests, as
instruction throughput is much higher than in simulation. Yet,
while all these approaches could be made to work in a pre-
silicon environment, i.e. full-system simulation, they would
be too slow as the above approaches do not optimize test
generation for simulation.
Problem Statement: Simulation of a design is available
much earlier in the development cycle (pre-silicon). As such
it is much cheaper if as many bugs as possible are found
early. Furthermore, the added observability in simulation
makes debugging more straightforward. For example, the ad-
vantages of simulation for memory system verification using
user-guided random tests have been described and exploited
by Wood et al. [23].

Unfortunately, throughput (in terms of instructions exe-
cuted in wall-clock time) of an accurate simulated system is
orders of magnitude lower than a real chip. The challenge
is, how do we automatically generate efficient MCM tests
for simulation, such that the wall-clock time to explore rare
corner cases and find bugs is reduced?
Approach and Contributions: Any verification approach
strives to ensure an implementation’s adherence to its high-
level specification. Test based methods trade off a non-
exhaustive (reduced states and transitions covered) result
for a more detailed implementation. Therefore, the goal of
any test based method should be to cover as many states and
transitions as possible, in order to provide the highest possi-
ble guarantees about the system in the absence of a proof [6,
24]. To achieve this, we develop an approach to automatically
improve test suitability for exposing MCM violations, and
guide tests towards unexplored states and transitions.

Our focus lies on automated simulation-based verification
of a full-system design implementation: we propose McVerSi,
a test generation framework for fast, coverage directed MCM
verification in simulation. Using a Genetic Programming
(GP) [25] based approach, we show how to generate tests for a
full-system simulation that achieve (§3): 1 greater coverage
of the system, and 2 improved test quality specifically for
MCM verification.

To achieve 1 , we leverage the additional observability
available in simulation (white-box), and use coverage as the
GP fitness function. The designer of a system can select
any number of suitable coverage metrics; in our implemen-
tation we use the covered logic implementing the coherence
protocol as the coverage metric (structural coverage), as the
coherence protocol is crucial in enforcing the desired MCM,
and is the source of some of the most elusive bugs. To achieve
2 , we design a domain-specific GP crossover function. Our
crossover is selective on memory operations contributing to
high non-determinism of a test; highly deterministic tests
are uninteresting from a MCM verification point of view, as

few execution witnesses are invalid, and the probability of
observing an invalid witness due to a bug is low.

The tests generated are compiled on-the-fly to the target
ISA, which are then executed in the full-system. For a GP-
based approach to quickly converge towards better tests, high
test throughput is essential. Therefore, instead of large tests
typically used with random tests (e.g. TSOtool [20] shows
results for ≥12k operations), we are interested in very short
tests (e.g. in our evaluation we use 1k operations). Thus, the
time from one test to the next must be minimized (overhead
for checking, test generation, synchronization). To acceler-
ate test execution, we introduce several extensions that any
simulator to be used for verification must provide (§4). In
particular, a host interface for the simulation-aware guest
control program for: configuring the test generator, emitting
code on-the-fly, checking, and host-assisted barriers.

We evaluate (§5) McVerSi using the Gem5 [26] cycle ac-
curate simulator in x86-64 full-system mode with Ruby. We
found 2 new bugs in the Ruby MESI implementation of
Gem52. In total we study 11 bugs. In comparison with a
pseudo-random test generator (utilizing the test generation
independent (§4) parts of our framework), and diy [17] gen-
erated litmus tests for TSO, our GP-based approach finds
all bugs consistently within practical time bounds, thereby
providing much higher bug finding guarantees.

2. BACKGROUND
This section first provides an overview about memory con-

sistency models (MCMs) with a focus on checking execution
traces for violations (§2.1). This is followed by an overview
of evolutionary algorithms and their use in microprocessor
verification (§2.2).

2.1 Memory Consistency Models
Programming shared memory multiprocessor systems cor-

rectly requires a precise definition of the semantics of such a
system. In particular, the programmer must be aware of the
memory access ordering guarantees the hardware provides.
The memory consistency model (MCM) formally specifies the
ordering guarantees with which the programmer can reason
about parallel programs [1]. In this paper, we are concerned
with system-centric consistency models [27], i.e. hardware
MCMs. Over the years, various formalizations of MCMs
have emerged. Both axiomatic – e.g. Sequential Consistency
(SC) [28], Total Store Order (TSO) [4, 29], Release Con-
sistency (RC) [30], POWER [17, 4, 31] and ARM [4] – as
well as operational – e.g. x86-TSO [2] and POWER [32]) –
models can be used to describe MCMs formally.

Axiomatic style models define an MCM in terms of con-
straints over candidate executions, effectively limiting the set
of valid executions; stricter MCMs reduce the set of valid exe-
cutions (strictest being SC, with nothing reordered), whereas
weaker models are more permissive. An execution in an ax-
iomatic model is defined abstractly in terms of each thread’s
program order (po) and conflict orders; conflict orders in
turn consist of read-from (rf) (ordering write→read pairs, the
write providing the value for the read), and coherence order
(co) (ordering write→write pairs, the first write serialized

2Fixes for the bugs have been sent to the Gem5 maintainers.



before the second) relating memory operations with the same
address. Each such order is a relation over events. Events
are memory operations (reads and writes) associated with
concrete instructions. Each memory instruction is typically
associated with a unique event, with the exception of e.g.
read-modify-write instructions which map to two events. The
architecture defines the specific constraints that must be sat-
isfied by an execution, as well as derived relations that tell
the programmer which orders are guaranteed to be enforced;
in particular the preserved program order (ppo) is a subset of
po which captures ordering guarantees of the hardware. Each
constraint typically expresses that a derived relation is acyclic
or irreflexive. For a complete description of the terminology
we use in this work, we refer the reader to [4].

At the core of an axiomatic model checker (of an execution)
is a graph-search algorithm, which is used to construct all
required derived relations and then assert all constraints over
these are satisfied. The complexity of checking a candidate
execution against particular axiomatic models has been the
primary concern of many post-silicon verification works [20,
21, 22]. Unlike post-silicon, however, a pre-silicon environ-
ment can afford a straight-forward, complete and polynomial-
time decision procedure as all conflict orders are visible [33].

On the other hand, operational models are defined in terms
of an abstract machine, which given a read, then specifies the
set of possible values a read may observe. Their complex-
ity advantages for simulation-based verification have been
realized in past works [34, 35], where such models are also
referred to as relaxed scoreboards. Each transition is mon-
itored by a checker, effectively ensuring that the simulated
system only performs transitions which are legal according
to the model.

In this work we describe MCMs in terms of axiomatic mod-
els (§4.1), as simulation together with short tests (§4) affords
an efficient and relatively simple checker. Note, however, our
main contribution concerns MCM test generation.

2.2 Evolutionary Algorithms
Evolutionary algorithms are heuristic search algorithms,

a machine learning approach inspired by the principles of
natural selection. Genetic Algorithms (GAs) [36] are one
such approach, with a broad range of optimizations problems
where GAs have proven to be practical solutions [37]. The
goal is to iteratively evolve an initially random population
of chromosomes (or genomes) towards increasingly optimal
solutions. In GAs, each chromosome is usually represented
as a fixed-size string, which encodes values of the parameters
to be searched. Each solution has a fitness value, determined
via a domain-specific fitness-function. Based on the fitness
values, selection then chooses several solutions to be used
to generate new offspring. Crossover and mutation are the
operators used to create offspring from the selected parents,
with crossover choosing parts of each chromosome to be
recombined into one or more children, and mutation selecting
few individual genes to be modified.

Genetic Programming (GP) [38, 25] is an adaption of GAs,
that instead of searching for strings of parameters, search for
actual executable programs which yield executable solutions
to the search problem. The general approach is like in GAs,
but the representation and crossover of chromosomes is spe-

cialized to yield valid programs in the language and domain
being targeted.

Machine learning approaches have been successfully ap-
plied to generate successively better tests to increase coverage
across a wide range of microprocessor verification scenar-
ios [24]. For example, GAs have been used to search for
biases for pseudo-random test generators [39]. Using GP,
µGP [40] has been proposed to generate test programs di-
rected by various coverage metrics. In this work we use a GP
test generation approach, similar to µGP, but with a focus
on multi-threaded test generation for the purpose of MCM
verification.

3. TEST GENERATION
This section describes the proposed automated test genera-

tion approach, whose goal is to reveal as many MCM bugs
as fast as possible. Section §3.1 provides an overview; §3.2
discusses in more detail the mapping of coverage to fitness;
and finally §3.3 describes test representation, crossover and
mutation operators.

3.1 Overview
Given pseudo-randomly generated tests (instruction se-

quences), with some constraints given by the user (distribu-
tion of operations, memory address range, and stride), how
can the test generator improve tests without further user in-
put? Coverage, which refers to the fraction of system state
explored, is a widely used metric to assess test quality [6, 24,
39, 40], giving an indication of how close the verification task
is to completion. Over time, the test generator’s goal should
therefore be to direct tests towards rarely covered state transi-
tions based on coverage feedback. In the absence of further
information about the implementation, apart from coverage
reports, the only input we will give the simulated system are
instruction sequences. Finding a precise solution to cover
rare state transitions given this degree of control is a complex
problem, and approximate solutions based on evolutionary
algorithms (see §2.2) have been used successfully.

McVerSi uses Genetic Programming (GP) [25, 38] based
test generation. Tests (chromosomes) are represented as
directed acyclic graphs (DAGs) of operations [40]. Each
node (gene) represents a high-level operation of a thread;
each operation in turn, maps to an executable representation
in the target ISA. A test-run corresponds to executing the test
for several iterations; after a test-run completes, the fitness of
the run is evaluated and associated with the test.

As the goal of the test generator is to generate tests cover-
ing as many states and transitions of the system as possible,
the fitness function is defined in terms of coverage. For the
purpose of MCM verification, all crucial bits of logic affect-
ing enforcement of the MCM should be captured by coverage.
This, by and large, means the processor pipeline, coherence
protocol and on-chip interconnect. In our implementation,
we restrict coverage to structural (code) coverage of the co-
herence protocol, as the most challenging bugs we study
are related to the coherence protocol; having said this, our
framework is not tied to this choice and it is indeed possi-
ble to augment coverage with functional coverage metrics
(e.g. store buffer becoming full). Our coverage computation
dynamically adapts such that frequent state transitions are



init: x = 0, y = 0
Thread 1 Thread 2
x ← 1 r1 ← y
y ← 1 r2 ← x

Figure 1: Message passing example.

excluded from coverage, so that the focus shifts towards rare
protocol transitions. In other words, the GP verification goals
change over time.

However, in order to be able to detect MCM bugs in the
first place, we require tests which are more likely to expose
MCM violations; we will refer to this as MCM test suitability.
This means, we seek tests where a large fraction of possible
candidate executions are invalid under the specified MCM,
to increase the probability of observing an invalid candidate
execution due to a possible bug. To illustrate, Figure 1 shows
the common message passing litmus test. Assuming e.g.
a TSO model, the outcome r1 = 1∧ r2 = 0 is forbidden.
If, however, we were to remove either write of x or y, all
candidate executions become valid – such a test would not be
very useful from a MCM verification perspective. While there
are several ways to increase the probability of generating
suitable MCM tests (e.g. constrain the usable address range),
this would preclude us from generating tests which could
expose bugs requiring large address ranges (e.g. due to cache
evictions).

In order to be able to converge towards more suitable tests,
first we must be able to tell how suitable a given test is. Given
that our tests far exceed the size of litmus tests, it would
be too costly to enumerate all possible candidate executions
of a test in order to determine the set of valid and invalid
executions. Instead, we observe that tests with large num-
ber of candidate executions are highly non-deterministic/racy.
Therefore, to generate more suitable MCM tests, we should
favour such tests. The key metric we introduce is the average
non-determinism of a test (NDT), which informally is a mea-
sure of average number of races observed per event (memory
operation) across all iterations of the test-run. More precisely,
it is the average number of events that are conflict ordered
before any given event in the test3. A value of 1 means the
test-run is not observed to be non-deterministic/racy, i.e. all
events are only ordered after the initial events (e.g. “init” in
Figure 1). A NDT value larger than 1 implies that races have
been observed.

Definition 1. Let i be the iteration in a test-run. The simu-
lator records the conflict order relations rfi and coi (defined
in §2.1) for each iteration. Then we define the union of all
iteration’s observed conflict orders to be

rfcoRUN =
⋃

i

(rfi∪ coi)

Definition 2. Let n be the total events (memory operations)
executed in a test. We define the average non-determinism in
a test as the cardinality of rfcoRUN divided by n

NDT =
|rfcoRUN|

n
3A prerequisite for this metric to be meaningful, is that a test-run
has more than one iteration.

We initially assessed including NDT in the fitness function,
and using standard GP crossover operators [25, 38]. This,
however, did not result in significantly more suitable tests
over time. This is because, the non-deterministic result of
a test is sensitive to the specific sequences and interaction
of instructions: breaking them up without considering the
key ingredients to the non-deterministic result caused little
progress towards more suitable MCM tests. In other words,
merely combining random instructions from two racy tests
cannot guarantee a new more racy test – instead tests must be
recombined in a way, such that the resulting test is likely to
be more racy than its parents.

Instead, to generate more suitable MCM tests, we design
a selective crossover, which gives preference to memory
operations involved in races, i.e. those with observed non-
deterministic results across several iterations. More specifi-
cally, our goal is to preserve sequences of memory operations
on addresses (a key ingredient of MCM tests) which con-
tribute highly towards non-determinism of the test outcomes.
For this we measure the non-determinism of each event (mem-
ory operation) (NDe), and give preference to those events
whose non-determinism is higher than the test’s NDT.

Definition 3. We define the non-determinism of an individ-
ual event ek as the cardinality of the set of events which are
ordered before ek (via conflict order) across a test-run

NDe = |{e | ∀e : (e,ek) ∈ rfcoRUN}|

Further details of GP parameters, selection method and op-
erations used, which are independent of our proposed scheme,
are discussed in the evaluation (§5).

3.2 Coverage and Fitness
Coverage gives an indication of how close the verification

task is to completion, and ideally lets us judge if all interesting
scenarios that we think can lead to bugs have been covered.
Therefore, we use coverage as the GP fitness function. Note,
the verification scenarios and therefore coverage goals are
highly system dependent, and the following is one of many
possible options.

In modern multiprocessors, the cache coherence protocol
is a key component in the implementation of the MCM [15].
The goal of the coherence protocol is to make caches trans-
parent, such that data inconsistencies (and MCM violations)
are not due to accesses to stale cached data. Because the
hardest to find bugs we study originate in the coherence pro-
tocol, we use structural coverage over the protocol’s possible
state transitions as the fitness function. For our study, we do
not distinguishing between identical controllers, and instead
consider the sum of their transitions.

Each test fitness is assigned a coverage value independent
of any prior run tests, i.e. only what has been covered by a
particular test-run. Because the simulation is running con-
tinuously, loading new tests on-the-fly, any state changes of
previous tests that affect following tests must be reset (e.g.
flush caches – see §4) to produce consistent results.

Next, we do not consider all protocol transitions, and in-
stead frequent transitions are excluded from coverage, i.e.
we compute an adaptive coverage. The goal of this is, since
the simulation is running continuously, and thus recording



all transitions since simulation start, we can direct the test
population towards unexplored and rarer transitions. Effec-
tively, this helps avoid getting a population stuck in a local
maximum, where little progress is made towards unexplored
states.

Upon initialization we consider those transitions, whose
transition counts is less than a low initial cut-off value. If
the adaptive coverage falls below a certain threshold for too
many test evaluations, the cut-off is doubled (exponential
increase). Then, if we consider a total of t transitions, and if
in a test run n of these were covered, the fitness of that test
would be n/t. Each test’s fitness is evaluated only once.

3.3 Test Representation, Crossover and Mu-
tation

Representation: Each test (chromosome) is represented as
a DAG of a constant number of nodes (genes), which natu-
rally represents control flow [40] and each disjoint sub-graph
representing one thread. A sequence of nodes corresponds to
the program order of one thread. Each node is a high-level
operation (op) of a thread which maps to executable code
of the target ISA. Furthermore an op is responsible for the
mapping to one or more events in the MCM (only for memory
operations) as per the defined instruction semantics.

Nodes are stored internally as a flat list of tuples: each
tuple represents 〈pid,op〉, where pid is the processor/thread
ID and op is an operation. The order of nodes within this list
gives rise to the code sequence of instructions, but not neces-
sarily program order (po), e.g. due to branches. The class and
properties of an operation specifies how nodes are connected
upon code generation, such that copying individual nodes of
one thread to another (via crossover), forms another valid
thread. The final DAG representation is restrictive enough to
allow efficient generation of the static ordering relations of
the target MCM, as well as an efficient crossover as described
in the following.
Crossover: As outlined in §3.1, we determine that a standard
crossover is unsuitable for the problem of generating more
suitable MCM tests. We design a selective crossover, which
selects and merges thread sub-graphs based on operations
which highly contribute towards non-determinism of a test.
The key metric we introduce to assess a test’s degree of
non-determinism is the average non-determinism of a test
(NDT). After evaluation of a test-run, we obtain its NDT

(Definition 2) and each event’s NDe (Definition 3). From
this, we obtain the set of events’ addresses fitaddrs, where an
event’s NDe is larger than the rounded NDT of the test. The
proposed selective crossover then always selects those nodes
where the address of a memory operation is a member of the
set of addresses fitaddrs.

To be able to place a bound on the simulated execution
time of a test, we enforce the number of nodes of a test to
be constant. Note, however, that the number of nodes per
thread is not necessarily constant. Additionally, in MCM tests
we would like to preserve some of the relative scheduling
properties of test operations; e.g. an operation which is
placed at the end of a thread should not be moved to the
beginning of a thread in a new test after crossover. During
recombination of two tests, the flat list representation of the
DAG nodes simplifies enforcing both the above properties

Algorithm 1: Crossover and mutation.
Let PMUT be the mutation probability;
Let PUSEL be the unconditional mem. op. selection probability;
Let PBFA be the bias with which a new operation has an address from

the set of fitaddrs;
Let fitaddrs(test) return the set of addresses of events where NDe

is larger than the rounded NDT of test;
Let is_memop(op) return true if op is a memory operation, false

otherwise; where true, op has a valid attribute addr denoting the
memory address accessed;

Let random_bool(p) generate a Bernoulli variate with probability p;

Function fitaddr_fraction(test) begin /* Returns
fraction of memory operations which are guaranteed
to be selected. */

mem ops← [op|〈pid,op〉 ∈ test∧is_memop(op)];

return len([op|op ∈mem ops∧op.addr ∈ fitaddrs(test)])
len(mem ops) ;

Function crossover_mutate(test1, test2) begin
a1 ← fitaddr_fraction(test1);
a2 ← fitaddr_fraction(test2);
PSELECT1← a1 +PUSEL− (a1 ·PUSEL);
PSELECT2← a2 +PUSEL− (a2 ·PUSEL);
child← test1;
mutations← 0;
for i← 0 to len(child) do
〈pid,op〉 ← test1[i];
if is_memop(op) then

select1← random_bool(PUSEL)
∨ op.addr ∈ fitaddrs(test1);

else
select1← random_bool(PSELECT1);

〈pid,op〉 ← test2[i];
if is_memop(op) then

select2← random_bool(PUSEL)
∨ op.addr ∈ fitaddrs(test2);

else
select2← random_bool(PSELECT2);

if ¬select1∧ select2 then
child[i]← test2[i];

else if ¬select1∧¬select2 then
mutations←mutations+1;
if random_bool(PBFA) then

child[i]←Make random 〈pid,op〉, with addresses
constrained to
fitaddrs(test1)∪fitaddrs(test2);

else
child[i]←Make random 〈pid,op〉;

else
/* Retain node child[i]. */

if mutations/len(child)< PMUT then
Mutate child with probability PMUT;

return child

efficiently.
Mutation: Following crossover, mutation takes place if nec-
essary, which mutates nodes by randomizing thread and op-
eration, but preserving the relative position in the test. As
not all operations are necessarily selected from either parent
test, missing nodes are generated pseudo-randomly: this step
already contributes to mutation, effectively enabling more
directed mutation, such that in the early stages of test genera-
tion useful sequences of operations are retained.
Summary: Algorithm 1 shows our proposed crossover and



Table 1: Guest-host interface.

Function Description
barrier wait coarse() Host-assistance optional. Barrier

which does not mandate threads to be
precisely synchronized.

barrier wait precise() Host-assistance suggested. Bar-
rier which mandates that threads
are precisely synchronized via host-
assistance or otherwise, such that upon
return threads are in lock-step.

make test thread(code) Direct host-interface. Host writes
code for current test of thread.

mark test mem range(a, b) Direct host-interface. At guest work-
load initialization, use to set test gener-
ator address-range from start address
a to end b.

reset test mem() Host-assistance suggested. Resets
(write initial values) locations used
by test; flushes cache lines and other
structures affecting following test exe-
cutions.

verify reset all() Direct host-interface. Verifies last test
execution. Clear entire candidate ex-
ecution object (static and conflict or-
ders). Evaluates test-run and sets up
next test.

verify reset conflict() Direct host-interface. Verifies last test
execution. Clears only conflict orders
of candidate execution object.

mutation. Figure 2 illustrates test representation and their
crossover.

4. ACCELERATING TEST EXECUTION &
CHECKING

To allow a GP approach to progress towards more opti-
mized tests as fast as possible, we must increase test through-
put, i.e. minimize the wall-clock time for each test-run. As
the tests are run in a full-system, a minimal guest workload is
responsible for setup and running each test. We minimize the
wall-clock time to execute code that is part of test setup and
control, but does not contribute towards actual test execution.
We propose several extensions, that any simulator to be used
for verification should implement.

Table 1 shows the proposed interface between the simulation-
aware guest workload and the host system4. Algorithm 2
shows the kernel of the guest workload, and is self-explanatory.
While it is possible to implement many of the functions as
part of the guest program (optional and suggested in Table 1),
host-assistance transfers the implementation onto the simu-
lation host system, thereby speeding them up significantly.
In particular, we found that the host assisted barrier is a
mandatory pre-requisite to execute very short tests, as the
perturbation and thread offset induced by a guest barrier im-
plementation was too large. With the host assisted barrier,
thread start offset is minimized, and using very short tests
becomes possible.

4.1 Checker
A pre-silicon environment, in this case simulation, pro-

4Here we refer to guest as the system being simulated, and host the
simulation software.

Algorithm 2: Guest workload: per thread kernel. The
control thread is a thread selected at program startup to
drive the generate-verify-reset cycle.

Input: test iterations denoting the execution count of a test per
test-run.

/* Every thread has its own independent memory
region, which is used by the host to copy the
respective code for the thread. */

code← Allocate executable memory, host-writable;
while true do

barrier_wait_coarse();
make_test_thread(code);

for i← 0 to test iterations do
barrier_wait_precise();
execute code;
barrier_wait_coarse();

if i+1 < test iterations ∧ is control thread then
verify_reset_conflict();
reset_test_mem();

if is control thread then
verify_reset_all();
reset_test_mem();

vides certain advantages over post-silicon; most notably, we
can afford to observe all necessary conflict orders to imple-
ment a polynomial-time decision procedure to verify if a
recorded candidate execution object is valid or invalid with
respect to the target MCM [33]. At the core of the checker is
a regular depth-first search (DFS).

Our implementation bases the formalization of MCMs on
the framework proposed by Alglave et al. [4]. The precise and
correct formalization of more complex MCMs (e.g. ARM or
Power, or proposed GPU [5] models) should not be attempted
in an ad-hoc manner, and by implementing the aforemen-
tioned framework we can afford a more direct mapping of
these published MCMs to our checker. Note, however, that
the style (axiomatic vs. operational) nor the particular for-
malization is a dependency for our proposed test generation
scheme.

All static orders required to compute the preserved pro-
gram order (ppo) are gathered before first execution of a test.
The DAG representation (§3.3) of a test makes this straight-
forward. Furthermore, before test execution, each write event
is assigned a unique ID – the value to be written by the as-
sociated instruction – to be able to map observed values to a
producing write. This implies that the size of each instruction
can support the maximum desired writes; there is no limit for
read count. Initially, all memory is zero, and upon reading
the initial value, the initial write event is created on first use.

All dynamic orders (conflict orders rf and co) are observed
during execution of a test (without affecting functional ex-
ecution). Constructing rf requires extracting the value an
instruction reads; inserting into co requires extracting the
value an instruction overwrites. In order to map committed
instructions to an operation of a test, which then maps to an
event in the MCM, we use the respective instruction pointers
(IPs) to create a unique mapping. In case where an instruc-
tion can give rise to several reads and/or writes, we use the
microcode counter to uniquely map to an event.



Figure 2: Crossover and mutation example. Initially two tests with two threads each, 1 which are then evaluated and the set of
fitaddrs determined to be {a,b} for Parent-1 and {a,c} for Parent-2. 2 Given these two parents, crossover can produce several
children, of which two are shown. 3 Unselected addresses in the same slot for both parents result in mutation in this slot, and
further mutation is no longer necessary.

5. EVALUATION METHODOLOGY
This section discusses the evaluation methodology used in

obtaining the results (§6). The goal of the evaluation is to
show the performance of the McVerSi framework with regard
to its bug finding capability and the wall-clock time required
to find a bug.

5.1 Simulation Environment
We evaluate our approach using the cycle accurate Gem5

simulator [26] with Ruby and GARNET [41] in full-system
mode with the x86-64 ISA. It is worth noting that Gem5 is
frequently used for pre-silicon design evaluation, with sev-
eral industrial users. The processor model used for each
core is a simple out-of-order processor. Table 2 shows the
key-parameters of the system. All cache coherence protocol
implementations are modeled in a functionally accurate man-
ner (not just timing), to ensure that stale data (e.g. due to a
protocol bug) affects functional execution.

To demonstrate that the bug finding ability of a particu-
lar test generator is consistent (statistically significant), we
run each generator/bug pair 10 times with a time limit – this
should provide high confidence in a test generator in case all
runs find a bug found. To demonstrate that the convergence
time of the GP-based approach is within practical bounds,
each simulation run is limited to 24 hours of host time5. For
non-GP test generators, we shall note that this effectively
translates to measuring the frequency of a bug found within
24×10 hours (10 days), as these test generators do not con-
tinuously update their internal state to progress towards better
tests.

Each simulation run (out of 10) uses a different random
seed for both simulation and test generation yielding differ-
ent executions per sample. Furthermore, simulation startup
overheads are negligible, as the simulation loads the guest
workload (§4), and then runs it continuously until a bug is
found or the time limit is reached. Upon reset after a test exe-
cution (one iteration of a test-run), non-test related simulation
state is not reset; therefore, the following executions of the
same test in the same simulation are all perturbed differently.

5.2 Test Generation & Checking
5The host platform is server-grade, with Intel Xeonr E5620 CPUs;
we measure 30k simulated instructions per second.

Table 2: System parameters.

Core-count & frequency 8 (out-of-order) @ 2GHz
LSQ entries 32
ROB entries 40
L1 I+D -cache (private) 32KB+32KB, 64B lines, 4-way
L1 hit latency 3 cycles
L2 cache (NUCA, shared) 128KB×8 tiles, 64B lines, 4-way
L2 hit latency 30 to 80 cycles
Memory 512MB
Memory hit latency 120 to 230 cycles
On-chip network 2D Mesh, 2 rows, 16B flits
Kernel Linux 2.6.32.61

This section outlines the test generation and checking ap-
proaches we evaluate and compare.

5.2.1 McVerSi
To demonstrate the effectiveness of our proposed test gen-

eration approach, we compare against the following test gen-
eration variants. It is worth noting that each of the following
still makes use of the simulation-specific optimizations (§4)
of the McVerSi framework.

First, to show the effectiveness of pseudo-randomly gen-
erated tests, which most previous works (§7) rely on, we
include the McVerSi-RAND configuration.

Next, we evaluate a naïve GP-based approach, McVerSi-
Std.XO, which demonstrates the need for our domain-specific
crossover. McVerSi-Std.XO does not make use of the se-
lective crossover and instead, for all threads, connects sub-
graphs, by removing a random vertex, of a thread from two
parents; a standard single-point crossover over the flat list can
be exploited to efficiently realize this. The fitness function
is modified to include the additional objective for improving
test suitability (equal weighting for coverage and normalized
NDT).

Finally, the configuration McVerSi-ALL includes all pro-
posed test generation (§3) and the simulation-specific opti-
mizations (§4). Both McVerSi-ALL and McVerSi-Std.XO
implement a steady-state GA with tournament-selection and
the delete oldest replacement strategy [42]. It is worth noting
that steady-state GAs have been shown to outperform genera-
tional GAs in dynamic or non-stationary environments [42].

To assess the effect of our proposed crossover function
alone – i.e. to answer the question: are highly non-deterministic



Table 3: Test generation parameters.

Test size 1k operations (total across threads)
Iterations 10 test executions per test-run
Test memory (stride) 1KB (16B), 8KB (16B)
Operations:bias% (com-
ment)

• Read:50% (read into reg.)
• ReadAddrDp:5% (read into reg. with

address dependency)
• Write:42% (write from reg.)
• ReadModifyWrite:1% (RMW, on x86

also implies fences)
• CacheFlush:1% (cache flush, e.g.

clflush on x86)
• Delay:1% (constant delay using NOPs)

McVerSi-ALL, McVerSi-Std.XO
Population size 100
Tournament size 2
Mutation probability
(PMUT)

0.005

Crossover probability 1.0
McVerSi-ALL

PUSEL 0.2
PBFA 0.05

tests alone sufficient? – we did evaluate a configuration with
a constant fitness function. While better performing than ei-
ther McVerSi-RAND or McVerSi-Std.XO, we still found its
performance to be notably inferior to McVerSi-ALL, and so
do not include it in the final results in §6. In a similar vein, we
do not include configurations without our simulator-specific
optimizations in our results, as without these, the simulation
runs were impracticably slow (around a couple of orders of
magnitude slower).
Test Generation Parameters: Key parameters for all con-
figurations are shown in Table 3. Note that these parameters
were determined to give good results in a limited design space
exploration. The test size of 1k operations is sufficient to find
all studied bugs; in fact, we determine that larger test sizes
cause performance to degrade, as the evolution of tests simply
takes longer. We must ensure that tests are large enough to
be able to detect most bugs in the first place, but not too large
to limit the search performance. With this test size and de-
pending on several factors (conflicting accesses, L1/L2 cache
hits/misses, etc.), we note that the checker (§4.1) generally
uses between 30% and 40% of the total wall-clock time.

The test memory size denotes the usable address range.
The stride merely affects the base address (base addresses
are generated in multiples of stride). In order to ensure cache
capacity evictions take place, the test memory is partitioned
in contiguous blocks of 512B, where the respective starting
addresses of partitions are separated by a range of 1MB;
e.g. in the case of 8KB, 16 such 512B partitions exist. As
we are running full-system simulations, the allocation is not
fully under our control, and the virtual memory manager
(VMM) of the OS has final control over placement in physical
memory. In our experiments, however, we observe our chosen
test memory partitioning to have the desired effect.

The selected operations and their bias, while independent
of a particular ISA, should be guided by the target MCM.
In our case, to cover all enforced orderings of x86-TSO, the
presented operations are sufficient. For more relaxed MCMs,

the set of operations that need to be generated could be more
extensive.

5.2.2 diy-litmus
The diy tool suite [17] automates litmus test generation,

using knowledge of the MCM to generate a number of short
tests which may trigger interesting behaviour. Litmus tests
are self-checking, i.e. they include the code for performing
checking.

We generate all litmus tests for x86-TSO – we use all
38 tests available. We modified the run-script to exit the
simulation on a detected MCM violation. As the simulation
is time-limited (24 hours), and realistically it is not possible
to pre-determine which of the litmus test will detect an error,
we choose conservative parameters to limit the runtime of
an individual litmus test, but re-execute all tests (in an outer
loop) after the last of the tests has been executed. Thus
the litmus tests may run until the simulation is terminated
by the time-limit. For simulation we choose the following
parameters: -st 4 (stride), -r 3 (runs), -s 8000 (size of test,
iterations).

5.3 Selected Bugs
The following outlines the 11 studied bugs, 2 of which

have not been discovered in Gem5 prior to this work. All
bugs marked with a “*” denote real bugs in Gem5; others
refer to artificially injected bugs. The prefix of the name we
give a bug denotes which protocol is affected, as well as if
either Load Queue (LQ) or Store Queue (SQ) contribute to the
bug manifestation. We study two cache coherence protocols,
one being the Ruby MESI implementation in Gem5, and
the other the recently proposed TSO-CC [3] protocol. TSO-
CC provides an interesting case-study, as it implements a
lazy consistency-directed coherence protocol for TSO. TSO-
CC explicitly violates SWMR, a key invariant of traditional
coherence protocols such as MESI, which makes it arguably
more difficult to verify adherence to memory consistency
using formal verification approaches such as model checking.
MESI,LQ+IS,Inv*: This bug causes read→read reordering
(same or different addresses) that is prohibited by TSO. It
is caused by the coherence protocol failing to forward an
invalidation to the LQ after sinking an incoming Inv (invali-
date) request in the IS (invalid-to-shared) transient state. The
correct behaviour would be to forward the invalidate along
with the data once the data response message is received in
the IS I (invalid-to-shared, sunk invalidate) transient state.
This is a real bug in Gem5, that had not been discovered
previously. It is worth noting that this bug could not have
been found via individual verification of either the coherence
protocol (SWMR is not violated) or the LQ. The fix required
correcting both components, and the Gem5 developers have
been notified.

Note that this bug, as well as all following bugs with prefix
MESI,LQ are variants of the “Peekaboo” problem [15] – in
these cases, arising due to speculative execution. Indeed,
Gem5’s implementation of the LQ provides correct behaviour
on a forwarded invalidation: if there exist any unperformed
older reads and an invalidation is received, all newer reads are
retried. However, if the coherence protocol never forwards an
invalidation as is the case here, then newer reads may observe



stale values.
MESI,LQ+SM,Inv*: This bug also causes read→read re-
ordering (same or different addresses). It is caused by the
coherence protocol failing to forward an invalidation to the
LSQ in the SM (shared-to-modified) transient state upon re-
ceiving an Inv request. This bug has not been discovered
previously. The fix only required correcting the coherence
protocol, and a patch has been sent upstream to Gem5.
MESI,LQ+E,Inv: This bug results in read→read reordering
(same or different addresses). It is caused by the coherence
protocol failing to forward an invalidation to the LQ in the E
state upon receiving an Inv.
MESI,LQ+M,Inv: Similar to MESI,LQ+E,Inv, but fails to
forward an invalidation to the LQ in the M state.
MESI,LQ+S,Replacement: This bug is caused by the co-
herence protocol failing to forward an invalidation to the
LQ upon replacement in the S state. It results in read→read
reordering (same or different addresses).
MESI+PUTX-Race*: This bug is caused by a protocol
race condition and subsequent invalid transition. It is de-
scribed in detail by Komuravelli et al. [12], who previously
discovered it via model checking with Murϕ . This bug does
not manifest as a MCM bug directly, but instead is caught by
Ruby as an invalid transition. If such a protocol had passed
to a post-silicon stage, the effect the bug can have is not very
clear: the result may be unexpected behaviour (including an
MCM bug) or something arguably more critical (e.g. system
lockup). This bug has since been fixed in Gem5 (in January
2011).
MESI+Replace-Race: This bug is another protocol race;
however, it is more subtle in nature. It manifests due to a
L1 replacement in M and simultaneous L2 replacement of a
previously clean block in MT (potentially modified, in local
L1), where the L2 does not expect modified data, thereby
failing to write back the modified block to memory.
TSO-CC+no-epoch-ids: To reset timestamps, TSO-CC
requires epoch-ids to avoid races between timestamp-reset
messages and read/write requests. Eliminating epoch-ids
causes TSO violations (read→read reordering).
TSO-CC+compare: This bug is subtler than the previous
one. In the presence of timestamp-groups, [3] states “where
the requested line’s timestamp is larger or equal than the last-
seen timestamp from the writer of that line self-invalidate all
Shared lines” – we change the comparison to just larger than.
This bug causes read→read reordering.
LQ+no-TSO*: This bug causes read→read reordering to
different addresses. The bug is caused by the LQ not squash-
ing subsequent reads after an incoming forwarded invalida-
tion from the coherence protocol. We previously discovered
this bug via litmus testing, and sent a fix upstream in March
2014. This bug has also been independently discovered by
PipeCheck [16].
SQ+no-FIFO: This bug causes write→write reordering by
not writing back in FIFO order, but instead out-of-order from
the SQ.

6. EXPERIMENTAL RESULTS
This section discusses the results we obtain for each indi-

vidual test generation approach. First and foremost, we are
interested in bug coverage, which addresses the bug-finding

guarantees that each approach provides. This is followed by
analysis of structural coverage, which addresses how thor-
oughly each approach explores the coherence protocol state
transitions.

6.1 Bug Coverage
As seen in Table 4, the only configuration consistently

finding all bugs in under 24 hours is our GP-based approach
McVerSi-ALL (8KB). In comparison, McVerSi-RAND (best
case with 1KB) only finds 8/11 of bugs and litmus tests only
2/11 bugs consistently within 24 hours. Furthermore, we can
see that even when the competing approaches successfully
find all bugs consistently within 24 hours, our GP-based
approach almost always finds them sooner. This confirms our
hypothesis that, although litmus testing and pseudo-random
testing are effective post-silicon verification methodologies,
without substantial optimizations, they are unsuitable for
practical simulation-based verification.

What guarantees are provided with increasing runtime?
Other than our McVerSi-ALL (8KB), no other configuration
is able to find all bugs within 1 day. But what happens when
the competing non-GP approaches (pseudo-random and lit-
mus tests) are run for more than 1 day? Recall that we run
each generator/bug pair 10 times (samples) up to 24 hours6.
Since the non-GP approaches are stateless (they do not con-
tinuously update their internal state to progress towards better
tests), we note that running each bug 10 times for 24 hours is
tantamount to measuring bug coverage when running for up
to 10 days. Table 5 summarizes the results under this assump-
tion. It is worth noting that neither litmus nor pseudo-random
tests are able to find all bugs within effectively 10 days of
running time. Although McVerSi-RAND (8KB) can guaran-
tee finding additional bugs after running for more than 1 day,
2 out of 11 bugs (18%) are still not found. In these cases (NF
in Table 4), the implication is that the test generator would
either need more than 10 days, or is incapable of generating
tests required to expose the particular bug.

How does usable address range affect test quality? With
just 1KB of test memory, all test generation schemes achieve
similar results. Because of the constrained address space,
tests consist of a large number of conflicting accesses even
if generated randomly. However, note that both GP ap-
proaches improve the average time to find all bugs over
the pseudo-random test generator even with just 1KB of
test memory; in particular, McVerSi-ALL reduces the aver-
age time by 27% in comparison with McVerSi-RAND. It
is important to note, however, that none of the approaches
using 1KB of test memory are able to find the following
bugs: MESI,LQ+S,Replacement, MESI+PUTX-Race, and
MESI+Replace-Race. Clearly, we require a larger test mem-
ory size to find these. With 8KB of test memory, McVerSi-
ALL is able to find all bugs in all simulation runs, including
the 3 bugs above.

How effective is our selective crossover? We note that
McVerSi-Std.XO is unable to find certain bugs (NF), in cases
where the bugs only manifest due to racy accesses. Those con-
figurations not making use of the proposed selective crossover
simply do not converge towards suitable MCM tests with high
non-determinism/races; i.e. their set of candidate executions
6For practical reasons, we are restricted to 24 hours per run.



Table 4: Bug coverage: bug found count out of 10 samples (arith. mean hours to find the bug across 10 samples); NF = “Not
Found within 24 hours”; bold highlights configurations which consistently find the bug within 24 hours.

Bug McVerSi-
ALL (1KB)

McVerSi-
ALL (8KB)

McVerSi-
Std.XO (1KB)

McVerSi-
Std.XO (8KB)

McVerSi-
RAND (1KB)

McVerSi-
RAND (8KB)

diy-litmus

MESI,LQ+IS,Inv 10 (0.01) 10 (0.49) 10 (0.01) 10 (0.73) 10 (0.01) 10 (0.89) NF
MESI,LQ+SM,Inv 10 (0.33) 10 (5.20) 10 (0.27) 1 (5.01) 10 (0.48) NF NF
MESI,LQ+E,Inv 10 (2.97) 10 (0.09) 10 (3.22) 10 (0.16) 10 (4.34) 10 (0.10) NF
MESI,LQ+M,Inv 10 (1.42) 10 (1.37) 10 (2.40) 7 (3.80) 10 (1.93) 10 (11.05) NF
MESI,LQ+S,Replacement NF 10 (2.69) NF 4 (15.05) NF 6 (10.10) NF
MESI+PUTX-Race NF 10 (4.64) NF 5 (8.83) NF 3 (9.63) NF
MESI+Replace-Race NF 10 (0.12) NF 10 (0.12) NF 10 (0.19) 5 (0.53)
TSO-CC+no-epoch-ids 10 (0.90) 10 (7.40) 10 (0.50) NF 10 (0.96) NF 6 (5.93)
TSO-CC+compare 10 (0.01) 10 (2.28) 10 (0.01) NF 10 (0.01) 1 (22.31) 10 (0.92)
LQ+no-TSO 10 (0.00) 10 (0.03) 10 (0.00) 10 (0.02) 10 (0.00) 10 (0.08) 10 (5.35)
SQ+no-FIFO 10 (0.01) 10 (0.24) 10 (0.01) 10 (0.83) 10 (0.01) 10 (0.40) 9 (4.77)
All 80 (0.71) 110 (2.23) 80 (0.80) 67 (2.31) 80 (0.97) 70 (3.41) 40 (3.60)

Table 5: Bugs found, when running up to the equivalent of
10 days time.

Bugs found within 1 day 5 days 10 days
McVerSi-ALL (8KB) 100% N/A N/A
McVerSi-RAND (1KB) 73% 73% 73%
McVerSi-RAND (8KB) 55% 73% 82%
diy-litmus 18% 45% 45%

is too small to have a high probability of encountering the
sequence of events in the system required to expose faulty
logic. In order to find bugs which only manifest due to re-
placements, a large address range is required but also suitable
MCM tests, i.e. highly racy tests. The bugs which are only
found by McVerSi-ALL (8KB) require tests with an average
NDT of at least 2.0, and often greater than 3.0. The 1KB
configurations’ initial set of tests automatically achieve an
average NDT exceeding 2.0, whereas the 8KB configura-
tions start out with an NDT of around 1.1. At 8KB, only
McVerSi-ALL is able to generate tests with an NDT of 2.0 or
above.

6.2 Structural Coverage
What is the impact of using coverage as fitness? Table 6

shows the maximum total achieved coverage (higher is better).
Recall that, the fitness function we use does not make use
of the total coverage, and instead focuses on rare transitions
to avoid getting stuck in a local maximum. We note that the
implementations of MESI and TSO-CC contain transitions
which are extremely unlikely to occur (e.g. replacements in
transient states from invalid – the LRU replacement policy in
use is very unlikely to select such blocks), which we did not
exclude from the coverage calculation, and therefore we do
not reach 100%.

From Table 6 we can see that McVerSi-ALL (8KB) achieves
highest coverage for both MESI and TSO-CC. Using cov-
erage as fitness achieves its goal, leading to the improved
performance (bug coverage discussed above) of McVerSi-
ALL compared to McVerSi-RAND. More importantly, while
the selective crossover continually increasing NDT could
have a negatively correlated effect on coverage, the GP-based
approach ensures balance by simply proceeding to no longer
select individuals with too high NDT.

7. RELATED WORK
Formal verification: While formal verification provides the
highest possible guarantees, i.e. a proof of correctness, the
model being verified against its specification is typically a
component abstraction of what is present in the functional
design implementation; with the coherence protocol being
the main artifact being subjected to formal verification [14].
For most model checking approaches [7, 9, 10, 12, 13], the
consistency properties intended to capture MCM correctness
are derived properties, such as the SWMR [15] invariant;
these are inadequate for protocols explicitly violating such
properties (e.g. lazy self-invalidation based protocols using
“tear-off” blocks [43]). More powerful formal methods ap-
proaches for coherence protocol verification use operational
models [8, 44, 45, 46], but require more user-effort to set up.

To raise confidence in a design, it would be prudent to
apply the best tools at each stage in the design. Indeed,
the recent model checking of the MESI coherence protocol
of the GEMS memory simulator (and of Gem5) has found
bugs [12] (MESI+PUTX-Race among others). Independent
of the memory system, PipeCheck [16] can be used for model
checking of pipeline abstractions (albeit against selected lit-
mus tests), which also uncovered a bug in Gem5 (LQ+no-
TSO). None of the above approaches can ensure the correct-
ness of the interaction between components as we observed
with several of the studied bugs (§5.3).

The recently published and concurrently developed CCI-
Check [47] (based on PipeCheck [16]), provides a methodol-
ogy for verifying pipeline and memory system (with focus
on coherence protocol) together. Broadly, their motivation is
similar, in that the interaction between components is crucial
in enforcing the consistency model, and unconventional pro-
tocols cannot easily be verified using traditional approaches
(e.g. TSO-CC is also used as a case-study). By using abstract
axiomatic models of pipeline (like PipeCheck) and memory
system, the result is exhaustive (on input litmus tests).

While extremely valuable at an early stage in the design,
the above approaches are only tractable with abstractions of
the relevant parts of a full-system functional design, and thus
are complementary to McVerSi.
Memory system verification: Verifying the detailed imple-
mentation of the memory system in isolation can be be done
in simulation. Wood et al. [23] present a methodology where



Table 6: Maximum total transition coverage observed across all simulation runs.

Protocol McVerSi-ALL
(1KB)

McVerSi-ALL
(8KB)

McVerSi-
Std.XO (1KB)

McVerSi-
Std.XO (8KB)

McVerSi-RAND
(1KB)

McVerSi-RAND
(8KB)

diy-litmus

MESI 60.9% 82.3% 62.3% 81.9% 60.9% 81.9% 66.5%
TSO-CC 51.8% 63.1% 50.8% 41.2% 51.8% 62.6% 54.8%

a stub CPU takes control of the operations being issued to
the memory system; tests are randomly selected operations
from user “action/check scripts”. A similar approach is taken
by [48]. None of the approaches automatically feed back
coverage metrics into the test generation.

The “witness string” method [7, 49] generates test vectors
for RTL simulation of the coherence protocol which cover
distinct states, thereby improving test quality and reducing
redundant simulation time. The witness strings are generated
with the Murϕ model checker, based on a model of the proto-
col. This approach, however, depends on an external tool and
is not tightly coupled with the simulation tool.

In the presence of a detailed FSM of the coherence proto-
col, [50, 51] propose methods to automatically inject events
into the memory system to cover previously uncovered states
and transitions. This requires detailed knowledge of the mem-
ory system’s FSM, and in the absence of other control logic
(e.g. core pipeline), is a feasible approach to generating high
coverage. Yet, it would be much more difficult to accomplish
in a full-system, where the test input to the system does not
directly control the memory system, and instead is subject to
other constraints of the control logic.

While these approaches target simulation, unlike them,
McVerSi targets full-system simulation, and also demon-
strates checking a complete axiomatic MCM.
Full-system verification: Related work in this area has pri-
marily focused on the problem of checker complexity due
to limited visibility in a post-silicon environment. In the
absence of conflict order visibility, checking an axiomatic
MCM has been proven to be NP-complete [33].

To address the complexity of MCM checking in simula-
tion, relaxed scoreboards (operational models) have been pro-
posed [35, 34] to monitor every memory operation’s correct
behaviour. While this would even allow using real workloads
and monitor the system on-the-fly, the test generation method
is independent of the proposed checking method. We find that
checking an axiomatic MCM is fast enough for the relatively
short tests used in our GP-based approach.

TSOtool [20, 21] and derivative algorithms [22, 52] pro-
pose approximate solution to the MCM checking problem in
a post-silicon environment, due to the limited conflict order
visibility. Hardware extensions to facilitate fast checking in
post-silicon have been proposed, e.g. via counters [18, 53]
or even re-partitioning of the cache to log ordering informa-
tion [19]. While throughput in post-silicon environments is
generally higher, and therefore all use user constrained ran-
dom tests, all of these approaches are only applicable at the
very latest stages in a design.

Manually directed short tests, also called litmus tests, are
also very common. More recently, diy [17] automates litmus
test generation, using knowledge of the MCM to generate
short tests which may trigger interesting behaviour. Litmus
tests have the advantage that they are self-checking, and

therefore are more portable and simpler to set up for a wide
variety of MCMs.

The above approaches target post-silicon testing, and none
are specifically optimized for simulation.
Hardware support for MCM verification: An alternative
approach to ensure correctness, is fault-tolerance via hard-
ware support for detecting MCM violations dynamically [54,
55, 56, 57], and recovering from them. Our proposal, which
focusses on test generation, is orthogonal to these works. In
particular, Romanescu et al. [57] focus on detecting address
translation (AT) related bugs with the help of their AT-aware
MCM specifications. Our framework targets a full-system
environment, including the TLB and MMU, and thus is also
capable of detecting AT bugs (we did not detect any). Note,
however, that our framework currently does not stress AT
related aspects (it does not generate synonyms, memory map-
ping operations, etc.), which we reserve for future work.

8. CONCLUSION
We have presented McVerSi, a test generation framework

for fast memory consistency verification in full-system simu-
lation. At later pre-silicon design stages, it is imperative to
rigorously verify the full-system. Due to the complexity of
the implementation at this stage, verification methodologies
with rigorous test generation are of great importance to raise
the designer’s confidence.

In the domain of simulation-based MCM verification there
is need for an approach which automatically improves test
quality based on feedback from the simulation. This is a dif-
ficult search problem with many hidden variables, especially
in multiprocessor systems, where the interleaving of threads
is inherently non-deterministic. Indeed, the enforcement of a
MCM is what brings order into the non-deterministic world
of multiprocessors.

Our key contribution is a GP-based test generation ap-
proach, which generates effective MCM tests. By proposing
a novel crossover which favours non-determinism, the gen-
erated tests increase the probability of the implementation
having to work harder to enforce the required ordering guar-
antees of the MCM. Then, by using coverage as the fitness
function, our approach evolves high-quality tests automati-
cally. Our results show that, compared with alternative test
generation approaches, we find all 11 considered bugs con-
sistently, providing much higher guarantees about the classes
of bugs McVerSi is capable of finding within practical time
bounds. While it may be conceivable to achieve similar re-
sults via manual test generation, our approach automatically
explores tests satisfying the coverage criteria without user
intervention.

The framework we present offers the building blocks for
researchers and industrial designers alike, to evaluate coher-
ence protocols and other microarchitectural artifacts to adhere
to the promised consistency model early in the design cycle.



We provide a simulator-independent C++ library (including
consistency model descriptions, checker, and test generator):
https://github.com/melver/mc2lib.
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