
Stop Taking the Scenic Route: the Shortest Distance
Between the CPU and the NIC is MMIO

Wei Siew Liew
u1529306@utah.edu
University of Utah

Salt Lake City, Utah, USA

Md Ashfaqur Rahaman
ashfaq@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

James McMahon
jamesm@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Ryan Stutsman
stutsman@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Vijay Nagarajan
vijay@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Abstract
What is the fastest way to transfer data from the CPU to
a network interface card (NIC)? Conventional wisdom sug-
gests that the answer is direct memory access (DMA), and
recent works have advocated for leveraging cache-coherent
I/O interconnects. However, in this paper we examine the
arguments against memory-mapped I/O (MMIO) and show
that high write throughput can be achieved with MMIO
by relaxing ordering constraints. We also propose efficient
hardware for recovering ordering at the NIC to ensure cor-
rectness while taking advantage of the performance benefits
of unordered MMIO writes.

CCS Concepts
• Hardware→ Buses and high-speed links; Networking
hardware.

Keywords
Memory-mapped I/O, Network Interface Card,Memory Types

ACM Reference Format:
Wei Siew Liew, Md Ashfaqur Rahaman, James McMahon, Ryan
Stutsman, and Vijay Nagarajan. 2025. Stop Taking the Scenic Route:
the Shortest Distance Between the CPU and the NIC is MMIO. In
Workshop on Hot Topics in Operating Systems (HOTOS ’25), May
14–16, 2025, Banff, AB, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3713082.3730389

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HOTOS ’25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730389

1 Introduction
Recent trends have increased interest in the interface be-
tween CPUs and network interface cards (NICs). Link speeds
of 200 Gbps and sub-µs interhost communication have cre-
ated tremendous pressure to build CPU-efficient NIC inter-
faces [2], and this pressure is increasing due to emerging
800 Gbps Ethernet standards [1]. In turn, these speeds have
fueled similar growth in I/O interconnect performance with
PCIe 6.0 16× reaching nearly 1000 Gbps [6], and it has helped
lead to commodity low-latency coherent I/O interconnects
like CXL [4].

Collectively, these changes have led industry and academia
to aggressively optimize software interfaces to NICs. How-
ever, we assert that existing protocols are more complicated
than needed while offering suboptimal performance. Most
existing and new interfaces for PCIe are DMA-centric [20].
Alternatively, some recent research has begun to exploit
cache coherent I/O interconnects [19, 21]. We show that per-
haps neither is needed. In fact, a more basic approach that
uses programmed I/O via memory mapped I/O (MMIO) on
conventional PCIe may outperform existing approaches in
both latency and bandwidth.
The most prevalent software-NIC interfaces today (Fig-

ure 1a) rely on (1) discontiguous buffers containing packet
data for transmit and receive, (2) descriptors that point to
those buffers, and (3) MMIO doorbell registers used to inform
the NIC when software has enqueued new descriptors. A
key benefit of this approach is that the CPU only initiates a
small message to the NIC to inform it of new descriptors. The
NIC uses coherent DMA to retrieve descriptors and buffer
contents asynchronously without stalling the host CPU.
Recently, Ensō showed this classic three-stage approach

(MMIO doorbell, then descriptor DMA, then buffer DMA)
is highly inefficient and insufficient to transmit and receive
small messages at line rate on today’s 100 Gbps+ NICs [20].
This is because, though this design offloads the work of data

https://doi.org/10.1145/3713082.3730389
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3713082.3730389


HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Wei Siew Liew, Md Ashfaqur Rahaman, James McMahon, Ryan Stutsman, and Vijay Nagarajan

MMIO
Doorbell

NIC

CPU
Descriptor

Tx Buffer

MMIO Write
DMA Read

PCIe

1

Descr
DMA

2
Data Buffer 

DMA
3

a. Conventional NIC Tx

MMIO
Doorbell Tx Buffer

1

Data Buffer 
DMA

2

b. Enso Tx

MMIO data
as CPU 

produces it

1

c. Our Proposed MMIO Tx

Figure 1: Software-to-NIC Interfaces for Transmit. a○Most
NICs use MMIO doorbells, descriptor DMA, and DMAs of
packet data. b○ Ensō uses contiguous buffers to eliminate the
need for descriptors. c○ We propose directly writing data to
NIC registers via MMIO.

transfer to the NIC, it results in discontiguous memory ac-
cesses that bottleneck transfers from host memory to the
NIC. Ensō demonstrates an alternative design where trans-
mitted and received data is contiguous (Figure 1b), which
makes DMA efficient, allowing it to saturate 100 Gbps links
even with small messages. However, data transmission in
Ensō is still a two-stage process: first the CPU must fill data
into a buffer, then it must perform an MMIO to initiate DMA
and transmission of the data.
In this paper, we ask: why not send data directly to the

NIC via MMIO for transmission (Figure 1c)? It is the low-
est latency approach, and it can avoid the costs of staging
data in buffers for transmission. We are not the first to con-
sider this [3, 7, 14, 16]; modern NICs like NVIDIA’s Con-
nectX series selectively send data via MMIO to optimize la-
tency [22]; however, past approaches have dismissed MMIO
as the primary means for moving data from the CPU to the
NIC. Three arguments against MMIO are: (1) programmed
I/O has high overhead due to the CPU cycles for each byte
transmitted [23], (2) PCIe MMIO messages have higher meta-
data overheads per byte transmitted than DMA [12], and (3)
ordering restrictions prevent efficiently pipelining MMIOs
to the NIC [21].
We investigate these arguments against MMIO and find

that a simple approach of writing all data via MMIO directly
to the NIC with write combined (WC) stores can move more
than 100 Gbps of traffic to a device for transmission. Like oth-
ers have pointed out [21], this creates the challenge that data
can arrive out of order at the NIC; however, we show that the
NIC can overcome this obstacle with a very simple hardware
reorder unit that works at line rate, without requiring costly
ordering operations at the CPU (e.g. sfences). Finally, we
contrast our proposed design to state-of-the-art DMA-based,
coherence-based, and commodity MMIO-optimized trans-
mission paths. We argue our MMIO-centric design is likely

64 256 1K 4K
0

25
50
75

100
125
150
175
200

64 256 1K 4K
Message size (B)

Gb
ps

ConnectX-6 DRAM

Mode
WC + no fence

WC + sfence

Figure 2: MMIO Goodput for Write Combined Stores to an
NVIDIA ConnectX-6 Dx and to DRAM. WCMMIO exceeds
the NIC line rate so long as sfences are avoided.

to dominate existing approaches in transmission latency-
throughput frontier for small messages sizes, and it may
even work well for larger maximum transmission size mes-
sages.

2 Why not MMIO?
As Figure 1 shows, all existing approaches to triggering NIC
data transmission require an MMIO write, generally to a
doorbell register. Hence, for standard I/O interconnects a
single MMIO write represents the minimum latency required
for transmission. SinceMMIOwrites can carry data, clearly it
is also possible to build a transmission path that relies solely
on them. So, why do existing approaches rely on DMA or
coherent I/O when they aren’t strictly required? To answer
this we examine common objections to using MMIO for
transmission, and we look at state-of-the-art approaches to
transferring data to NICs for transmission.

2.1 Can a CPU Drive MMIO Transmission?
Early computer systems with limited CPU processing power
adopted DMA to enable I/O transfers to happen in parallel
with computation [5]. In the context of CPU to NIC trans-
missions, DMA frees the CPU from having to issue instruc-
tions to perform programmed I/O for each word to transmit.
Hence, one argument against using MMIO instructions for
data transmission is that the CPU could bottleneck trans-
mission. This is especially a concern since CPUs are often a
bottleneck even with today’s DMA-based transmission paths
(Figure 1a) [20].

However, when we measure MMIO write throughput to
modern devices, it is clear that MMIO is not a transmission
bottleneck (Figure 2). To show this, we use a single CPU core
to transfer buffers of varying sizes to a 100 Gbps NVIDIA
ConnectX-6 Dx connected via PCIe 4.0 16× using write com-
bined (WC) MMIO. With WC, the CPU combines stores that
target the same cacheline, allowing 64 B PCIe transactions



Stop Taking the Scenic Route: the Shortest Distance Between the CPU and the NIC is MMIO HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

instead of less efficient word-at-a-time transactions. This
has ordering implications [17], which we address in §2.5;
for now, ignore the results with sfence. The target address
range on the NIC is 256 KB, ensuring address translation
hits in the L1 TLB. Our server is equipped with 2×32-core
2.8 GHz AMD EPYC 7543 CPUs.
Figure 2 shows that even for minimum size 64 B Ether-

net frames a single CPU core can consistently write about
120 Gbps of packet data via MMIO. Hence, MMIO exceeds
the 100 Gbps line rate for this NIC, preventing it from being
a bottleneck even for minimum-size packet transmission.
Indeed, the CPU itself is capable of even higher MMIO rates
(much higher than the NICs 100 Gbps line rate) viaWCwrites.
The right side of Figure 2 shows the same experiment while
writing data to host DRAM instead of MMIO ConnectX-6 Dx
registers. It shows that a single CPU core can issue nearly
200 Gbps of traffic.
We also measured the latency of MMIO transmission by

immediately reading the written value (with an mfence in
between to ensure that the read value is not bypassed from
the write buffer). On average the latency for performing an
MMIO write followed by an MMIO read is 650 ns. Consider-
ing that an MMIO read requires a full roundtrip over PCIe,
MMIO write latency amounts to about 217 ns. In sum, to-
day’s CPUs could efficiently drive transmission purely
via MMIO writes at high throughput and low latency.

2.2 CPU Efficiency of MMIO
However, these results only show that MMIO writes can
exceed NIC line rate, not that MMIO is CPU efficient. At first
look, DMA seems to save the CPU cycles that would have
been spent doing MMIO. But, this ignores the fact that to
use DMA the application had to place data into buffers to
begin with. While it is true that applications could transmit
data from host memory without CPU involvement via DMA,
in practice this rarely works. The first reason is that many
applications must generate the data that needs to be trans-
mitted. For example, applications will generally need to fill
in destination addresses, request data, response status codes,
and more. Since the CPU must produce these fields, the most
efficient way for it to transmit that data is directly via MMIO
rather than the two-step process of staging the generated
data into a buffer in cache that is later fetched via DMA.

Second, andmore consequentially, many applications strug-
gle to benefit from such “zero-copy” DMAs. In practice, sev-
eral studies have found that fetching small, discontiguous
values via multiple DMA accesses is far less efficient than
having a CPU copy those values into a contiguous buffer that
can be described with a single descriptor and fetched with
a single DMA [13, 15, 18, 20]. Therefore, applications that
send and receive small messages are the ones that would

benefit substantially from the latency improvements that
MMIO would bring, and, for efficiency, these applications
will already need to load all values that will be transmitted
into CPU registers today. Overall, the key point is that
in today’s applications that send small messages, the
CPU cost of transmission is already proportional to
the amount of transmitted data, so DMA is unlikely to
have significant benefits.

2.3 PCIe Bandwidth Efficiency of MMIO
One commonly cited reason for avoiding MMIO comes from
Kalia et. al. [12]. Although PCIe supports largerMMIOwrites,
Intel CPUs only write up to 64 B per MMIOwhen using write
combining. This results in extra metadata for each cacheline
transferred by MMIO compared to DMA reads. On Intel
CPUs, long DMA reads only generate extra PCIe metadata
overhead for every 128 B transferred for read completion
messages [12]. The implication is that with MMIO writes
PCIe bandwidth may become a bottleneck sooner than with
DMA.
For some time this was true as Ethernet rates exploded

while PCIe bandwidth remained flat for 7 years. However,
since version 4.0 in 2017 [8], PCIe bandwidth has been dou-
bling every two to three years, keeping it ahead of the explo-
sive growth in network link rates. For example, NVIDIA’s
ConnectX-7 supports PCIe 4.0 and 5.0 16× and up to a 400Gbps
link rate. MMIO adds about an additional 20% PCIe band-
width overhead over DMA’s 128 B completions. Even after
MMIO overheads, a 400 Gbps transmission rate would not
use the full bandwidth of a 16× PCIe 5.0 link [9]. Ethernet is
poised for standardization of 800 Gbps link rates, but PCIe
6.0 and 7.0 will double and quadruple its performance in the
same timeframe [6, 10]. Also, since PCIe is full duplex, this
overhead does not cut into the available bandwidth for the
receive path. Hence, while MMIO consumes more PCIe
bandwidth than DMAs, those overheads fit within the
bandwidth available in current PCIe generations.

2.4 MMIO in Commodity NICs
NVIDIA ConnectX NICs include a set of latency optimiza-
tions for CPU-to-NIC communication. Normally, ConnectX
NICs use a three-phase transmission path like the one in
Figure 1a. To avoid the need for a separate DMA for each
descriptor before each buffer, small messages (e.g. 512 B or
smaller) can be inlined into the descriptor. Finally, descrip-
tors themselves can avoid DMA using NVIDIA’s BlueFlame
optimization that uses MMIO writes to send the descriptor
(including any inlined data) to the NIC rather than using
DMA. Combining these two optimizations allows these NICs
to initiate transmissions purely using MMIO [22].



HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Wei Siew Liew, Md Ashfaqur Rahaman, James McMahon, Ryan Stutsman, and Vijay Nagarajan

1 8 64 512 4K 32K 256K 2M 16M
0
1
2
3
4
5
6
7
8
9

10

Message size (B)

99
th

 %
-ti

le 
lat

en
cy

 (u
s)

Tx Mode
No BlueFlame

BlueFlame

Figure 3: Single-threaded RDMA write latency between ma-
chines on a 100 Gbps ConnectX-6 Dx. BlueFlame reduces
round trip time by eliminating DMA on the transmission
path for small message sizes.

1 8 64 512 4K 32K 256K 2M 16M
0

10
20
30
40
50
60
70
80
90

100

Message size (B)

Gb
ps Tx Mode

No BlueFlame

BlueFlame

Figure 4: Single-threaded but pipelined RDMAwrite through-
put between machines on a 100 Gbps ConnectX-6 Dx. Small
messages use very little of the available 100 Gbps; messages
of size 256 KB or more are needed to ensure the NIC isn’t
limited by DMA overheads.

However, these are optimizations on a fundamentally
DMA-centric interface. For example, even when data is in-
lined and written via MMIO, applications must still fill in
descriptors in memory since the NIC is allowed to fallback to
using its DMA-based transmission path. The NVIDIA devel-
oper’s guide also warns not to use this optimization when the
NIC is under high load since it hurts peak transmission rates.
In fact, NVIDIA’s userspace drivers automatically disable
these optimizations if message sizes grow large.

Figure 3 shows that BlueFlame significantly reduces trans-
mission latency by eliminating some DMAs. This experi-
ment uses NVIDIA’s ib_write_lat benchmark, which per-
forms RDMA writes between two machines connected via
100 Gbps ConnectX-6 Dx NICs using PCIe 4.0 16× with UC
queue pairs. The client and server each use a single core on
a 2.8 GHz AMD EPYC 7543. The two machines are separated
by a switch. BlueFlame improves latency for small messages
that can be transferred entirely using MMIO writes by about
800 ns.
However, Figure 4 shows that throughput between the

machines suffers when message size is small. With 64 B

Strong Ordering
Relaxed Ordering

a. DMA-based Transmission b. MMIO-based Transmission

CPU

PCIe

1

CPU 
Root 

Complex
NIC End 

Point

Host 
Memory

CPU

PCIe
CPU 
Root 

Complex
NIC End 

Point

2

2

33

1

2

Figure 5: Ordering a○ using DMA versus b○ MMIO. Dashed
lines represent relaxed ordering and solid lines represent
strong ordering.

messages, a single thread issuing pipelined RDMA writes
only reaches about 1 Gbps. Scaling this across all 64 cores of
the machine only raises the 64 B transmission rate to about
30 Gbps. Overall, this shows that, while commodity
NICs can transfer data via MMIO as a latency optimiza-
tion, they generally use DMA for larger message sizes.
Furthermore, even with DMA, NICs struggle to use any
substantial fraction of their available line rate with
small message sizes.

2.5 Ordering: MMIO’s Achilles Heel
Data needs to be delivered to the NIC in the correct order.
In the following, we discuss how end-to-end ordering can
be achieved using DMA vs MMIO (Figure 5).

Suppose that a chunk of data (contiguous addresses, span-
ning multiple packets) needs to be delivered to the NIC in or-
der. Recall that with the conventional DMA-based approach,
1○ the CPU writes the data to the CPU buffers and then 2○
rings the doorbell via MMIO. Here, the dashed line refers to
relaxed ordering and the solid line refers to strong ordering.
It is okay for the writes in the first step to be relaxed; all that
matters is that once all of these writes to the host memory
have been performed, the MMIO write needs to take place.
Once the MMIO doorbell reaches the NIC, 3○ the NIC pulls
these data packets via multiple DMA reads (PCIe reads); once
all of these packets have reached the NIC, the transmission is
said to be completed, and the NIC is alerted. Because the NIC
is alerted only after all of the packets have arrived, ordering
is ensured end-to-end. And crucially, the DMA/PCIe reads
in step 3○ can potentially overlap with each other without
introducing any ordering violations.
Achieving ordering using MMIO is potentially more ex-

pensive. Recall that there are two logical hops in the MMIO
path from the CPU to the device: 1○ From the CPU to the
CPU’s PCIe root complex; and 2○ From the CPU’s root com-
plex to the NIC’s PCIe end point. Enforcing ordering in the
first hop requires a memory fence instruction after every
store from the CPU (which disables write combining [17]),



Stop Taking the Scenic Route: the Shortest Distance Between the CPU and the NIC is MMIO HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

and enforcing ordering in the second hop requires ordered
PCIe writes. We find that the combination of the two can
significantly reduce the achieved MMIO throughput: drop-
ping from 120 to 1 Gbps for small messages. In other words,
the peak throughput of 120 Gbps does not ensure ordering.
The bottom lines of Figure 2 show that inserting sfences in
between messages for ordering destroys MMIO throughput.
Overall, the key point is that while MMIO can achieve
high transmit throughput, it compromises ordering.

3 Enforcing Data Order at the NIC
Figure 2 showed that highMMIO throughput can be achieved
at the cost of relaxing ordering. In practice, we need to ensure
that data is delivered to the NIC in the correct order. How
does one enforce ordered MMIO writes efficiently?
In this section we present an efficient hardware-based

approach that works at the NIC endpoint. Our approach
leverages the end-to-end principle and allows for reorder-
ing 1○ between the CPU and the PCIe root complex (so, no
fences) and 2○ between the PCIe root complex and the PCIe
end point (allowing for relaxed ordered PCIe writes) — but,
it recovers ordering at the NIC endpoint.

3.1 The Hardware Reorder Unit
We assume that a message’s data are written by the CPU to
sequential addresses that are in a range specified by the NIC’s
PCI BARs. PCIe write transactions include both message data
and the target physical address of the MMIO, so ordering
is ensured as long as: (a) the (out-of-order) received data is
written into NIC-side buffers in an order consistent with the
physical address associated with each transaction; and (b) we
can determine when all of the data that makes up a message
has been received. We implement this with a simple NIC
hardware reorder unit that holds the following metadata.
Data Buffer temporarily holds received MMIO data. The
size of this buffer need only be large enough to tolerate the
maximum amount of reordering the CPUmay do for its WC
MMIOwrites. Though this is microarchitecture-specific, we
expect this to be bounded to a few cachelines in practice.
Valid Vector stores a valid bit for each byte in the Data
Buffer to indicate whether the byte has been received. All
valid bits are initialized to zero.
Length Address Register holds the address of the byte in-
dicating length for the earliest message held in the Data
Buffer. We assume that every message contains a special
byte at fixed offset 𝑝 from the start of the message that
specifies the length of the message in bytes.
When a PCIe MMIO is received, its data is written into

both the NICmemory and the Data Buffer in parallel. The bits
in the Valid Vector corresponding to the received bytes are
also set. Once the Valid Vector bit corresponding to location

Data 
Buffer

First Byte of 
Message

Complete Message 
Received?

Last Byte of 
Message

length

+
𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠

address Address target
Data flow

Length Address Register

Addr …
Data …

(a)

Addr …
Data …

Data 
Buffer

First Byte of Message Last Byte of Message

Valid Vector

Test Vector

AND
Complete Message 
Received?

1 1 1 1 1 11
…

0 0 1 0 1 1 … 0

1 0 1 0 1 1 … 1

(b)

Figure 6: (a) computes NextStartAddress assuming that the
length is in the first byte of the message (𝑝 = 0). In this case
Length Address Register can be updated to NextStartAddress
if the complete message is received and (b) selecting the val-
ues for the Test Vector using the start and end bytes of the
earliestmessage to determine that amessage is fully received.

holding the length has been set, we can retrieve the length
of the message. Once the length is available for the earliest
message in the Data Buffer, we compute (Figure 6a): (a) the
first address of the next earliest message, NextStartAddress,
and (b) the last address of the earliest message.

Once we know the length of the earliest message, we check
the corresponding bits of the Valid Vector (using the parallel
AND) to determine whether the earliest message has been
received (Figure 6b). If the earliest message has been received,
the corresponding bits in the Valid Vector are cleared so that
the entries in the Data Buffer can be reused. NextStartAddress
is provided to the NIC to communicate that all of the data
corresponding to lower addresses have been fully received.

3.2 Can the Unit Operate at Line Rate?
We have synthesized a prototype using an AMD XCVU9P
Field Programmable Gate Array using the Vivado 2018.2
accessed through an Amazon AWS EC2 instance. The main
overhead of the unit is the delay between receiving the last
packet for the earliest message and delivering the value of
NextStartAddress to the NIC. In our prototype, we achieved a
clock frequency of 250 MHz, which is the peak for the device.
Since our design is able to deliver 250×106

2 = 125 million 64 B
messages to the NIC per second, it would be able to deliver



HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Wei Siew Liew, Md Ashfaqur Rahaman, James McMahon, Ryan Stutsman, and Vijay Nagarajan

64 × 125 × 106 × 8 = 64 Gbps. If the design was implemented
on an ASIC with the NIC, it should be possible to achieve
a clock frequency of at least 500 MHz which would allow a
throughput of 128 Gbps, achieving line rate.

3.3 Scalability and NIC Memory
ModernNICs often support thousands of transmission queues.
In our approach, if each queue was represented by 256 KB
of MMIO addresses, for example, it might seem that this
would require a prohibitive amount of on-NIC memory. For-
tunately, this is not the case. Each transmission queue would
need separate MMIO addresses, but not separate memory.
We envision that the reorder unit would be coupled with a
unit that dynamically manages on-NIC memory, similar to
many switches. As contiguous chunks of data arrived for a
specific transmission queue, the unit would copy the data
into a dynamically-managed buffer which would be freed
after the NIC was able to transmit the buffer. Hence, the
only data that the NIC would have hold in memory is any
discontiguous data in the reorder unit and any data awaiting
transmission, which is the same as what is required today.

3.4 MMIO Address Reuse
Since MMIO address space is finite, it would eventually be
necessary to reuse MMIO addresses to transmit more data. It
would be a problem if an address was reused before the data
that was previously stored to it were flushed. This could be
avoided if the NIC address space is at least as large as the
total capacity of WC buffers so that all WC buffers must be
filled and flushed before reusing addresses. On modern Intel
processors, this capacity is 512 B since modern processors
have up to eight 64 BWC buffers [11], though this is microar-
chitecture specific. Another simple solution is to perform
one sfence whenever the CPU exhausts the entire MMIO
space for that queue before reusing addresses.

A related concern is that the CPU might overrun the NIC
if it uses MMIO writes to send the NIC data faster than the
NIC can transmit. Fortunately, PCIe has flow control that
prevents this; if a NIC is slow to transmit, the CPU’s MMIO
writes will stall, naturally slowing down transmission to
match the NIC.

4 Discussion
4.1 What About Receive?
While we advocate for MMIO on the transmit path, the right
approach on the receive path is whatever pushes data directly
from the NIC to the CPU. Interestingly, in the NIC-to-CPU
direction the most similar operation is DMA, not MMIO.
Hence, Ensō’s DMA-based receive path seems near optimal
with no clear way to improve it using MMIO [20].

4.2 What About Coherent I/O such as CXL?
Recent research has begun to exploit cache coherent I/O
interconnects [19, 21] in an effort to enable both high band-
width as well as low latency CPU-NIC communication. CC-
NIC [21], a cache-coherent NIC interface, considered an
MMIO baseline but ruled it out due to the cost of order-
ing fences. Given that MMIO can achieve line rate and low
latency without compromising ordering with our approach,
we argue that there is little need for a coherence-based solu-
tion.

In fact, protocols such as CXL (a MESI variant) complicate
efficient CPU-NIC producer-consumer communication, since
these protocols obtain ownership and transition to exclusive
state on writes; therefore, a CPU producer write obtains the
cache block in exclusive state. This means that a consumer
read from the NIC requires an indirection—wherein the data
has to be pulled from the CPU’s caches, thereby increasing
the latency. Of course these fundamental inefficiencies can
be worked around using creative optimizations in the soft-
ware [21] or the protocol [19]. What these optimizations are
working to achieve is, however, what is already achieved via
our MMIO-based transmit path. Overall, a simple MMIO
transmit path provides high throughput and low la-
tency without the need for work arounds on top of
coherence protocols.

5 Conclusion
Programmed I/O is the oldest and simplest form of moving
data to devices; even so, it is fast enough to saturate the
100 Gbps+ line rate of modern NICs, provided the NIC can
tolerate the bounded reordering that write combining allows.
Since it is also the lowest latency path from the CPU to trans-
mission, we contend that it is worth investigating software
interfaces for NICs that are designed from the ground up
around MMIO.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-2245999. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion. This work was also supported in part by VMware and
ARM.

References
[1] 2020. 800G Specification. Available at https://

ethernettechnologyconsortium.org/wp-content/uploads/2020/
03/800G-Specification_r1.0.pdf.

[2] 2021. NVIDIA ConnectX-6 Dx Ethernet SmartNIC. Available
at https://www.nvidia.com/content/dam/en-zz/Solutions/networking/
ethernet-adapters/ConnectX-6-Dx-Datasheet.pdf.

https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/ConnectX-6-Dx-Datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/ConnectX-6-Dx-Datasheet.pdf


Stop Taking the Scenic Route: the Shortest Distance Between the CPU and the NIC is MMIO HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

[3] Mahesh Chaudhari, Kedar Kulkarni, Shreeya Badhe, and Vandana In-
amdar. 2017. Evaluating Effect of Write Combining on PCIe Through-
put to Improve HPC Interconnect Performance. In 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE, 639–640.

[4] Compute Express Link Consortium, Inc. 2023. Compute Express Link
(CXL) Specification. Compute Express Link Consortium, Inc. Available
at https://www.computeexpresslink.org/download-the-specification.

[5] IBM Corporation. 1960. IBM General Information Manual 709-7090
Data Processing System.

[6] Debendra Das Sharma. 2021. PCI Express 6.0 Specification: A Low-
Latency, High-Bandwidth, High-Reliability, and Cost-Effective Inter-
connect With 64.0 GT/s PAM-4 Signaling. IEEE Micro 41, 1 (2021),
23–29. https://doi.org/10.1109/MM.2020.3039925

[7] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design
for Low Latency Request-Response Protocols. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13). USENIX Association, San Jose,
CA, 333–346. https://www.usenix.org/conference/atc13/technical-
sessions/presentation/flajslik

[8] Peripheral Component Interconnect Special Interest Group. 2017. PCI
Express® Base Specification Revision 4.0. Available at https://pcisig.
com/specifications/pciexpress/.

[9] Peripheral Component Interconnect Special Interest Group.
2018. PCI Express® Base Specification Revision 5.0. Available
at https://pcisig.com/doubling-bandwidth-under-two-years-pci-
express%C2%AE-base-specification-revision-50-version-09-now.

[10] Peripheral Component Interconnect Special Interest Group. 2024.
PCI Express® Base Specification Revision 7.0. Available
at https://pcisig.com/blog/pcie%C2%AE-70-specification-version-05-
now-available-full-draft-available-members.

[11] Intel. 2024. Intel® 64 and ia-32 architectures software developer’s man-
ual.

[12] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In 2016 USENIX An-
nual Technical Conference (USENIX ATC 16). USENIX Association, Den-
ver, CO, 437–450. https://www.usenix.org/conference/atc16/technical-
sessions/presentation/kalia

[13] Aniraj Kesavan, Robert Ricci, and Ryan Stutsman. 2016. To Copy or
Not to Copy: Making In-memory Databases Fast on Modern NICs. In
International Workshop on In-Memory Data Management and Analytics.
Springer, 79–94.

[14] Steen Larsen, Ben Lee, et al. 2015. Reevaluation of programmed I/O
with write-combining buffers to improve I/O performance on cluster
systems.. In NAS. 345–346.

[15] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, et al. 2015. The RAMCloud storage system.
ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 1–55.

[16] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022.
The benefits of general-purpose on-NIC memory. In Proceedings of the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland)
(ASPLOS ’22). Association for Computing Machinery, New York, NY,
USA, 1130–1147. https://doi.org/10.1145/3503222.3507711

[17] Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022. Extending
Intel-x86 consistency and persistency: formalising the semantics of
Intel-x86 memory types and non-temporal stores. Proc. ACM Program.
Lang. 6, POPL (2022), 1–31. https://doi.org/10.1145/3498683

[18] Deepti Raghavan, Shreya Ravi, Gina Yuan, Pratiksha Thaker, Sanjari
Srivastava, Micah Murray, Pedro Henrique Penna, Amy Ousterhout,
Philip Levis, Matei Zaharia, et al. 2023. Cornflakes: Zero-copy serial-
ization for microsecond-scale networking. In Proceedings of the 29th
Symposium on Operating Systems Principles. 200–215.

[19] Anastasiia Ruzhanskaia, Pengcheng Xu, David Cock, and Timothy
Roscoe. 2024. Rethinking Programmed I/O for Fast Devices, Cheap
Cores, and Coherent Interconnects. arXiv:2409.08141 [cs.AR] https:
//arxiv.org/abs/2409.08141

[20] Hugo Sadok, Nirav Atre, Zhipeng Zhao, Daniel S. Berger, James C.
Hoe, Aurojit Panda, Justine Sherry, and Ren Wang. 2023. Enso: A
Streaming Interface for NIC-Application Communication. In 17th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 23). USENIX Association, Boston, MA, 1005–1025. https:
//www.usenix.org/conference/osdi23/presentation/sadok

[21] Henry N. Schuh, Arvind Krishnamurthy, David Culler, Henry M. Levy,
Luigi Rizzo, Samira Khan, and Brent E. Stephens. 2024. CC-NIC: a
Cache-Coherent Interface to the NIC. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS
’24). Association for Computing Machinery, New York, NY, USA, 52–68.
https://doi.org/10.1145/3617232.3624868

[22] Mellanox Technologies. 2016. Mellanox Adapters Programmer’s Ref-
erence Manual (PRM). https://network.nvidia.com/files/doc-2020/
ethernet-adapters-programming-manual.pdf.

[23] Xiuxiu Wang, Yipei Niu, Fangming Liu, and Zichen Xu. 2022. When
FPGA Meets Cloud: A First Look at Performance. IEEE Transactions
on Cloud Computing 10, 2 (2022), 1344–1357. https://doi.org/10.1109/
TCC.2020.2992548

https://www.computeexpresslink.org/download-the-specification
https://doi.org/10.1109/MM.2020.3039925
https://www.usenix.org/conference/atc13/technical-sessions/presentation/flajslik
https://www.usenix.org/conference/atc13/technical-sessions/presentation/flajslik
https://pcisig.com/specifications/pciexpress/
https://pcisig.com/specifications/pciexpress/
https://pcisig.com/doubling-bandwidth-under-two-years-pci-express%C2%AE-base-specification-revision-50-version-09-now
https://pcisig.com/doubling-bandwidth-under-two-years-pci-express%C2%AE-base-specification-revision-50-version-09-now
https://pcisig.com/blog/pcie%C2%AE-70-specification-version-05-now-available-full-draft-available-members
https://pcisig.com/blog/pcie%C2%AE-70-specification-version-05-now-available-full-draft-available-members
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1145/3503222.3507711
https://doi.org/10.1145/3498683
https://arxiv.org/abs/2409.08141
https://arxiv.org/abs/2409.08141
https://arxiv.org/abs/2409.08141
https://www.usenix.org/conference/osdi23/presentation/sadok
https://www.usenix.org/conference/osdi23/presentation/sadok
https://doi.org/10.1145/3617232.3624868
https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf
https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf
https://doi.org/10.1109/TCC.2020.2992548
https://doi.org/10.1109/TCC.2020.2992548

	Abstract
	1 Introduction
	2 Why not MMIO?
	2.1 Can a CPU Drive MMIO Transmission?
	2.2 CPU Efficiency of MMIO
	2.3 PCIe Bandwidth Efficiency of MMIO
	2.4 MMIO in Commodity NICs
	2.5 Ordering: MMIO's Achilles Heel

	3 Enforcing Data Order at the NIC
	3.1 The Hardware Reorder Unit
	3.2 Can the Unit Operate at Line Rate?
	3.3 Scalability and NIC Memory
	3.4 MMIO Address Reuse

	4 Discussion
	4.1 What About Receive?
	4.2 What About Coherent I/O such as CXL?

	5 Conclusion
	References

