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Abstract—As cloud workloads increasingly adopt the fault-
tolerant Function-as-a-Service (FaaS) model, demand for im-
proved performance has increased. Alas, the performance of
FaaS applications is heavily bottlenecked by the remote object
store in which FaaS objects are maintained. We identify that
the upcoming CXL-based cache-coherent disaggregated memory
is a promising technology for maintaining FaaS objects. Our
analysis indicates that CXL’s low-latency, high-bandwidth access
characteristics coupled with compute-side caching of objects,
provides significant performance potential over an in-memory
RDMA-based object store.

We observe however that CXL lacks the requisite level of fault-
tolerance necessary to operate at an inter-server scale within the
datacenter. Furthermore, its cache-line granular accesses impose
inefficiencies for object-granular data store accesses.

We propose Āpta, a CXL-based object-granular memory
interface for maintaining FaaS objects. Āpta’s key innovation is
a novel fault-tolerant coherence protocol for keeping the cached
objects consistent without compromising availability in the face
of compute server failures. Our evaluation of Āpta using 6 full
FaaS application workflows (totaling 26 functions) indicates that
it outperforms a state-of-the-art fault-tolerant object caching
protocol on an RDMA-based system by 21–90% and an uncached
CXL-based system by 15-42%.

I. INTRODUCTION

The Function-as-a-Service (FaaS) model is quickly be-
coming the defacto standard for cloud developers. In FaaS,
applications are composed as workflows of stateless functions,
and the cloud provider then orchestrates and schedules the
functions dynamically on a fleet of compute servers.

The stateless nature of functions is good for availability,
scalability, and elasticity, but it inevitably forces state to be
maintained externally. Indeed, data stores such as Amazon
S3 [7] are used to maintain state and pass input/output data
between the stateless functions in the workflow. These data
stores are the backbone of FaaS platforms.

Splitting state and compute, however, has an intrinsic data
movement cost. Our analysis of FaaS functions from the
FunctionBench [43] and SeBS [11] benchmark suites shows
that on average 96% of the execution time per FaaS function is
spent in retrieving data from the S3 object store. Replacing the
S3 object store with a RDMA-based in-memory object store
improves the situation somewhat – with 51% of execution
time spent in retrieving data – but the problem persists.
Communication overheads still limits performance.

Insight: FaaS objects on CXL disaggregated memory. We
observe that upcoming CXL-based hardware disaggregated

Fig. 1. Āpta system schematic (new controllers in red). The figure shows
a CXL disaggregated memory system, where compute servers are connected
to and cache data from a logically centralized (physically distributed and
highly-available) memory server via a hardware load/store interface. Āpta
augments the memory server with new controllers to support object-granular
accesses and keeps the caches consistent with a fault-tolerant coherence
protocol. Sec III-D1 defines the micro-architecture of Āpta’s memory server
controllers: object serving controller (OSC), object tracker controller (OTC),
object persistence controller (OPC), object invalidation controller (OIC)

memory [9], [70] is a promising avenue for maintaining FaaS
objects. CXL pools memory resources onto a logically central-
ized, physically distributed, highly-available memory server,
and allows compute servers to perform load/store remote
memory accesses in hardware over the network. The memory
server, as shown in Fig. 1, is equipped with specialized hard-
ware controllers for performing frequent data plane operations
and minimalist low-power processors to handle rarer control
plane operations [31], [48]. Since CXL allows for loads and
stores to be handled in hardware like in a traditional NUMA
machine [49], [50], [74], CXL-based disaggregated memory
allows for significantly lower latency and higher bandwidth
compared to high-performance RDMA-based remote memory.

Furthermore, the recently announced CXL 3.0 specification
[10] allows the compute server caches to transparently cache
data from a shared region in disaggregated memory, which
matches well with the access patterns of a FaaS object store.
Because FaaS functions typically share objects between them,
object accesses exhibit significant locality and are amenable
to caching. Therefore, such object caching and the use of
a locality-aware scheduling policy (schedule functions where
objects it uses are cached) has the potential for significantly
reducing data movement.

Our analysis shows that a FaaS object store over a CXL-
based disaggregated memory system with support for object-
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granular accesses, coupled with a locality-aware schedul-
ing policy can improve performance of the aforementioned
FaaS functions by a significant 2.3× over the state-of-the-art
RDMA-based object store. This is the performance opportu-
nity Āpta targets.

CXL provides consistency but forgoes availability. To
preserve flexibility and maximize throughput, a cloud system
dynamically schedules a function on any available compute
server. This dynamicity combined with compute-side caching
results in FaaS objects being replicated, and it is imperative
that the replicas be kept consistent. Because compute servers
can fail or be unresponsive in the datacenter, it is important that
the consistency protocol remains available in the presence of
such failures: i.e., the protocol should not block indefinitely if
any of the servers fail. Alas the CXL 3.0 protocol [76] (which
is a conventional protocol that enforces the Single-Writer-
Multiple-Reader (SWMR) invariant [65]), while enforcing
strong consistency, fundamentally blocks in the presence of
server failures: if a server sharing an object fails, a write to that
sharer from any other server could indefinitely block waiting
for an acknowledgment from the failed sharer. Thus, this naive
application of a traditional multi-processor coherence proto-
col (non fault-tolerant) for distributed disaggregated memory
leaves CXL systems vulnerable to system crashes.

Severity of the problem: Building system resiliency is an
important problem as servers frequently fail or become un-
available in a datacenter environment. Google has observed
that up to 25% of service-level disruptions are caused by
machine-level failures [6]. A study of errors in even the
highest reliability petascale supercomputers has shown that
network link and server faults causing job failures occur with
a mean time between failures (MTBF) of 160 hours [14], [40].
Consequently, fault tolerance is a key tenet of FaaS platforms.
This is precisely why FaaS applications have already embraced
failures via idempotent functions [5], [28]: if a function fails
while executing (e.g., due to a compute server failure) the
FaaS function can simply recover by re-executing. Therefore,
it is imperative that the underlying CXL-based object store
operates correctly in the presence of such server failures.

Consistency & availability via fault-tolerant coherence. We
transform a strongly consistent SWMR-enforcing coherence
protocol into a highly-available protocol in the presence of
compute server failures. The idea consists of two simple steps:
lazy invalidation and coherence-aware scheduling. In the first
step we move the invalidations out of the critical path of the
write so a writer is not blocked indefinitely when a server
caching the sharer fails. But because invalidations are moved
off the critical path of the write, there is a window of inconsis-
tency where caches may hold stale values. In the second step
we make a simple change to the FaaS scheduler [47] allowing
it to schedule functions only on servers where there are no
pending invalidations – thereby enforcing strong consistency
as well as availability. Āpta’s method for transforming the non
fault-tolerant coherence protocol into a highly-available one
can easily be applied to upcoming versions of CXL.

TABLE I
TAXONOMY OF STATE-OF-THE-ART PROPOSALS

Caching support? Hardware Compute server Performance
System (granularity, write-policy, inter-server sharing, support? fault-tolerance for object

coherence mechanism, sharer invalidation) stores
S3 [7] No No High Low
Pond [50], Kona [8] Yes (cacheline, write-back, No, N/A N/A) Yes Low Low
ThymesisFlow [74]
LegoOS [79] Yes (page, write-back, No, N/A, N/A) Yes Low Medium
Clio-KV [31] Yes (object, write-through, Yes, No, N/A) Yes Low Medium
MIND [48] Yes (page, write-back, Yes, MSI, sync) Yes Low Medium
OFC [64] Yes (object, write-back, Yes, version-based - No Low Medium

all reads require remote version match, No)
Faa$t [77] Yes (object, write-through, Yes, version-based - No High Medium

all reads require remote version match, No)
CXL 3.0 spec [10] Yes (cacheline, write-back, Yes, MESI, sync) Yes Low Medium
Āpta Yes (object, write-through, Yes, SI, async) Yes High High

Contributions.
1) We make the case for a CXL-based object store for FaaS

with object-granular reads/writes (Sec II). Our analysis
using stand-alone FaaS functions indicates that such a
design can provide a 69× performance improvement over
the Amazon S3-based FaaS system, and a 2.3× improve-
ment over a RDMA-based system. We observe, however,
that such a system must remain fault-tolerant, which the
existing CXL protocol specification falls short of.

2) We introduce Āpta (Fig. 1) – a CXL-based object store
that allows compute server-side caching of objects without
compromising consistency or availability (Sec. III). Āpta
is tailored for object-granular accesses and defines a fault-
tolerant inter-server cache-coherence protocol that, together
with the FaaS scheduler, enforces strong consistency and
provides high-availability in the presence of server failures.
We have verified safety and liveness of the protocol in a
model checker.

3) We evaluate the performance of Āpta (Sec. IV) using 6
full FaaS applications (total of 26 functions) and show
that it provides 21–90% execution time speedup over a
state-of-the-art fault-tolerant RDMA-based object store and
15–42% speedup over a reliable CXL-based object store
without caching.

4) We observe that amongst all state-of-the-art high-
performance remote memories and object stores that sup-
port caching (Table I), Āpta has the highest performance,
and the highest availability in the presence of compute
server failures.

II. MOTIVATION & ANALYSES

In this section, we first demonstrate the compelling perfor-
mance reason to migrate FaaS object store to a disaggregated
memory system (abbreviated as DM). Next, we illustrate why
DM, while providing improved performance, falls short of
providing the level of fault-tolerance required for the FaaS
paradigm. Finally, we highlight inefficiencies when existing
cache line granularity DM is used to design an object store.

A. The performance potential of a DM-based object store

We compare the performance of FaaS functions from Func-
tionBench [43] and SeBS [11] benchmark suites1 using three

1We exclude micro benchmarks and network benchmarks that are non-
deterministic and sensitive to external system delays.
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Fig. 2. Compute-to-Communication ratio in function execution with -
(a) Amazon S3 (first bar) (b) in-memory RDMA store (second, striped bar)

different object stores: Amazon S3, RDMA-based, and DM-
based object stores. The functions execute two basic operations
on the object store: obj ← get(objID) at the beginning
and put(objID, obj) at the end, where objID is an
identifier for an object obj. The computations in the middle
of these functions are often unoptimized which hides the true
bottlenecks in the system. We envision that high-performance
frameworks such as Google TensorFlow [39] and Facebook
PyTorch [38] will be adopted for FaaS in the future. We
therefore ran the functions with Intel OneAPI [37] which
applies vectorization, parallelization, cache blocking and other
architecture specific optimizations.

FaaS functions experience high communication overheads
with Amazon S3: When using the S3 object store, a get
operation downloads the object from a remote S3 server
into the compute server memory; post computation the put
operation uploads an object from the compute server into
a remote S3 server. We take the median of 100 executions
accounting for cold function and tail latency effects [23], [86].

We observe that on an average 96% of execution time
is spent in communicating data from/to the S3 object store
(Fig. 2, all unstriped bars). This shows that the execution
of FaaS functions in the cloud today is severely limited by
the latency of accessing data from object stores. While S3
is based on disk based storage servers, it employs several
optimizations like replication and sharding [7] to provide the
best performance among today’s production object stores.

In-memory object stores do not alleviate the communica-
tion overheads: High-performance RDMA-based in-memory
object stores completely bypass the remote CPU to read (write)
objects directly from (into) the memory of the remote object
server [12], [30], [63]. The get and put operations were
modified to use one-sided RDMA verbs, which runs over an
Infiniband network (Mellanox ConnectX-3 NIC on PCIe-gen3
x16) [17], [58]. RDMA-based object stores are faster than
traditional in-memory data stores that operate over general
purpose ethernet networks like Redis [75], memcached [59]
or Amazon ElastiCache [4]. However, even with such modern
RDMA-based data store, on average 51% of execution time is
still spent in communicating objects (Fig. 2, all striped bars).
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Fig. 3. Comparison of FaaS functions performance with various object stores
(Baseline Amazon S3)

Overcoming RDMA’s Achilles heel: The RDMA-based ap-
proach has several fundamental characteristics that limit per-
formance – the use of software libraries like libibverbs and
libmlx4, the need to perform two DMA data copy operations
(at source and at destination, copying data to/from RNICs
Memory Region) and managing the memory regions with
software-initiated per-server static connection queue pairs.
Several works have analyzed these and other drawbacks of
RDMA [29], [31], [49]. DirectCXL [29] quantifies that even
with the same underlying physical interconnect, RDMA’s
irreducible overheads makes get/put operations 2.2× slower
than CXL-based DM. DM is the new approach that chip man-
ufacturers and cloud providers are investing in. DM overcomes
the drawbacks of RDMA by allowing all data plane operations
to be handled in hardware, thereby providing lower latency and
higher bandwidth.

DM reduces communication overheads: The object is re-
trieved from a load/store semantic DM system. All standards
for building such a DM system (GenZ [25], OpenCAPI [70])
have coalesced under the CXL umbrella due to their synergis-
tic goals. Currently however, there exist only early prototypes:
(i) OpenCAPI-based DM [74], providing RTT latencies of
950 ns and a bandwidth of 12.5GiB/s; (ii) CXL-based DM
[29], providing a lower RTT latency of 500 ns and a higher
bandwidth. We pessimistically model the worst-case latency
and bandwidth of OpenCAPI for our DM system. Our modeled
DM system lowers latency by 3× and improves bandwidth by
10× over the RDMA system [49], [74].

With DM, the fraction of execution time spent for commu-
nication in FaaS functions reduces to 13% of the total time,
on average. This translates to a large reduction in execution
times of the functions. Fig. 3 shows that the DM-based object
store is able to achieve a 59× geomean speedup over Amazon
S3 and a 2× speedup over the RDMA object store.

Caching - an additional benefit of DM: A CXL DM system
transparently caches object cache lines in the (on-chip SRAM
or DRAM) hardware caches of the compute server, thereby
being served at a lower latency compared to a remote memory
server access. Such caching is extremely effective for FaaS
applications which exhibit good object access locality [62].
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This is because full FaaS applications, defined a state machine
workflow of multiple individual functions (“function chains”),
demonstrate known communication patterns like producer-
consumer and broadcast within them [87]. This communica-
tion implies that successor functions can potentially access
objects produced by any of its predecessors. When functions
read objects from compute server caches in the DM system
their execution time further speedups by 2%-100% (Fig. 3
DM+caching, assumes a DRAM cache of DDR4-like latency).

Summary: Our analysis indicates that maintaining FaaS ob-
jects in DM and the caching benefits it provides largely miti-
gates the key performance bottleneck of the FaaS paradigm.

B. The lack of fault-tolerance in current DM systems

FaaS object stores, such as Amazon S3, are designed to
provide fault-tolerant operation for a failure-prone datacenter
environment. Object get and put atomically read and write
entire objects, with all or nothing semantics. A get is also
guaranteed to read the value of the most recent put, therefore
providing a strong consistency model known as linearizability
[7]. This greatly simplifies things for a FaaS developer who
can simply assume that a get would return the object written
by the most recent put in the workflow.

Enforcing strong consistency in the presence of caching.
In the caching DM system, enforcing strong consistency for
the FaaS execution environment can be challenging. For exam-
ple, consider a simple workflow consisting of three functions:
f1 → f2 → f3, where f1 and f3 read object X, while f2
writes to X. Further, let us assume that f1 is assigned to server
C1 while f2 is assigned to C2. When f1 executes on C1, it
would cache the object in C1. When f2 writes the object, it
would render the value cached in C1 stale. Suppose the FaaS
scheduler chooses to schedule f3 on C1, f3 would then read
the stale value of X, violating strong consistency.

One way to enforce strong consistency in the presence of
caching is to employ a cache coherence protocol. Conve-
niently, CXL 3.0 specifies an inter-server MESI-based coher-
ence protocol [76], that enforces the SWMR invariant. In the
above example, the write from f2 would invalidate the cached
copy of X in C1, ensuring that when f3 is scheduled on C1,
it will read the most recent value written by C2, and not the
stale value.

Whither Fault tolerance? It is imperative that the aforemen-
tioned inter-server cache coherence protocol operates correctly
even when compute servers fail or become unavailable. (In this
work we assume that the DM server is kept highly-available
using techniques such as replication [72], [79] and power
redundancy.) Alas, traditional coherence protocols can block
in the presence of such failures. Consider the same example
where f1 caches object X in server C1. When f2 executing
on C2, writes to X, the coherence protocol would send an
invalidation to C1 which holds the object. Now, should C1
fail or become unreachable the write from f2 would simply
block, waiting for an acknowledgment, thereby rendering the
system unavailable. Even if C1 does not fail but is simply

slow to acknowledge (e.g., due to network congestion), the
write from f2 would be impacted, which can lead to high tail
latency – a critical issue for FaaS platforms [85].

C. Inefficiencies of DM for object stores

Current DM system standards specify fixed fine-grain data
access, caching and coherence mechanisms. However, object
reads/writes typically have widely variable sizes, ranging from
bytes to MBs [18], [62]. This causes two key inefficiencies.
CXL enables compute servers to read cache lines from mem-
ory server while objects frequently span multiple cache lines.
Hence, reading an object will incur multiple round trips to the
DM, owing to limited MSHRs (miss status handling registers).

Second, CXL permits single cache line atomic write while
a put must atomically write an object of multiple cache
lines to the DM. This incurs additional latency for software
write-ahead-logging i.e., undo/redo logs. Our analysis for the
above benchmarks shows that a CXL object store will incur
an average of 32% and 89% higher latency for get and put
respectively, compared to an optimized object granular DM
(evaluation methodology in Sec. IV).

Summary: Supporting compute server caching mandates a
fault-tolerant coherence protocol that enforces strong consis-
tency in the presence of compute server failures. CXL-based
DM systems fail to provide this. Second, existing CXL cache
line granular accesses are ill suited for FaaS object granular
accesses.

III. DESIGN

Āpta’s goal is to design a DM-based object store for FaaS
applications (Sec. III-A) that provides fault-tolerant coherence
(Sec. III-B) and optimum performance (Sec. III-C). To accom-
plish this, Āpta designs DM hardware controllers and modifies
runtime software (Sec. III-D). Sec. III-E walks through the
working of the entire Āpta system when executing real-world
FaaS applications.

A. Setting the stage: Designing a DM-based object store

This section describes how Āpta leverages the features of a
CXL 3.0 based DM system to construct an object store.

(a1) Sharing objects between FaaS functions through DM
I Extend shared memory IPC
CXL 3.0 allows compute servers to access a shared memory
region on the memory server. The compute server OS discov-
ers and manages this CXL memory device as per UEFI/ACPI
specifications [84] and exposes the DM address space as an
extended CPU-less NUMA region [49], [50], [70].

In Āpta, FaaS functions execute as independent processes on
compute servers. To access a shared object, the get and put
operations map a DM memory region (containing the object)
into their virtual memory using shared memory inter-process
communication (shmem IPC) [77]. The shmem IPC API is
enhanced to allow function processes on different compute
servers to mount/access a shared memory region.

To illustrate, Fig. 4 shows the two functions f1 and f2
executing on server C1 and C2 respectively, sharing the object
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Fig. 4. FaaS object sharing through DM: organization and addressing

X of size 50MB through the DM system. On each compute
server, the shmem IPC segment, where X resides, is located in
an extended NUMA physical address space (cPA - blue dashed
regions in Fig. 4). Just as in CXL, the access controls and
page tables for end-to-end address translation from compute
server process virtual address (VA) to the memory server
physical address (mPA) are initialized and setup by the OS2.
Once mapped, the object is accessed by the CPU (during
the compute phase of the function) using load/store on cPA
address. When these accesses miss in the LLC, the request is
routed to the “home node” of the extended NUMA region (DM
controller on the compute server). The DM controller uses the
mapping to verify permissions and provides the memory server
physical addresses (mPA) to be accessed.

(a2) Caching objects in compute server caches I Defining
a caching policy
Āpta introduces minimal changes to compute server caches,
making them almost oblivious to disaggregation (in the spirit
of CXL). The get operation, when mapping the shared object,
sets the memory region of objects larger than size of the LLC
as uncacheable using PAT or MTRR [71]3. On an LLC miss,
the cache line is read from DM and allocated in compute server
caches. Similarly, objects are also write-allocated in the LLC.
This policy allows retaining data in the LLC for any expected
future reuse.

Importantly, the put operation immediately writes all modi-
fied cached lines through to DM, making the caches effectively
write-through. This policy allows tolerating compute server
failures since a compute server LLC never holds the only
copy of the object, and the memory server always holds a
valid copy. The LLC silently evicts any of the DM cache lines
which are in shared state i.e., the LLC does not issue a PutS
coherence request to the directory. This saves interconnect
network bandwidth and avoids LLCs having to evict entire
objects if one of the object’s cache lines is evicted.

2CXL uses Address Translation Services (ATS) defined in PCIe Specifica-
tion for translation of cPA→mPA. The compute server OS sets the translation
table base address register - ZMMU [26] or extended page table pointer [45].

3Other object cache allocation policies can be employed - e.g., fraction of
LLC capacity per CPU, dynamically based on predictors of object hotness or
reuse potential [64] etc. The exploration of allocation policies is orthogonal.

(a3) Exploiting the locality provided by caching I Locality
aware scheduling policy
The FaaS runtime schedules each function invocation on
compute servers. The scheduler makes intelligent heuristic
decisions to achieve lowest execution latency for the functions
execution by accounting for various factors [23], [56], [86]. In
Āpta, this runtime scheduler is used to exploit object locality
by scheduling invocations on compute servers where cached
objects will be or are likely to be reused. This allows functions
to benefit from lower latency for object access.

This is done on a best effort, maximization basis. For
generality, in this work, the scheduler heuristically assumes
that the function has a high likelihood of accessing any object
consumed or produced by any of its predecessors and picks a
compute server where most predecessors executed.

B. Fault-tolerant Coherence Protocol

The conventional MESI coherence protocol, specified in
CXL 3.0, does not provide reliable operation in an environ-
ment where compute servers can fail independently. We now
detail Āpta’s highly-available fault-tolerant coherence protocol
that is designed for a failure-prone cloud environment.

(b1) Keeping the cached objects on compute servers coher-
ent I Tailored coherence mechanism and protocol
“Simplicity is prerequisite for reliability” - Edsger Dijkstra

Simplified coherence: Recall that a FaaS function reads the
object from the memory server and the compute server caches
it in shared state; a put writes-through to the memory server
and subsequently invalidates all sharers of the object in other
compute servers. This eliminates the need for Modified or
Exclusive states and reduces the inter-server protocol to two
stable states - Shared and Invalid. This simplified coherence
protocol, designed for the execution model of FaaS functions,
hardens Āpta against compute server faults.

This Āpta protocol is layered hierarchically over and above
intra-server coherence protocol. The intra-server coherence
protocol is unchanged and regardless of this protocol Āpta
enforces different policies in the inter-server protocol. This
hierarchic organization allows Āpta to track sharers at compute
server granularity (not individual caches within them). The
Āpta protocol is employed for all requests from the compute
server to the DM server.

Coarse granularity tracking: The use of DM in FaaS
systems is restricted to sharing objects. Thus, it suffices for
Āpta to use variable-sized object granularity tracking for the
coherence protocol, as opposed to cache line level tracking
in traditional chip level coherence protocols. In other words,
we use a single state to encapsulate the state of all cache lines
within the object. This is tracked using an object unique triplet
of (objID, base mPA, size).

(b2) Provide high-availability while enforcing strong con-
sistency I Lazy invalidation of sharers with coherence-aware
scheduling
Recall, to enforce strong consistency of the caches, a put
completes only when all servers caching that object are
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invalidated; therefore, put can block when servers fail. This
invariant of any conventional coherence protocol called Single-
writer-multiple-reader (SWMR) is enforced by synchronously
invalidating all sharers in the critical path of the put.

In Āpta, the sharers are sent an invalidation message
asynchronously, i.e., the put is acknowledged immediately
without waiting for the sharers to be invalidated. The sharers
that are sent invalidations are tracked off the critical path until
they acknowledge the invalidation messages.

This lazy invalidation policy: (a) allows the write to be
acknowledged at lower latency thereby improving performance
and (b) more importantly, because writes need not wait for
sharers to be invalidated, there is no risk of writes being
blocked, thereby ensuring fault-tolerance.

Whither Consistency? Note, however, that this asynchronous
protocol described above could violate SWMR (and hence
linearizability). This is because at the instant the put is
acknowledged there may be cached copies in other servers
yet to be invalidated.

Lazy linearizability with scheduler support. Āpta enforces
linearizability lazily using a combination of the coherence
protocol and the FaaS runtime scheduler. More specifically,
Āpta never schedules function invocations on servers with
pending invalidations – the §Scheduling Correctness Criterion.
This correctness criterion ensures there is no risk of reading
any yet-to-be-invalidated stale objects present in the caches.
More precisely, we are now in a position to assert Lemma 1.

Lemma 1. The coherence protocol ensures that a get returns
the value of most recent put to that object.

Proof. Consider a get to object X. When the get is about
to be scheduled, there are either pending invalidations to X
or there are none. If there are no pending invalidations, there
are no stale values and hence the get will return the latest
value as per the original synchronous protocol. If there are one
or more pending invalidations, the scheduler ensures that the
function containing the get is not scheduled on those servers
with pending invalidations, and hence there is no risk of get
reading a stale value.

Thus, the Āpta coherence protocol ensures that the caches
on the compute servers where functions execute are strongly
consistent. Meanwhile, caches in compute servers where func-
tions are not executing can be stale without affecting consis-
tency. Another benefit of Āpta’s lazy invalidation protocol is
the ability to perform coherence actions at line-rate. This is
particularly important for processing packets in the data plane
on DPUs or SmartNICs in the network [21], [69].

C. Addressing the inefficiencies of DM

This section describes Āpta’s optimization to adapt the DM
system for object idiosyncrasies.

(c1) Object-granular reads I Via bulk cache line loads
Recall, for each object load request that miss in the LLC, the
DM controller on the compute server issues a single cache

Fig. 5. Operation of get (left) and put (right) using controllers on the
compute and memory servers (controllers shaded in orange).

line read request over the interconnect making it inefficient
for objects spanning multiple cache lines.

CXL 3.0 [10] does provides fixed block request semantics
(2 or 4 contiguous cache lines) with the block request size to
be specified in advance. However, objects have more variable
block sizes and compute server LLCs cannot specify the block
size in advance as they operate oblivious of objects.

Āpta builds on CXL 3.0 to provide variable sized, bulk
cache line requests. It bulk reads all the objects cache lines
into the compute server cache in one round trip to the memory
server (similar to [12]), providing the lowest possible latency
and maximizing the interconnect bandwidth utilization. This
process is illustrated in Fig. 5, left. The GET controller
(optimized DM controller) issues the LLC’s read request over
the interconnect. The memory server reads all cache lines
constituting the object from DRAM memory. It replies with all
these cache lines and squashes/ignores any immediate requests
for this object from that compute server. The GET controller
receives all the prefetched cache lines and inserts them into
the respective cache sets in the LLC. The LLC forwards the
demand miss cache lines to lower level caches and the CPU.

(c2) Object-atomic writes I Transactional atomic durability
Recall, CXL permits atomic writes of single cache lines which
forces a put to use software transactions (libpmemobj API)
to write an object of multiple cache lines atomically to the
DM system. These transactions use software logging (undo or
redo) which adds significant number of additional instructions
per transaction, hurting latency and throughput.

Āpta provides hardware transactions for object atomic
writes to improve performance (similar to [32], [54]). The
hardware transaction ensures that when an object put is
executed, either the entire object is persisted4 or, in case of
failures, any partial writes are collectively discarded. If the
transaction succeeds, the memory server overwrites the new
version into the objects memory area. If the transaction fails,
it is retried, assuming the cause of the failure is transient.
If a retry threshold is exceeded, the exception is reported to

4Recall the memory server is usually kept highly-available and persistent

6



an external FaaS infrastructure system and the entire function
execution is considered to have failed.

In the compute server, the PUT controller, co-located with
the CPU, flags for persistence all the cache lines written by an
object put. The controller orchestrates an atomic transaction,
using a one-phase commit protocol with the memory server
(Fig. 5, right). When the memory server issues a commit
response, the PUT controller clears the persistence flags.

D. Realizing Āpta’s architecture

We now detail the memory server components - data plane
controllers, control plane software and the interaction between
them required to realize Āpta. We also describe in detail the
coherence protocol sketched out in the previous section.

1) Micro-architecture of data-plane controllers: The data
plane on the memory server is composed of a conventional
memory controller and the Āpta controller. The Āpta controller
is composed of four modular sub-controllers as shown in
Fig. 1. This section details the micro-architecture of these
controllers, each providing a certain functionality.

Object Serving sub-controller (OSC):
� Function: Serving objects (bulk cache lines) when the GET
controller requests an object’s cache line.
The OSC translates the requested mPA to an object triplet. For
this, OSC walks the object mapping data structure, populated
by the FaaS runtime object manager (See III-D2). Similar to
page tables, this translation latency can be reduced by using
TLBs, page walk caches, cuckoo filters [82] etc. Once the
physical address of the object is retrieved, the OSC issues
memory access requests to the memory controller and replies
to the compute server once it receives the data from it.

Object Persistence sub-controller (OPC):
� Function: Persists an entire object atomically into DM.
Recall, an object put initiates a one-phase commit protocol,
between the PUT controller on the compute server and OPC
on the memory server, to atomically write all the objects cache
lines. As shown in Fig. 5 (right), first, the PUT controller on
the compute server CPU sends a prepare message with the
objID to be written. Then, it issues cacheline writeback (clwb
[36]) for all the cache lines that are written by the put. The
data from these cache lines, resident anywhere in the cache
hierarchy of the compute server, are flushed to the memory
server. OPC uses buffers (either using SRAM registers or a
dedicated DRAM area) to temporarily stage cache lines written
back from the compute server. OPC expects to receive a fixed
number of cache line writes to complete the object write
(inferred from the object triplet). Once it receives all cache
lines of the object, it replies with a commit message, marking
the end of transaction. OPC notifies object tracker controller
(OTC) of the competition of an object write and flushes/drains
the buffers to the memory controller.

Object Tracker sub-controller (OTC):
� Function: Directory for the Āpta coherence protocol.
Similar to a conventional directory, OTC maintains entries
about the state and sharer vector for each object triplet. The

Fig. 6. OTC(Directory): Complete coherence protocol. I, S are stable states;
SI, SA are transient states

OTC directory represents the ordering point for all requests.
The directory is inclusive of all the compute server LLCs i.e.,
it holds directory entries for a superset of all objects cached
in all the compute server LLCs. A miss in this directory cache
indicates that the object is in state I. The sharer list tracked
is not precise since the compute server LLC silently evicts
blocks in shared state.

The protocol: OTC uses a simplified coherence protocol
with Shared and Invalid stable states, avoiding the Modified
and the Exclusive States. This is in line with the CXL
specification as it flexibly allows implementations to use fewer
stable states in the protocol. (We discuss further details of the
CXL protocol in Sec. V-1.) Most coherence protocols involve
transient states since transition from one stable state to another
is not typically atomic [65]. Āpta re-purposes a transient state
to account for the asynchronous invalidations. Fig. 6 illustrates
the transition diagram for the OTC directory controller (with
events and actions on stable and transient states). For ease of
explanation, this protocol assumes that FaaS applications are
race-free, i.e., no put or get can occur during an ongoing
put. (However, the actual Āpta protocol can handle buggy
FaaS applications with races as well.) A put event is triggered
on the completion of an object persistence transaction by the
OPC; a get event is triggered at the beginning of an object
serving request by the OSC. An “Invalid” state for an object
implies it is not cached in any compute server. A “Shared”
state implies the object is cached in readable state in one or
more compute servers. The transient state SA signifies that
the new version of the object is cached in Shared state in one
or more compute servers and there are pending invalidation-
Acknowledgments from one or more compute servers for the
old version of the object.

Suppose the directory receives a put for an object currently
in shared state. Once the put transaction completes, the
directory performs 3 actions in parallel - acknowledges the
write, notifies the object invalidation controller (OIC) to send
invalidation messages to all prior sharer compute servers,
clears the old sharer vector and adds the compute server that
requested the put as a sharer for the new version of the object
(Recall the caching policy is write-allocate - compute server
retains the object after a put). The directory then transitions to
SA until it receives all invalidation-acknowledgments. While
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in this state the directory can still service a get or put request
for the object. For a get, the OSC responds with the latest
object version, satisfying Lemma #1. Once OIC notifies that
all outstanding invalidation-acknowledgments are received, the
directory transitions back to shared state for the object.

The organization: The directory is organized as a stan-
dalone, set-associative directory cache structure at object
granularity. When a directory cache set is full, the directory
controller evicts a cold, shared object in the set. It issues
an invalidate to all compute server sharers that cache this
object and transitions to transient state SI . Any requests to
the object while in this state, are stalled until all invalidations
are acknowledged and an entry becomes available. Sizing the
directory cache appropriately and correctly identifying cold
objects can ensure that operations can continue at line-rate,
without stalling.

Object Invalidation sub-controller (OIC):
� Function: Invalidates stale objects cached in compute
servers.
The OTC requests the OIC to invalidate an object triplet
(objID, base mPA, size) on a set of compute servers. OIC
issues invalidation messages to the compute servers for all
the object’s cache lines. At the compute server, the challenge
however is translating the mPA address of the object to cPA
address to issue invalidations to caches. This is achieved using
an efficient object based reverse mapping [13], implemented
in Linux for reserve mapping virtual memory (rmap chains)5.
This reverse mapping is used by system calls like mmap,
munmap, madvise etc. However, this is an expensive software
call (measured to be ∼1.4µsec per call) invoked by GET
controller using interrupts and adds significant time overhead.
Recall, in Āpta, invalidations are out of the critical path and
hence this does not affect performance. Finally, the GET
controller sends invalidation-acknowledgments.

The OIC tracks the number of invalidation-acknowledg-
ments that are outstanding from each compute server using
a counter. It notifies the OTC when all the invalidation-
acknowledgments are received.

2) Control-plane software: Āpta modifies existing FaaS
runtime control-plane software [47]. This software runs on
the low-power SoC of the memory server. We outline the
changes required in two of these components and describe
their interface to the Āpta hardware controllers.

Executor Manager (EM):
� Function: Responsible for scheduling and tracking the
execution of the state machine workflow of FaaS applications.
EM selects a suitable compute server to schedule a function
invocation and passes the invocation parameters to the function
sandbox. EM scheduler is guided by the performance and
correctness criteria when scheduling function invocations.
� Hardware interface: When scheduling functions, if the set
of all objects to be accessed by the function is unknown

5Originally an object in [13] referred to a memory mapped file which maps
a range of data to a range of physical addresses. This works very well for our
purposes since FaaS objects are also allocated contiguously within a range.

(not declared), the scheduler queries the OIC to exclude all
compute servers which have pending invalidation-acknowledg-
ments. If the set of objects to be accessed by a function are
declared in the state machine workflow, the scheduler looks
up the object in OTC to determine where scheduling can be
beneficial (current sharers) and if any compute servers are to
be excluded (invalidation-acknowledgment pending).

Object Manager (OM):
� Function: Responsible for memory allocation and de-
allocation of objects in the memory server.
The objects are allocated in mPA in fixed bucket sizes
(rounded up to the nearest fixed bucket size). The buckets
are allocated as a contiguous physical memory address range,
aligned at the cache line boundary in the memory server.
This memory allocation strategy is akin to the memcached
slab allocator [60] The OM runtime stores an object mapping
data structure of mPA to unique objID, at a fixed location
in memory. This data structure is organized as a radix tree
followed by a trie6.
� Hardware interface: For serving objects, the OSC controller
reads the object mapping data structure written by the OM
runtime (from the fixed location in memory) and responds to
the compute server mPA request with object-granularity bulk
read semantics.

E. Putting it all together

Fig. 7 illustrates the application state machine workflow of
three real world FaaS applications [46], [51] with the objects
accessed by each function and annotated with an instance of
scheduling decision made by the EM on a cluster of compute
servers (C1 to C4) connected to access the Āpta object store.

We walk through the working of Āpta with the sentiment
analysis application (Fig. 7, App 3) that evaluates customer
reviews for products of a company and is triggered when the
collated raw reviews file (csv) is uploaded to the object store.

When read csv function on C1 receives a invocation trigger,
the get call (rdata = get(“raw data.csv”)) maps rdata to the
shmem IPC region, located in the DM address range on C1.
When rdata is accessed, the LLC miss triggers a request to
the GET controller. The OSC controller responds with a set
of cache lines of the object. All subsequent accesses to rdata
in the computation hit in the caches. The put call atomi-
cally writes parsed reviews object to memory server using
hardware transaction between the PUT controller and OPC.
C1 caches both raw data.csv and parsed reviews objects and
accordingly, the OTC tracks C1 as a sharer of these objects.

Next, the sentiment analysis function, scheduled on C2,
similarly performs a get on parsed reviews. On access the
object is brought into the LLC, making C2 a sharer for
the object. After computation, a put call writes a new
version of parsed reviews to the memory server. The Āpta

6For object mapping, a combination of space efficient radix tree and lookup
time efficient trie is used (inspired from page table in virtual memory and
longest prefix match in routers, respectively). The radix tree traversal first
points to 4KB/2MB page. Within the page, objects are organized as a trie. This
organization ensures the data structure can be read in hardware controllers.
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Fig. 7. FaaS applications annotated with object store interactions and scheduling decisions; highlight color changes indicate object writes requiring invalidation

protocol acknowledges the write from C2 immediately and
sends invalidation to C1 asynchronously, tracking C1 as having
outstanding invalidation-acknowledgments. When scheduling
the next set of parallel functions, the EM checks with OIC and
does not schedule the functions on C1 to satisfy §Scheduling
Correctness Criterion. Scheduling on C2 provides opportunity
to exploit locality as it previously executed a predecessor
function. Accordingly, publish to sns and write to db are
scheduled on C2 and both functions benefit from cache hits
for accesses to parsed reviews.

IV. EVALUATING ĀPTA

A. Evaluation Goals:
(i) Compare performance of Āpta against the following state-
of-the-art compute server fault-tolerant systems:
• RDMA-based object store with Faa$t caching [77]: An

immutable object caching protocol run using two-sided
RDMA verbs over Infiniband. On a put, write-through to
object store with no sharer invalidation. On a get, if cache
hit, incur one round trip to object store to ensure cached
data is not stale (no object data transferred unless data is
stale); if cache miss, read object from remote object store.

• faster RDMA-based object store with Faa$t caching: Uses
the same interconnect as Āpta for RDMA, along with the
above Faa$t software-based object caching protocol. This
configuration allows us to isolate the benefits of improving
just the underlying interconnect (transport layer).

• faster RDMA-based object store with Āpta caching: Uses
the same interconnect and Āpta’s object caching protocol
but in software. This configuration allows us to quantify the
benefit of our optimized coherence protocol.

• CXL uncached DM: The cache line granularity DM of CXL,
that achieves fault-tolerance by disabling caching of any DM
data (requires no coherence protocol). This configuration
allows us to quantify performance benefits of caching in
DM and object semantic operations proposed for Āpta.

TABLE II
CONFIGURATION OF THE SIMULATED SYSTEM

3 Compute Servers
Processor single socket, 3.0 GHz; Int/FP Ops: 0.02 CPI

L1 I/D Cache 256KB, 8-way, private per core, 1 cycle
L2 Cache (LLC) 32MB, 16-way, shared, 10 cycles, 128 MSHRs
Local Directory embedded in L2, fine sharing vector (cores, cachelines)
Local Memory 2 × 8GB DDR4-2400 MHz, 1 channel

1 shared Disaggregated Memory Server
Directory (OTC) 20-cycle, coarse sharing vector (compute servers, objects)

Memory 2 × 8GB DDR4-2400, 1 channel
Interconnect

Latency & Bandwidth point-to-point, 500ns, 80Gbps full-duplex

(ii) Demonstrate the fault-tolerance and resilience of Āpta
(iii) Break-down performance gains for get and put operations
(compute time is kept constant for all configurations)
(iv) Evaluate robustness of performance gains with respect to
varied interconnect properties and compute server capabilities.

B. Evaluation Methodology:

Our evaluation of Āpta is driven by a simulator based
methodology (similar to DM proposals [8], [44], [45]). We
now set out the configuration parameters and workloads used
in the simulation of such a system.
� Workloads: We use 6 full FaaS application workflows,

totaling 26 functions, from different domains seen in FaaS -
text, numeric, image, video processing. We simulate these full
FaaS application workflows from start to finish to demonstrate
realistic cache hit rate, invalidations and scheduling decisions.
For each application, Table III shows the communication
patterns in the workflow, input data size, constituent func-
tions and a chosen instance of a schedule for an invocation.
These applications cover the full range of characterized input
dataset/object sizes and function communication and invo-
cation patterns [62], [66], [87]. The applications use local
DRAM main memory to store intermediate data, akin to a
scratchpad. Table III shows this measured local memory usage

9



TABLE III
FAAS APPLICATIONS ANNOTATED WITH SCHEDULE

Application Functions (compute server c1-c3)
(Patterns; Input data size; Max RSS)

PHI data [46] identifyPHI (c1), deIdentify (c2),
(Broadcast, Pipeline; 20KB; 100MB) anonymize (c1), analytics (c1)

Sentiment Analysis [46] readcsv (c1), sentimentAnalysis (c2),
(Broadcast, Pipeline; 480KB; 93MB) publishSNS (c2), writeDB (c2)

FINRA [46] fetchMarket (c1), fetchPortfolios (c2),
(Broadcast-Gather; 1.2MB; 23MB) volume (c1), trdate (c2), lastpx (c3),

side (c2), marginBalance (c1)
Video Transcode and Analysis [51] locateKeyFrame (c1), splitVideo (c1),

(Scatter-Gather, Pipeline; 2MB; 117MB) AnalyzeProcess (c1,c2), validate (c3),
concat (c3)

Image Prediction [46] resize (c1), predict (c1), render (c1)
(Pipeline; 2.7MB; 357MB)

Serverless GEMM (sparse) [80] split (c1), mapper (c1, c2), split (c1),
(Map-Reduce; 234KB; 943MB) reducer (c1, c2)

excluding the input object (max resident set size). We report
the geometric mean speedup as an aggregate statistic across
all applications.
� System configuration: We model a DM system with

four servers (3 compute servers and 1 memory server). Each
compute server has a single socket CPU with local DRAM
memory. The CPU has per-core L1 and a socket-shared L2
cache, kept coherent with a directory-based MOESI proto-
col. Within the memory server, we simulate DDR4 DRAM
memory, along with the Āpta controllers. The compute servers
connect to the DM server with ordered point-to-point links of
a fixed latency and bandwidth (full system config in Table II).

The RDMA configurations are measured on same hardware
as in Sec. II. To model futuristic, faster RDMA (RDMAf

- running over the same PCIe gen5 interconnect as Āpta),
we add the latency overheads incurred for using RDMA
operations and software coherence protocol to Āpta’s network
latencies, as an approximation. Object get/put operations in a
key-value store using RDMA to read/write data from/to remote
memory are an average of 2.2× slower than CXL [29]. Above
this, fault-tolerant coherent object get/put operations require
employing key-value stores like Faa$t and Hermes [42], which
use complex two-sided RDMA, adding even more latencies.
We measured this as the latency difference between a write in
Hermes and a one-sided RDMA write (≈14 µsec per call, fixed
overhead irrespective of object size). We use these overhead
latencies along with the respective coherence protocol actions
to simulate RDMAf+Faa$t and RDMAf+Āpta.
� Simulator setup: We simulate the identical shared mem-

ory version of the full FaaS applications written in python,
compiled down to C. We generate traces of these programs
using the Prism framework [67], which uses Valgrind to gener-
ates traces of compute, memory, thread create/join and barrier
events. The tool produces synchronization and dependency-
aware, architecture-agnostic traces. These traces are manually
annotated with FaaS phases of execution i.e., get/compute/put.

We replay the traces in a modified gem5 simulator [78]. We
implement the proposed inter-server Āpta coherence protocol
and its hardware controllers. OSC and OTC lookup incur
latency of 20 cycles each, modeled on average address trans-
lation and directory lookup latencies in modern processors
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Fig. 8. Performance comparison of all configurations, normalized to RDMA
without caching, for 6 full FaaS applications comprising of 26 FaaS functions

[33]. Memory ops are simulated with a detailed memory
hierarchy. The replay mechanism uses FaaS phase of execution
annotations to apply appropriate memory access characteristics
for each phase of execution i.e., caches+local memory for
compute, caches+DM for get/put. Integer and floating point
ops are simulated with fixed CPI. We use an aggressive CPI
and larger, lower latency L1/L2 caches to represent execution
with optimized libraries (as in Sec. II-A). This simulator
setup speeds up the computation phase of FaaS functions by
5× geomean compared to unoptimized (single thread) python
functions run on a Intel i7-9700K machine. (Note this is
conservative as Intel python extensions provide 200× speedup
for scitkit-learn, 90× for pandas, 3× for tensorflow [37].)

C. Evaluation Results:

1) Performance benefit and analysis: Fig. 8 shows the
performance of all configurations normalized to a baseline
RDMA-based object store without caching.
Result 1: Āpta provides 42% geomean speedup over state-
of-the-art RDMA+Faa$t. This performance gain comes from
three sources: (a) improved network, (b) optimized Āpta
coherence protocol, and (c) using hardware controllers for
object access and coherence in DM. The RDMAf+Faa$t
configuration provides 7% performance improvements over
RDMA+Faa$t, showing the performance gains from just the
improved network. Next, employing Āpta’s coherence pro-
tocol over RDMAf (RDMAf+Āpta) provides further 12%
improvement over the previous RDMAf+Faa$t, showing the
performance gains from our optimized coherence protocol.
Finally, Āpta’s use of DM hardware-controllers eliminates the
irreducible software overheads of RDMAf , thereby providing
18% higher performance than previous RDMAf+Āpta.
Result 2: Āpta provides 24% geomean performance gain over
CXL-uncached by using a fault-tolerant object caching proto-
col and object semantic reads/writes. Note that employing the
CXL-uncached object store will perform worse than a faster
RDMA-based object store with caching (RDMAf+Āpta), em-
phasizing the need for Āpta’s design in a DM system.
Result 3: We also evaluated the performance against the non
fault-tolerant cached CXL DM. Āpta provides 10% geomean
speedup over this CXL-cached system (not shown in graph).
This shows that there is no performance cost to Āpta’s
fault tolerance; in fact, Āpta shows a small improvement in
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Fig. 9. Object get and put latencies, normalized to RMDA without caching

performance because it addresses CXL’s inefficiencies owing
to its cache line granular accesses.

2) Fault-tolerance validation: We verify the complete Āpta
protocol (with additional states to handle races, if any appli-
cations misbehave), in the Murφ model checker [15] and ex-
haustively verified for liveness (deadlock-freedom) and safety
(linearizability). Importantly, we also model check to prove
correct and non-blocking behavior in the presence of sharer
compute server failures. The detailed state transition table
and Murφ model for the protocol are available online at
https://github.com/adarshpatil/apta.

Result 4: Because the Āpta protocol does not wait for
acknowledgments in the critical path, it has the potential for
lower tail latencies. To measure this, we run the applications
50 times under variable network latencies to reflect real world
rack scale networks [73] and measure the standard deviation
of execution times. The network requests experience a random
latency within a Gaussian distribution (40% variation around
the mean as measured for an Infiniband network [41]). On
average, applications exhibit 32% lower standard deviation of
execution time with Āpta compared to the non fault tolerant
CXL-cached system, demonstrating the resilience of Āpta.

3) Performance Break-down: For the simulated schedule,
Table IV shows the number of gets which hit in the cache
(compulsory cache miss for first get request on all compute
servers, while subsequent gets may potentially hit in the
cache) and the number of puts that require sharer invali-
dations (these puts jeopardize DM system availability and
increase latency with the blocking CXL-cached protocol).
Result 5: Āpta lowers geomean get latency by 90%, compared
to RDMA+Faa$t’s 57% reduction and CXL-uncached 71%
reduction over baseline. Fig. 9, left shows the total get
latency, normalized to baseline for each application. Although,
both caching mechanisms (RDMA+Faa$t and Āpta) see same
cache hit rate, Āpta lowers geomean get latency by using an
improved protocol and the DM interconnect.
Result 6: Āpta achieves the highest 81% reduction in geomean
put latency, compared to 63% reduction for CXL-uncached.
Fig. 9, right shows the baseline normalized total put latency.
Since a put operation always writes through to the object
store, RDMA and RDMA+Faa$t see the same put latencies.
Āpta achieves the reduction by using optimized hardware

TABLE IV
GET AND PUT CHARACTERISTICS FOR FAAS APPS EXECUTION

App ↓ / Num. of → gets (cache hit,miss) puts (no inv, with inv)
PHI data 4 (2,2) 4 (4,0)

Sentiment Analysis 4 (2,2) 2 (1,1)
FINRA 5 (3,2) 3 (2,1)

Video Transcode 5 (2,3) 6 (5,1)
Image Prediction 3 (2,1) 3 (3,0)

Serverless GEMM 6 (3,3) 6 (6,0)
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Fig. 10. Speedups of Āpta over baseline, for varied interconnect characteris-
tics (a) bandwidth, (b) latency and (c) computation capability (INT/FP CPI)

transactions over an improved DM interconnect.

4) Sensitivity studies: Āpta performance gain is subject to
the compute-to-communication ratio of the application. There-
fore, we study the performance sensitivity due to variations in
interconnect characteristics and computation capabilities.
Result 7: The performance of Āpta improves with increase
in bandwidth of the DM network, seeing 90% geomean
speedup over baseline for 200Gbps. Interconnect latency has a
smaller impact on the performance of Āpta. Āpta still provides
a 84% geomean speedup with high latencies of 600ns, as
expected for CXL switched fabrics. Fig. 10 a & b summarizes
the speedups of Āpta over baseline, for varied interconnect
network latencies and bandwidth.
Result 8: Āpta’s performance gain marginally reduces to 78%
geomean with lower capability compute cores, as computation
segment latency dominates in the total execution time. Fig. 10c
shows the speedups obtained as we vary int/fp ops CPI of the
core for both baseline and Āpta.

D. Evaluation Summary:

Āpta provides performance gains over all types of FaaS
applications – from communication to compute heavy, appli-
cations with high object reuse and those with lower reuse,
applications with serial and multiple parallel functions and
over a range of object sizes.

V. DISCUSSION

1) Specifics of CXL support for Āpta: Āpta’s design intro-
duces minimal changes to the CXL protocol and the servers.
We discuss (i) the precise CXL protocol leveraged to design
Āpta and (ii) changes needed to the CXL protocol specification
to realize Āpta’s fault-tolerance benefit. We refer to relevant
sections in the CXL 3.0 specification [10] in the discussion.
Using CXL.mem protocol for pooled shared memory: CXL
3.0 specification defines the creation of a pooled memory de-
vice where multiple compute servers are configured to access
a single memory region concurrently - called “shared FAM”

11



(fabric attached memory) (Sec. 2.4.3). Āpta designates the
coherency model for the shared FAM as “hardware coherency
with a directory” (Sec 2.4.4 7) and builds over the CXL.mem
hardware coherence protocol (Sec 3.3). While CXL does not
specify the detailed implementation of the directory, it does
allow for tracking fewer states per cacheline i.e., 2 or 3
states instead of the original 4 state MESI protocol (Sec 3.3.3
Implementation Note). Accordingly, Āpta encodes the state of
the cacheline using I and A stable states as per the CXL.mem
parlance and implements the directory logic in the OTC. To
send invalidations and receive invalidation-acknowledgments
to/from compute server caches, OTC uses Back-Invalidation
Snoop (BISnp) and Back Invalidation Response (BIRsp) mes-
sages (Sec 3.3.7, Sec 3.3.8), sent over dedicated S2M BISNP
and M2S BIRSP channels (Sec 3.3.2).
Permitting asynchronous invalidation in CXL.mem proto-
col: The CXL 3.0 specification clearly defines the blocking
behavior of BISnp requests (Sec 3.3.3). The synchronous
invalidation behavior is further reinforced in the ordering rules
(Sec. 3.4, Table 3-50 and Appendix C.1.2). Āpta requires the
synchronous BISnp condition to be relaxed in the specification.
This would allow implementations like Āpta to respond to
write requests and other read requests immediately without
waiting for the invalidation to complete.

2) Generality of proposed hardware: Designing controllers
for CXL memory is currently under active development.
CXL is being investigated to provide persistent memory [54],
pooled remote memory to expand memory capacity [50], near-
memory accelerators on CXL [34] and dynamic tiered mem-
ory [35]. Efficient implementation of these designs requires
controllers for data persistence, address translation and data
coherence. Āpta’s controllers OPC, OSC and OTC basically
provide the aforementioned services and can be adapted to suit
these and other emerging applications.

3) FaaS scheduler deep-dive: Using Kubernetes as a case-
study we illustrate how Āpta interfaces with a scheduler.

Generally, FaaS schedulers are complex frameworks that
correctly and efficiently schedule functions on compute nodes.
Notably, several custom built [22], [53], [56] and cloud
provided [3], [27], [61] frameworks exist. The kube-scheduler
component of Kubernetes is an example of such a scheduler.
It considers several factors like individual and collective
resource requirements, hardware/software policy constraints,
affinity/anti-affinity specifications, inter-workload interference
etc., when making scheduling decisions [47]. The scheduler
has two cycles: a serial scheduling cycle and a parallel binding
cycle, with each cycle consisting of multiple stages. Āpta can
use existing stages in the serial scheduling cycle to achieve
its objectives. Specifically, the pre-filter stage can query the
OIC and remove invalidation pending compute servers from
scheduling decisions (for correctness). The pre-score stage can
add affinity labels to nodes with locality which can then be
used in the score stage to preferentially select these nodes.

7CXL 3.0 permits the coherency model of the shared FAM to be either
hardware coherency or software-managed coherency.

VI. RELATED WORK

Resilient coherence protocols: A class of works [1], [19],
[20] design coherence protocols that can tolerate dropped and
faulty messages. They reissue requests on a timeout to recover,
but crucially assume all participants are alive. Āpta is the first
work to handle complete node failures.
FaaS applications: A number of works [11], [43], [57], [85],
[86], [90] composed function benchmarks and software stacks
employed in FaaS platforms. They also demonstrate several
FaaS inefficiencies: data communication, cold start etc. Āpta
addresses a chief inefficiency of FaaS – data transfer overheads
and provides a fault-tolerant DM system for FaaS applications.
Reducing communication overheads in FaaS: Several works
[55], [64], [77], [81], [83], [88] aim to provide software-
based caches at compute servers to cache objects. These works
reinforce the potential of caching to improve performance
despite being connected by fast networks. Āpta provides
software transparent object caching using CXL-based DM.

Faastlane [46], SAND [2] co-locate functions within an ap-
plication (restricting scheduling) as threads/light-weight con-
texts to use local shared memory for low communication
latency. Āpta allows function processes, to access shared
objects from local caches if co-located, but critically also
permits flexible scheduling, anywhere in the DM system.
High performance remote memory: Numerous works [12],
[16], [24], [30], [68], [79] have used RDMA interconnects to
provide software-based remote memory for applications. Āpta
overcomes inefficiencies of RDMA by using DM, providing
the highest performance remote memory. MIND [48] acceler-
ates RDMA remote memories with in-network coherence and
memory management. Analogously, Āpta designs a hardware
coherence protocol for a DM object store but crucially en-
forces availability in the presence of compute server failures.
Disaggregated memory: This line of work use hardware-
supported operations [52] to provide remote memory. Clio
[31] defines explicit virtual memory API calls for processes
on compute servers to allocate, read/write and synchronize
accesses to the DM. COARSE [89] uses DM to accelerate
distributed deep learning training. Kona [8] and DM prototypes
[49], [74] create per-server private regions on the memory
server to allow compute servers to transparently extend their
memory capacity. While Āpta shares some common objec-
tives, it builds on top of a CXL 3.0 DM system, specializes it
for FaaS, and ensures availability in the face of server failures.

VII. CONCLUSION

In this paper, we have observed that upcoming CXL-based
DM systems can alleviate the communication bottlenecks of
cloud-based FaaS applications but lacks the necessary fault-
tolerance to operate in a failure-prone datacenter. We have
proposed Āpta, a CXL-based DM system for maintaining
FaaS objects that provides efficient object-granular access and
allows fault-tolerant caching of objects in compute servers
caches, without compromising consistency. Thus, Āpta has
showcased for the first time a fault-tolerant cloud use-case
for CXL-based coherent disaggregated memory.
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