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Abstract
Software using non-coherent interconnects like PCI Express
requires fine-grained memory ordering, but current hard-
ware mandates the use of costly source-side serialization.
We show that this architectural mismatch severely limits
the performance of two critical applications: (1) the trans-
mission of network packets from a CPU to a NIC (requiring
write-to-write ordering) and (2) key-value store lookups by
an RDMA-enabled NIC (requiring read-to-read ordering).

We address this by proposing a new destination-based or-
dering model and the hardware-software co-design compris-
ing PCIe extensions and ISA extensions that allow software
to express ordering intent efficiently. Novel microarchitec-
ture at the Root Complex enforces these expressed semantics,
eliminating source-side stalls. Our approach significantly
improves the throughput of these application kernels and
enables new, simpler protocols that outperform the state-of-
the-art.

CCS Concepts: • Hardware → Buses and high-speed
links; Networking hardware; • Computer systems organi-
zation → Interconnection architectures.

Keywords: Memory Consistency Models, I/O Interconnects,
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1 Introduction
Modern servers are frequently limited by the performance of
the interconnects that link CPUs with devices like network
interface cards (NICs) and GPUs. We focus on non-coherent
interconnects, like PCI Express (PCIe), which drive today’s
I/O systems. While coherent I/O interconnects like Com-
pute Express Link (CXL) [8] represent a new direction, thor-
oughly understanding and optimizing existing systems is a
prerequisite to justifying the added complexity and cost of a
full-coherence paradigm. This work examines the interaction
between a NIC and host CPUs across a PCIe interconnect, ex-
posing a fundamental bottleneck: the high cost of enforcing
ordering on remote memory operations.
Remote ordering issues arise when a device (CPU, GPU,

NIC, etc.) accesses two or more addresses belonging to an-
other device in a specific sequence, a requirement for many
communication patterns. For example, when a host sends
packets to a NIC via memory-mapped I/O (MMIO) writes,
the packet order must be maintained. Similarly, in an RDMA-
based key-value store (KVS), the NIC may first need to ac-
quire a lock and then read the targeted object; violating this
ordering constraint would compromise data integrity.

The core problem today is a mismatch between the mem-
ory consistency model required by modern I/O software and
the capabilities of the PCIe I/O stack. Specifically, the PCIe
specification [14] currently lacks the semantics to express
and enforce fine-grained memory ordering end-to-end. This
forces systems to rely on costly, source-side ordering mecha-
nisms, resulting in serialization and significant performance
overheads. For example, in a CPU-NIC transmit path, achiev-
ing ordering requires a store fence from the source CPU after
every MMIO write, making a direct MMIO-based path com-
pletely impractical. This is why modern transmit paths are
built on complex workarounds involving MMIO doorbells
and DMA reads [19, 20, 30, 31]. Likewise, in a KVS accessed
via RDMA, enforcing ordering at the source—either at the
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server’s NIC or at the client—can make ordered remote reads
over an order of magnitude slower than their unordered
counterparts. These costly mechanisms that serialize at the
source to preserve ordering hurt performance significantly.
To overcome this, we propose a new, destination-based

ordering paradigm. Our solution co-designs a new PCIe in-
terface and a suite of microarchitectural mechanisms that
shift the responsibility for ordering from the initiating source
to hardware at or near the remote destination. This allows
remote operations to be issued concurrently while ordering
is enforced efficiently at the target. Our approach enables a
simple and efficient MMIO-based transmit path to achieve
line-rate throughput (100 Gb/s on a single core) without store
fences and near-zero penalty DMA read ordering.

The foundation of our approach is to make memory order-
ing an explicit, first-class concern from the instruction set
architecture (ISA) down to the interconnect. We introduce
acquire/release semantics directly into the PCIe specification,
bridging the conceptual gap between how programmers rea-
son about memory consistency and how the interconnect
enforces it. We also propose elevating release consistency-
style MMIO loads and stores to first-class citizens within the
host’s ISA, providing a precise, hardware-supported interface
for a processor to signal its memory ordering intent. Our key
insight is that by making memory ordering explicit, we can
enable a more efficient hardware implementation. Specif-
ically, our solution includes a Remote Load-Store Queue
(RLSQ) in the PCIe Root Complex capable of enforcing the
new acquire/release rules with minimal performance penal-
ties.

In this work 1 we make the following contributions:
• We identify performance pathologies for remote memory
ordering with non-coherent interconnects (e.g. PCIe). We
analyze the overheads for MMIO and DMA ordering, and
we quantify the costs with application kernels.

• We propose a destination-based ordering architecture for
non-coherent interconnects.We introduce new acquire/rel-
ease semantics in the PCIe specification and acquire/release
MMIO instructions in the host ISA that explicitly commu-
nicate ordering requirements, enabling endpoints to avoid
costly serialization at the source.

• We define novel microarchitectural support to efficiently
enforce destination-based ordering. Our design includes a
Remote Load-Store Queue (RLSQ) in the Root Complex,
which leverages the new PCIe semantics to enforce order-
ing while maximizing parallelism.

• We demonstrate significant performance gains on applica-
tion kernels. Our results show that our approach enables a
simple, fence-free MMIO transmit path that delivers line-
rate throughput. An optimized RLSQ improves RDMA-
based KVS performance by up to 50.9× for 64 B objects
using a single RDMA queue pair in simulation.

1https://github.com/icsa-caps/efficient-remote-memory-ordering.git
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Figure 1. System Memory Interactions. MMIOs from CPU are
routed over PCIe via the Root Complex (RC) to the NIC. DMAs
from the NIC access host memory via the RC. Our work proposes
extending PCIe TLPs for ordering, extending the CPU’s ISA to
specify MMIO ordering, and a Remote Load-Store Queue at the RC.

Table 1. PCIe Ordering Guarantees

W→W R→R R→W W→R

Yes No No Yes

• We present a design for RDMA-based KVS lookups that
exploits our efficient remote memory ordering and is sim-
pler than existing approaches while delivering throughput
1.6× higher than FaRM [11].

2 Remote Memory Ordering Today
Achieving efficient remote memory ordering between a host
CPU and a NIC is fundamentally constrained by the asym-
metric nature of the underlying PCIe interconnect. Com-
munication in this system model (Figure 1) relies on two
primitives: Memory-Mapped I/O (MMIO), where the CPU
accesses NIC memory, and Direct Memory Access (DMA),
where the NIC accesses host memory.

While PCIe provides strong ordering for posted writes, its
weak ordering for non-posted reads (Table 1) [14] creates sig-
nificant performance bottlenecks for common Read-to-Read
(R→R) patterns. For example, a slow DMA read from main
memory can be passed by a faster DMA read that hits in the
host cache, violating the fine-grained ordering required by
software. For MMIO, however, the bottleneck stems from
how the host CPU interacts with the PCIe interface, which
causes inefficiencies in both W→W and R→R MMIO order-
ing. This section analyzes the architectural roots of these
overheads for both DMA and MMIO and demonstrates their
impact on modern CPU-NIC software stacks.

2.1 DMA Ordering
R→RDMAordering presents a significant bottleneck. Con-
sider a litmus test where a NIC must read a status flag be-
fore its corresponding data; correctness dictates that the
NIC not see stale data after seeing an updated flag. Today’s
only solution is for the NIC to enforce this by serializing
the requests—issuing the flag read, waiting for the full PCIe
round-trip completion, and only then issuing the data read.
This synchronous “stop-and-wait” execution significantly

https://github.com/icsa-caps/efficient-remote-memory-ordering.git
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Figure 2. Distribution of RDMAWRITE latency between two hosts
using different patterns for operation submission. Including One
DMA read as part of the submission adds about 300 ns to the delay
over All MMIO (zero DMAs). Using Two Ordered DMA reads adds
about another 300 ns, while using Two Unordered DMA reads is
about the same asOne DMA since the two DMAs can be overlapped.

reduces read throughput. Simple alternative approaches to
efficient ordering are insufficient: pipelining the reads fails
because the PCIe fabric can reorder them, and a NIC-side
reorder buffer fails because the host-side completions can
return out of order (e.g., a cached data value may return
before an uncached flag value).
W→WDMAordering, however, is handled efficiently. Con-
sider a litmus test where a NIC must write data before its cor-
responding status flag. Because PCIe guarantees that posted
writes from the same source are not reordered, the NIC can
pipeline data and flag writes, relying on the interconnect to
preserve their order with minimal performance impact.
The Cost of DMA Ordering. To evaluate the performance
impact of enforcing R→R DMA ordering, we devised an
experiment to isolate the latency cost of serializing DMA
reads. Our strategy relies on the fact that an RDMA WRITE
operation inherently requires the client NIC to read data
from host memory. By manipulating how these WRITE op-
erations are submitted—specifically the layout of the Work
Queue Element (WQE) and its payload—we can force the NIC
into specific DMA read patterns, ranging from fully parallel
(unordered) to strictly serialized (ordered).

We used ConnectX-6 Dx 100 Gb/s NICs to implement this
(§6.4 provides full details). Each experiment posts one-sided
RDMA WRITE operations to a client NIC using different
submission techniques (e.g., BlueFlame MMIO vs. standard
DMA) to produce the desired DMA read behaviors on the
client host. We plot the cumulative distribution function
(CDF) of the end-to-end 64 B RDMA WRITE latency (client
issue time until completion). All measurements are for a
single client thread using one Queue Pair (QP).
Figure 2 shows the results of the experiment. When the

RDMA WRITE WQE and the data to be transmitted are pro-
vided to the client NIC via MMIO using NVIDIA’s BlueFlame
optimization (All MMIO), each operation takes a median of
2,941 ns. This case issues no DMAs at the client NIC and
serves as a baseline that only measures the end-to-end la-
tency of a 64 B RDMA WRITE operation.
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Figure 3. Pipelined RDMA read/write bandwidth for 64 B objects
with 1 and 2 QPs. The ordered write bandwidth is significantly
higher than the read bandwidth.

In One DMA, each WRITE WQE is provided to the client
NIC via MMIO, but the 64 B that it must transmit is placed
in the client host’s memory. Hence, the NIC triggers a single
DMA read to fetch the data after receiving the WQE. In this
setup, the median operation completes in 3,234 ns, adding
293 ns of delay compared to the case where the NIC does
not issue DMA operations; this represents the latency of one
64 B DMA read.
In Two Unordered DMA, each WRITE WQE is issued via

MMIO, but it specifies (via a scatter-gather list provided as
part of the MMIO) two 64 B data buffers for transmission. In
this case, the median WRITE completes in 3,271 ns, 330 ns
more than when the NIC issues no DMA operations, and just
37 ns slower than when the NIC issues a single DMA opera-
tion. This implies that the client NIC overlaps the two DMA
reads by relying on the fact that RDMA does not guarantee
cache line access order when issuing an RDMA WRITE.
Finally, in Two Ordered DMA, WRITEs are not issued via

MMIO. Instead, the WQE for the operation is placed in mem-
ory and references a 64 B data payload elsewhere in memory.
When the client NIC receives the MMIO doorbell write, it
must first fetch the WQE for client host memory by issuing
a DMA and waiting for its completion to retrieve the address
of the payload. Then, it must issue a separate DMA to re-
trieve the 64 B to transmit. As a result, each operation takes
3,613 ns to complete—672 ns longer than when no DMA is
performed and 342 ns longer than Two Unordered DMA. This
shows that when there is an ordering dependency between
the two DMAs, the NIC must issue each operation and wait,
resulting in about a 300 ns delay.

What is the impact of this stop-and-wait ordering? Today,
without PCIe R→R ordering guarantees, any two RDMA
read operations that require ordering must be stalled at the
server NIC, which introduces a serialization delay between
the reads.
This latency penalty directly constrains the maximum

achievable throughput. When we pipeline many 64 B RDMA
READ operations over a single QP, we observe that the server
NIC performs READs with inter-read latencies similar to
the previously measured DMA latency of about 300 ns. Fig-
ure 3 shows that with pipelined RDMA READs, throughput
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reaches approximately 5.0 Mop/s (2.37 Gb/s), implying that
the server NIC completes an operation every 200 ns. The
RDMA specification does not require the server NIC to en-
force RDMA R → R ordering, but these results suggest that
if strict ordering were enforced on current hardware, perfor-
mance could not exceed this limit.

In contrast, RDMAWRITEs provide much higher through-
put than RDMA READs (3×). Because of RDMA’s strong
W→W ordering guarantees, the server NIC can begin pro-
cessing the next WRITE as soon as the write DMA opera-
tions for the previous WRITE are enqueued, allowing the
server NIC to issue incoming RDMAWRITEs from the QP
efficiently.

Our goal is to make the same high-performance pipelining
that is currently possible for writes available for reads.
Impact. The high cost of R→R ordering has significant im-
plications for applications like one-sided key-value stores. A
typical get operation requires a “check-before-read” pattern—
reading a lock or metadata before the object itself—to ensure
correctness against concurrent puts. Due to the lack of R→R
ordering guarantees in current PCIe implementations, this
ordering must be enforced at the server NIC (assuming a
smart NIC capable of lock value checks and subsequent ob-
ject reads [6, 29]). We observe that enforcing this ordering
reduces get throughput by more than an order of magnitude
compared to an ideal low-cost ordering primitive. Worse,
this ordering is typically enforced in applications by stalling
at the client NIC—waiting for the round-trip completion of
one operation before issuing the next, which results in dis-
astrously low performance.
To circumvent this limitation, state-of-the-art key-value

stores are forced into complex workarounds such as embed-
ding versioning metadata into every cache line [16]. While
functional, these protocols impose their own significant tax:
they complicate application development and, as we show
later, the overhead of stripping this metadata at the client
reduces the performance of otherwise advanced systems
like FaRM. This illustrates a clear architectural limitation—
software is paying a heavy price in both performance and
complexity to compensate for the interconnect’s lack of an
efficient, hardware-supported ordering mechanism.

2.2 MMIO Ordering
R→RMMIOOrdering is also inefficient due to the weak or-
dering guarantees of PCIe reads. To ensure ordering between
reads, a host CPU must serialize read requests, mirroring the
performance bottleneck observed with DMA R→R ordering.
This serialization prevents concurrent PCIe read transactions,
leading to significant latency and reduced throughput.
W→WMMIO Ordering is also inefficient, but solely due
to host CPUs’ microarchitecture. The bottleneck is the store
fence instruction needed to enforce order between writes
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Figure 4. MMIO Write Bandwidth for Combined Stores to a
ConnectX-6 Dx. sfences thwart achieving line rate transmission.

to a write-combining memory region. Write-combining effi-
ciently batches MMIO transfers [21, 31], but the CPU does
not guarantee these buffered writes reach the Root Complex
in program order. If two cache line-sized writes must be
written in order from the host to the NIC’s memory, soft-
ware must insert a store fence between the writes. This fence
forces a hard serialization point, stalling the processor un-
til the first write is flushed to the Root Complex, negating
the pipelining benefits of PCIe’s otherwise efficient posted
writes.
The Cost of W→W MMIO Ordering. Given the expected
similarity in cost between R→R MMIO and DMA ordering,
we focused our experimental evaluation onW→WMMIO or-
dering. We replicate an experiment from prior works [22, 31].
The experiment measures the throughput of write-combined
stores to NIC memory, enforcing order by inserting a store
fence after every B bytes (emulating a packet of size B), and
it compares this to a baseline without fences.
Figure 4 corroborates recent results [22, 31]. Without or-

dering, we achieved a throughput of 122 Gb/s. Enforcing or-
dering, even with packet sizes as large as 512 bytes, reduced
throughput by 89.5%. We also confirmed that using strictly
non-cacheable stores—which also enforce order—yields even
worse performance. These results provide quantitative evi-
dence that the sfence is the primary architectural bottleneck,
validating our analysis of W→WMMIO ordering.
Impact. The above benchmark models a CPU-to-NIC trans-
mit path, where maintaining packet order is crucial. The
results reveal a commonmisconception: the bottleneck is not
that CPUs cannot saturate the PCIe bus, but rather the archi-
tectural cost of ordering. While unordered MMIO writes can
exceed 100 Gb/s, the sfence required for ordering slashes
throughput by an order of magnitude for small packets.
This severe performance penalty explains why modern

systems abandon the simple, direct MMIO transmit path.
Instead, they rely on a costly workaround: the CPU writes
packet data to host memory and then writes to an MMIO
“doorbell” register. This doorbell triggers the NIC to initiate a
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separate DMA operation to fetch the data. This complex, in-
direct path adds significant round-trip latency and still strug-
gles to achieve line rate without specialized hardware [30].
These workarounds are a direct consequence of a missing
architectural primitive for software to efficiently express its
fine-grained ordering requirements to the hardware.

3 Fast Remote Memory Ordering Overview
Our approach is a hardware-software co-design with new
architectural and microarchitectural support to eliminate
remote ordering bottlenecks. We propose PCIe and host ISA
extensions to express ordering, as well as changes at the Root
Complex (RC) to enforce these ordering semantics efficiently.
Efficient R→R DMA Ordering. Our solution to the R→R
DMA bottleneck is a two-part co-design. First, we extend
the PCIe specification to allow a NIC to pipeline ordered
reads (e.g., a lock check and a subsequent data read) by ex-
plicitly annotating their required order. Second, we enhance
the Root Complex (RC) to enforce this ordering against the
host’s coherent memory. This second step is crucial: merely
preserving order across the interconnect is insufficient, as
parallel requests to the host memory system can complete
out of order (e.g., a data read that hits in the cache can pass
the lock read that misses). Even a simple, sequential enforce-
ment at the RC could provide a benefit.

This gain stems from shifting the serialization point from
the source (the NIC) to the destination (the RC). In the base-
line, NIC-side serialization incurs the full round-trip latency
of the interconnect and the host memory access, a stall of
≈500 ns. This limits throughput to roughly 2 million ordered
reads per second (Mops/s). By moving enforcement to the
RC, our approach allows the NIC to pipeline read requests,
amortizing the long interconnect latency. The throughput
bottleneck then becomes the RC’s sequential access to host
memory via the RC’s Remote Load-Store Queue (RLSQ),
which is ≈100 ns per read. This improves throughput by
5× to 10 Mops/s.

To eliminate this remaining serialization and achieve near-
ideal performance, our advanced design draws inspiration
from speculative memory ordering techniques employed in
out-of-order processors [7, 12]. It allows the RLSQ to execute
reads speculatively and in parallel, buffering the results and
delivering the data to the waiting PCIe requests while hon-
oring the required ordering. This “out-of-order execute, in-
order commit” model allows the latency of multiple memory
accesses to be overlapped, significantly boosting throughput.

Correctness is maintained by cleanly integrating the RLSQ
with the host’s existing cache coherence protocol. The queue
tracks in-flight speculative reads and snoops the coherence
fabric, much like a CPU cache. An intervening write from
a host core to a speculatively read address triggers an in-
validation message to the queue. This invalidation squashes
the speculation and retries the read to fetch the up-to-date

value. This mechanism ensures that in the common case
without such conflicts, ordered reads perform at nearly the
same speed as fully unordered reads, effectively solving the
bottleneck.
Efficient W→W MMIO Ordering. The CPU-NIC transmit
path is severely throttled by the architectural cost of enforc-
ing W→WMMIO ordering. To ensure writes arrive at the
Root Complex in order, current systems must execute a store
fence after each packet. This serialization adds ≈100 ns of
latency per packet, capping the achievable throughput for
64-byte packets at ≈5 Gb/s—a fraction of a modern 100 Gb/s
link. To eliminate this bottleneck, we propose labeling trans-
actions with sequence numbers and using a reorder buffer at
the destination, taking inspiration from our previouswork [22].
To realize this idea, we propose enhancements to the host
ISA to explicitly identify remote MMIO/PCIe write opera-
tions and their ordering requirements. This allows the CPU
to issue a stream of packets without stalling on a fence. A
reorder buffer (ROB) at the Root Complex then uses these
sequence numbers to reconstruct the correct program or-
der before forwarding the writes to the NIC in an ordered
manner.

4 Architectural Support
This section details the architectural support underpinning
our approach to fast remote memory ordering. This support
encompasses two key components: extensions to the PCIe
specification to express the ordering requirements of PCIe
reads (enabling R→R ordering), and extensions to the host
ISA allowing it to express MMIO loads, stores, and their
ordering.

4.1 PCIe Extensions for Remote Memory Ordering
To address the inefficiencies in R→R ordering, we propose
extending the PCIe specification to enable devices to express
ordering requirements for their read requests. Similar to the
existing distinction between ordered and unordered writes
in PCIe, our extension introduces the ability to differentiate
between ordered and unordered reads. However, prevalent
producer-consumer communication patterns in host-device
interactions necessitate a more nuanced approach than sim-
ply adopting strong and relaxed ordering semantics.
Consider a common scenario where the host writes a se-

ries of data items to memory and subsequently sets a flag
to signal their availability. A device then polls the flag, and
upon observing it set, proceeds to read the previously writ-
ten data. Examining the device’s actions (a flag DMA read
followed by data DMA reads), we find that the data reads
must occur after the flag read, but the data reads themselves
do not have an inherent order relative to each other. This
pattern cannot be accurately and efficiently expressed using
only strong or relaxed ordering. Marking all reads as strong
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would be correct but overly conservative, hindering poten-
tial performance optimizations. Conversely, marking only
the flag read as strong would fail to enforce the necessary
ordering of data reads after the flag.

The ideal interface for expressing such producer-consumer
relationships is through the use of acquire and release seman-
tics, a model effectively employed by several ISA memory
consistency models like ARM and RISC-V. Therefore, we
advocate for the adoption of acquire and release semantics
within the PCIe specification. Revisiting our example, the
DMA read for the flag would be marked as an acquire op-
eration, ensuring that all subsequent memory accesses by
the device (the data reads) observe the state of memory at
or after the flag was read. The subsequent DMA reads for
the data items could then be marked as relaxed, allowing
them to be reordered with respect to each other while still
being correctly ordered after the flag read—precisely the de-
sired behavior for maximizing performance in this common
pattern. Conversely, we also advocate for the use of PCIe re-
lease writes and unordered writes instead of simply strongly
ordered writes and weakly ordered writes.

Encoding acquire and release ordering in PCIe is straight-
forward. For writes, we can re-purpose an existing relaxed
ordering bit. When this bit is set for a write, it can be inter-
preted by the Root Complex and PCIe devices as a release
operation, signaling that prior actions should become visible
to other agents. For reads, we can add a new, analogous ac-
quire bit in the TLP header. Setting this bit for a read would
indicate to the Root Complex and the requesting device that
subsequent actions should see the results of this read.

4.2 Host ISA extensions for MMIO
To efficiently enforce remote ordering, a host CPU ISA must
be rich enough to express ordering constraints for MMIO
loads and stores. Current host ISAs typically lack explicit
mechanisms to differentiate between local memory accesses
and MMIO operations targeting remote devices. Instead, to-
day’s systems rely on the host processor’s support for map-
ping addresses as non-cacheable or write-combining [1],
augmented with host memory ordering instructions (fences)
for enforcing ordering between the processor and the Root
Complex. Hence, many ISAs have complex and non-intuitive
interactions between their memory ordering guarantees and
PCIe ordering rules. For example, x86 processors strictly se-
rialize reads to uncached MMIO regions, stalling execution
to preserve order at the source. This performance penalty is
effectively wasted, however, as the PCIe fabric is permitted
to reorder these requests in flight!
The RISC-V ISA, with its flexible fence that expresses

both MMIO ordering and host memory ordering (fence
iorw,iorw) offers a clearer path forward. Its fences are al-
ready expressive enough to describe the necessary software
constraints, from simple MMIO Write-after-Write (fence
o,o) to complex memory-to-I/O patterns (fence w,o). The

key limitation is the implementation that has to be conserva-
tive, owing to a mismatch between the CPU’s behavior and
the interconnect’s guarantees. Today, a compliant CPU must
still stall at the fence until prior operations drain. Our model
reinterprets this. Instead of a stall, the fence acts as a direc-
tive for the microarchitecture to inject ordering metadata
(e.g., sequence numbers) into the MMIO stream. This pro-
vides the same ordering guarantee to downstream hardware
without processor stalls, transforming the fence from a costly
serialization point into a lightweight ordering directive.

While reinterpreting fences is a pragmatic step, the most
principled solution is to elevate ordered remote operations
to first-class citizens in the ISA. This aligns the host ISA
with the acquire/release semantics we proposed for PCIe,
ensuring a unified orderingmodel from the CPU to the device.
We therefore propose four new instruction variants: MMIO-
Store, MMIO-Release, MMIO-Load, and MMIO-Acquire. To
be correct and intuitive, their semantics must integrate with
the host’s memory model: an MMIO-Release must ensure all
prior host memory operations are visible before the MMIO
write is observed, and an MMIO-Acquire must ensure all
subsequent host memory operations happen only after the
MMIO read completes. This provides a clean programming
model for managing ordering across the complex host-device
boundary.

5 Microarchitectural Support
This section details the two key microarchitectural compo-
nents of our design: an enhanced Remote Load-Store Queue
(RLSQ) in the Root Complex to efficiently order DMA re-
quests, and the host CPU support required to implement our
new MMIO instructions.

5.1 Remote Load-Store-Queue
The RLSQ in the PCIe Root Complex is themicroarchitectural
bridge that enforces the PCIe interconnect’s ordering rules
on the host’s coherent memory system.
Baseline. In the baseline design [10, 32], the RLSQ’s behavior
is a reflection of PCIe’s guarantees. Because PCIe reads are
weakly-ordered, the RLSQ dispatches incoming DMA read
requests to the coherence directory in parallel.

Conversely, because PCIe writes are strongly-ordered, the
RLSQ processes DMA write requests serially to ensure they
are applied to memory in the correct order. However, the
RLSQ can optimize by issuing the coherence requests (e.g.,
invalidations or ownership requests) for multiple pending
writes in parallel. While these coherence actions are in flight,
the actual data writes to the cache or memory controller
are strictly serialized, committing only from the head of
the RLSQ’s FIFO queue after all preceding operations have
completed. This allows high latency coherence messages to
be overlapped, improving throughput while ensuring that
writes become visible to the host in the correct PCIe order.
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Proposed design: Release-Acquire RLSQ. Our proposed
design faithfully implements the ordering guarantees of the
new acquire and release operations. Relaxed PCIe reads and
writes are issued concurrently from the RLSQ. However,
a PCIe acquire blocks the issue of all subsequent requests
until its own coherent request completes. Conversely, a PCIe
release stalls until all prior requests have been completed
before its own coherent request is issued.
These semantics are key to enabling high-performance,

optimistic NICs without sacrificing correctness. Consider a
NIC that, to hide latency, speculatively pipelines an acquire
read of a key-value store lock followed by a data read. In
a baseline Root Complex, these parallel requests can race
within the host memory system, potentially allowing the
data read to return a stale value even after the acquire read
completes. This violates the acquire semantic and breaks
correctness. Our RLSQ prevents this race by stalling the
speculative data read until the acquire is fully resolved, guar-
anteeing a consistent memory view and making aggressive,
high-performance NIC designs safe.
Optimization: Thread-specificOrdering.The simple Rele-
ase-Acquire RLSQ is overly conservative, creating false de-
pendencies by enforcing order globally across all NIC traf-
fic. An acquire from one thread context (e.g., a Queue Pair)
will needlessly stall an independent request from a different
thread. To solve this, we propose extending the PCIe TLP
to carry a thread ID. The RLSQ then uses this ID to enforce
acquire/release semantics on a per-thread basis, allowing
requests from different threads to proceed in parallel. This is
a logical extension of the ID-based Ordering (IDO) principle
that the PCIe specification already provides for writes [14],
applying a similar thread-aware model to our new domain
of ordered reads.
Microarchitecturally, this per-thread ordering can be im-

plemented efficiently.While physically partitioning the RLSQ
into separate queues is possible, a more resource-efficient
design uses a single, logically partitioned queue [24]. This
approach maintains a small amount of per-thread state (e.g.,
an “awaiting acquire” flag). An incoming request is stalled
only if its thread ID matches a thread that is currently in this
waiting state. This design eliminates false dependencies and
maximizes parallelism between independent contexts.
Optimization: Speculative DMA Ordering. To eliminate
stalls within a single thread, our most advanced design em-
ploys speculation, similar to modern processors [12]. For an
Acquire→Read sequence (e.g., an acquire on 𝑋 , then a read
on 𝑌 ), the RLSQ issues both requests to the host memory
system speculatively and in parallel. To preserve correctness,
it buffers the result of the speculative read (𝑌 ) and responds
to the NIC only after the acquire (𝑋 ) has completed. This
maintains the illusion of serial execution while overlapping
the memory latencies.

Correctness against concurrent host writes is ensured
by integrating the RLSQ with the host’s coherence proto-
col. This requires no changes to the protocol itself—which
is notoriously hard to design and verify—but simply treats
the RLSQ as a new coherent agent, akin to adding another
cache. The RLSQ is tracked as a temporary sharer for in-flight
speculative reads, allowing it to snoop coherence traffic. An
intervening host write to a speculative address triggers a
standard directory invalidation, which squashes the buffered
result and forces a retry of that single read to fetch the up-to-
date value. Crucially, unlike a CPU’s Load-Store Queue, only
the conflicting read is squashed, not all subsequent specu-
lative operations. Because the RLSQ speculates on known
addresses, the penalty for mis-speculation is low, making
the approach highly efficient.

This speculative principle also applies to Write→Release
ordering. The RLSQ can speculatively issue the coherence
actions (e.g., invalidations) for a release concurrently with
the preceding data writes. Once the data writes are con-
firmed complete by the memory system, the release can also
complete, having already finished its high-latency coherence
work in parallel.

5.2 Host Support for MMIO Operations
Next, we turn our attention to the microarchitectural support
required for the new MMIO load and store instructions in-
troduced in §4.2; specifically we describe efficient implemen-
tations for the MMIO-Load, MMIO-Store, MMIO-Acquire,
and MMIO-Release instructions, ensuring that their order-
ing semantics are enforced when interacting with remote
devices over the PCIe interconnect.
Elevating MMIO operations to first-class citizens in the

ISA lets the microarchitecture manage their memory order-
ing more effectively. The key microarchitectural support
involves associating a sequence number with each MMIO
operation. For instance, an MMIO-Store to address 𝑋 fol-
lowed by an MMIO-Release to address 𝑌 would be assigned
strictly increasing sequence numbers, explicitly denoting
their order. We then maintain a reorder buffer (ROB) at the
Root Complex to reconstruct this order. If the MMIO-Release
(with a higher sequence number) arrives at the root complex
before the MMIO-Store (with a lower sequence number), the
ROB recognizes that a later operation has been received out
of order. The Root Complex delays issuing the PCIe write cor-
responding to the MMIO-Release to the device until the PCIe
write for the earlier MMIO-Store (with the lower sequence
number) has also arrived and been issued.
As with DMA operations, we incorporate the hardware

thread ID as part of the sequence number. This allows the
ROB to distinguish and independently manage the ordering
of MMIO operations originating from different hardware
threads within the CPU.
The microarchitectural implementation of the ROB is

straightforward. We can maintain a simple state machine
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that tracks the highest sequence number for which all preced-
ing sequence numbers have also been received. Once such
a contiguous sequence is identified, all the corresponding
MMIO operations within that sequence can be dispatched
as ordered PCIe writes towards the target device.
This sequence number-based approach is flexible in its

placement of the ROB. The Root Complex is an obvious
choice, but this mechanism would also support ROBs at
device endpoints. Placing the ROB at the endpoint opens
up the possibility of using unordered PCIe reads and writes
throughout the interconnect for MMIO reads and writes
since end-to-end ordering can be guaranteed solely by the
sequence numbers and the ROB at the final destination (the
device).
By embedding ordering information within the transac-

tions themselves, intermediate links—including the PCIe fab-
ric and the Root Complex—no longer need to enforce strict
ordering. This allows the Root Complex to aggressively for-
ward PCIe reads and writes without serialization, signifi-
cantly increasing interconnect utilization and performance.

6 Evaluation
In this section, we assess the performance benefits of our pro-
posed architectural andmicroarchitectural enhancements for
fast remote memory ordering using a two-pronged approach.
The first relies on simulation, and the second emulates re-
mote ordering performance on existing NVIDIA ConnectX
NICs to understand what the gains might be in practice.

We first describe the simulation infrastructure and bench-
marks used for evaluation. Next, we present the overall per-
formance improvement achieved by our complete approach,
incorporating PCIe extensions, ISA modifications, and the
optimized RLSQ design compared to today’s baseline tech-
niques that rely on store fences for W→WMMIO ordering
and implicit serialization for R→R DMA. Finally, we provide
an estimate of the area and static power overheads of the
RLSQ and ROB.

6.1 Simulation Infrastructure
Our proposed designs are simulated on gem5 [5] using the
classic cache model. For the DMA experiments, we use a
SimpleTimingCPU model, as these operations are device-
initiated; this focuses the evaluation on the I/O path perfor-
mance rather than the detailed microarchitecture of the host
core.
Table 2 lists the simulation configuration for DMA read

experiments. Wemodeled a baseline Root Complex described
in prior art [10, 32]. In particular, tracker entries are used
to track requests that access the same cache line. Our RLSQ
model is integrated into this Root Complex. In gem5, DMA
requests are split into 64 B packets on the I/O bus. We use
a one-way I/O bus latency of 200 ns, estimated from the

Table 2. Simulation Configurations for DMA Experiments

Processor
Core 1 SimpleTimingCPU, 3 GHz

Cache Hierarchy
L1 Instruction 16 KiB, 2-way associative, 2 cycle latency
L1 Data 64 KiB, 2-way associative, 2 cycle latency
L1 to L2 bus 256-bit wide, 1 cycle latency
L2 256 KiB, 8-way associative, 20 cycle latency

Memory
Memory bus 128-bit wide, 7 cycle latency
Memory Interface DDR3-1600 in 8x8 configuration
Bandwidth 8 channels, 12.8 GB/s per channel

I/O System
I/O bus 128-bit wide, 200 ns latency
Root Complex 17 ns latency, 256 tracker entries
RLSQ 256 entries
NIC 3 ns DMA request issue latency

Table 3. Simulation Configurations for MMIO Experiments

Processor
Core 1 O3CPU, 3 GHz

Cache Hierarchy Same as configuration as Table 2

Memory Same as configuration as Table 2

I/O System
I/O bus 128-bit wide, 200 ns latency
Root Complex 60 ns latency, 16 entry buffer
NIC 10 ns MMIO processing latency

600 ns round-trip latency for DMA reads reported in prior
work [27]

Table 3 lists the simulation configuration for MMIO write
experiments, which use the O3CPU model to accurately cap-
ture the performance of core-initiated operations. Posted
PCIe writes are modeled with zero latency response packets
on the non-coherent crossbar that models the PCIe intercon-
nect. The Root Complex schedules a response packet to the
CPU cache controller without delay. Writes without source
ordering are modeled by the cache controller acknowledging
uncacheable MMIO writes without delay. Fence instructions
stall until a response from the root complex is received.

6.2 Benchmarks
We use three main benchmark kernels to demonstrate the
benefits of remote ordering.
Ordered DMA Reads: The first is a microbenchmark that
simulates clients issuing DMA reads of various sizes (sim-
ilar to a NIC handling a workload of RDMA READs). We
vary the approach the NIC uses to order PCIe reads within
each DMA read; this benchmark shows the effectiveness
of remote ordering and speculative remote ordering. This
microbenchmark is simulated using a NIC that issues DMA
read requests from a trace of increasing addresses.
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Figure 5. Throughput of DMA reads in simulation using one QP.
Speculative ordering achieves ordering at no cost.

Key-value Store (KVS) Gets: RDMA-based KVSs that hold
small items in memory accessed by a user-supplied key have
become important in recent years [9, 11, 17, 25, 26, 33]. Often
the algorithms that get items from a KVS have subtle order-
ing constraints that result in complexity, stalls, and extra
round trips on today’s unordered interconnects. We bench-
mark several KVS get implementations showing the benefits
of remote ordering for throughput and reducing complex-
ity. We validate these results by comparing our simulation
results to implementations of these algorithms on existing
NICs. In order to better represent real applications that batch
get requests [28], our simulation includes batch size and is-
sue interval parameters. We use batch sizes of 100 and 500
requests with an inter-batch issue interval of 1 µs based on
the halo3d and sweep3d communication patterns [15].
NICPacket Transmission: Ethernet link speeds of 100Gb/s
and higher have made it crucial for software to be able to
coordinate the transfer of packet data to NICs efficiently [30].
We show that our proposed Release ordering for MMIO
makes MMIO efficient enough that software may be able
to directly transfer packet data while preserving correct or-
dering without costly sfence instructions that prevent this
today. In simulation, cache line sized MMIO writes are mod-
eled by writes to addresses that are one cache line apart.
MMIO writes are issued to increasing addresses to simulate
writes with increasing sequence numbers. The simulated
NIC checks if the write packets arrive in the correct order.

6.3 Simulation Results
Ordered Reads.We simulate a single thread of execution on
a NIC performing reads of varying length sequential regions.
Figure 5 shows the results. Today, when a NIC issues a DMA
read, each cache line in the DMA is read in an arbitrary order,
making it efficient enough to saturate a 100 Gb/s network
link even with 64 B granularity accesses (Unordered). If an
application requires cache lines to be read in a specific order

(e.g., lowest-to-highest address), then a NIC would need to
execute each cache line access synchronously (NIC), destroy-
ing throughput both for small and large accesses since the
number of stalls is proportional to the number of cache lines
read. Delegating this responsibility to the Root Complex (RC)
reduces the length of these stalls, but it still prevents the read
bandwidth from scaling. However, speculative ordering (RC-
opt) ensures that ordered reads can be pipelined to the host
coherence subsystem without stalling, allowing ordered read
performance to match that of unordered accesses.
Key-Value Stores. Next, we benchmark RDMA-based key-
value store get operations. In our benchmarks, we vary the
approach we use to order the PCIe reads triggered by the
RDMA READs as part of these get operations, comparing the
performance of reads that are ordered by the NIC, remotely
by the Root Complex (RC), and with speculative ordering at
the Root Complex (RC-opt).

In our benchmark, we use the optimistic, validation-based
get algorithm described by Jasny et. al. [16]. In this approach,
an item get operation is performed at a server NIC using two
RDMA READs. In the first RDMA READ, a client reads an
item header version number and the item. After receiving
the results from the first RDMA READ the client issues a
second RDMA READ that fetches a second copy of the item
header version number. If the version numbers match, the
read item is returned to the caller. If the version numbers do
not match, the protocol repeats.
This protocol is unsafe today because PCIe reads are un-

ordered within an RDMA read; in the first RDMA READ it
is possible that the cache line containing the header version
number is read after the cache lines containing the data item.
Even if an ordered writer correctly updated the data item be-
tween its updates to the header, the reader could see stale or
torn reads. With our proposed read ordering, the unmodified
protocol works correctly.

Figure 6a shows the results when a single client (one QP)
issues batches of 100 gets. All operations within a batch
are executed according to their order in the batch. As with
our ordered DMA reads benchmark, using the NIC to order
reads results in a 440 ns synchronous stall between the NIC
and the CPU coherence subsystem to fetch each cache line
separately; this results in poor performance, and it cannot be
amortized across larger items. Ordering at the RC reduces the
stall between fetching cache lines substantially improving
performance by 29.1× over NIC ordered reads. RC-Opt’s
speculative ordering allows all cache line reads within each
request and all requests themselves to be pipelined to the
memory system, incurring stalls only between whole batches
of requests making it 50.9× faster than NIC ordering.
Figure 6b shows that even as more clients/QPs offer re-

quests to the server, these gains hold. Increasing client count
helps NIC-based ordering the most since it can overlap the
PCIe reads of up to 16 get operations at a time. However, the
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Figure 6. Key-Value Get Throughput. (a) uses a single client QP submitting batches of 100 get requests; (b) scales the workload across
multiple QPs/clients; (c) uses 16 QPs/clients each submitting batches of 500 get requests. Across all these configurations RC-opt shows robust
performance gains.

CloudLab sm110p (one as client, one as server)

CPU 1× Intel Xeon Silver 4314 16-cores @ 2.40 GHz
(Ice Lake)

RAM 128 GB ECC DDR4-3200
NIC NVIDIA ConnectX-6 Dx EN 100 Gb/s PCIe 4.0 ×16

Table 4. Hardware Setup for Emulation Experiments (Figure 7).

increased parallelism is not enough for NIC ordering to make
up for its long stalls. In practice, the NVIDIA ConnectX-6 Dx
NICs that we have benchmarked do not scale performance
substantially beyond 16 QPs for deeply pipelined RDMA
READs, suggesting that NIC-based ordering is unlikely to
ever converge to RC’s performance even with an unbounded
number of clients.
Finally, since RC-Opt can fully pipeline memory opera-

tions for requests within a batch, Figure 6c shows that if
clients use larger batch sizes and offer more concurrency,
speculative remote ordering becomes crucial for scaling
throughput. For small object sizes—the most challenging
case for interconnect overhead—RC-opt is the only approach
that maintains correctness of the protocol while approaching
the 100 Gb/s link that modern NICs support.

6.4 Emulation on Existing NICs
To validate our simulation and gain further confidence in
our results, we emulate our architecture’s expected best-case
performance using real hardware. Our simulation results
(§6.3) show that in read-only workloads where there are
no conflicts, the performance of our speculative ordering
mechanism is identical to that of today’s fully unordered
hardware. This key finding allows us to use existing NVIDIA
ConnectX-6 Dx NICs as a realistic performance proxy to
emulate our proposed architecture. Even though these NICs
do not enforce order, their unordered throughput represents
the performance our ordered speculative design can achieve.
We validate this assumption in Section 6.5, where we show
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Figure 7. Throughput of gets on a key-value store implemented via
RDMA using various algorithms on a 100 Gb/s NVIDIA ConnectX-6
Dx. Validation and Single Read require R→R ordering for correct-
ness. Our proposed Single Read algorithm, enabled by hardware
ordering, is simpler and outperforms all baselines, including a 1.6×
gain over FaRM for 64 B objects.

that our simulation results closely match the performance
measured on the real hardware (Table 4).

A recent paper reimplemented several approaches to fetch-
ing and synchronizing access to remote records in a KVS [16].
Their work compares numerous state-of-the-art approaches,
groups common approaches (e.g., optimistic protocols versus
pessimistic, locking-based approaches), and ensures that the
uniform platform and benchmark harness illustrate differ-
ences in the algorithms rather than the implementations.
Building on their harness, we repeat their experiments here
on our hardware, and we extend the results to include an
algorithm that is only safe with a NIC and an interconnect
that supports ordered reads.

In the implementation of all of these algorithms we batch
32 concurrent get operations before polling for operation
completion at the client to ensure each of the 16 client threads
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offers substantial concurrency to the server NIC and to amor-
tize polling costs at the client.

Pessimistic [16]: Pessimistic protocols are prevalent in sev-
eral state-of-the-art RDMA-enabled KVSs [16, 23, 37]. In this
protocol, a client pipelines an RDMA fetch-and-add to incre-
ment the reader count for a key-value item and an RDMA
READ for the item to the server’s NIC, which also includes
a lock bit for the writer. If the lock bit is set by the writer,
then the operation is restarted. Otherwise, the client asyn-
chronously issues another RDMA fetch-and-add to decre-
ment the reader count, and it makes the read value available
to the caller of the get operation.
Optimistic with Validation [26]: We described this algo-
rithm in §6.3. It uses two RDMA READs per get request;
it requires R→R order for correctness. Though our system
does not actually order PCIe reads, based on our simulation
results, in cases like this where there are no writes the results
should be representative.
FaRM [11]: FaRM and XStore [35] get operations fetch key-
value items using a single RDMA READ. In this approach,
each item contains a header with a version number, and each
cache line that is part of the item also includes (part of) the
item version number. Writers first update the header version
number and then update each cache line with the new data
and the new version number embedded in it. Clients issue a
single RDMA READ for a whole item. If the version number
in the header matches the version number in every cache
line, then the data in the cache lines is safe to use, and it
is returned to the caller. If there is a mismatch, the RDMA
READ is repeated. The version numbers in cache lines ensure
the protocol is correct even if PCIe reads within the RDMA
READ are reordered.
Single Read: Single Read is a simpler protocol that previ-
ously was not possible due to PCIe read reordering. In it,
each item includes a header version and a footer version.
Clients issue a single RDMA READ for a whole item includ-
ing its version numbers. If the two version numbers match,
the item is returned to the caller; if the version numbers
do not match, the RDMA READ is repeated. Unlike FaRM,
this protocol does not require any version information em-
bedded in the individual cache lines of each of the items.
For correctness, writers must work from back to front, first
updating the footer version number, then the item data, then
the header version number. This avoids a race where a reader
and writer could interleave in an order where the reader sees
the updated header, stale data, and an updated footer. Some
past systems have used a similar approach, though they were
incorrect since they implicitly relied on DMA read ordering
within each RDMA READ [16, 26, 34, 38].

Figure 7 shows the get throughput of each of these al-
gorithms for a range of item sizes. At sizes less than 4 KB,
Pessimistic suffers from the high overhead of the RDMA
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Figure 8. Throughput of get operations in simulation using both
Single Read and Validation with 16 queue pairs and batch size 32.

fetch-and-add needed to lock access to each item. Valida-
tion’s protocol only relies on RDMA READs, and it performs
much better. For example, with 512 B items it is able to
transfer more than 60 Gb/s, letting applications use most of
the 100 Gb/s link between the client and server. However, a
correct implementation of Validation would only be able to
perform this well using the remote ordering that we describe
in this paper. Single Read substantially improves on Valida-
tion at every item size with about double the throughput
with small items, and it uses less network bandwidth.

Like with Single Read, FaRM get operations are processed
with a single RDMA READ. However, since FaRM embeds
ordering metadata within items, clients must strip metadata
out of items before returning items to most applications.
Effectively, FaRM requires an extra deserialization step at
clients that requires copying item data into a contiguous
buffer. At the high > 10 GB/s data rates of modern NICs this
becomes a substantial overhead. In our setup this additional
copying limits FaRM get throughput to less than what Vali-
dation can achieve for all but the smallest item sizes. Relying
on remote ordering allows Single Read to avoid the need for
this extra metadata and copying without hurting efficiency.
Overall, these results show that remote ordering may

enable simpler algorithms that beat state-of-the-art perfor-
mance for important applications. We simplified the descrip-
tions of each algorithm to ignore how they safely coordinate
concurrent writes to items. Each individual paper provides
full details; however, this can generally be done in a straight-
forward manner for each of the algorithms, e.g., by having
writers perform a compare-and-swap on the version number.

6.5 Cross-Validating Simulation and Emulation
This final step performs a crucial cross-validation. First, it
validates that our simulation infrastructure is well-calibrated
by showing it can accurately model the performance of real
hardware. Second, it validates that our hardware emulation is
a meaningful proxy for our proposed architecture’s potential.
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Figure 9. For each request size, the left bar represents the baseline
with no P2P transfers, the middle bar represents P2P-VOQ, the right
bar represents P2P-noVOQ.

To do this, we repeated the Validation and Single Read
benchmarks in our simulation, configuring them to match
the real NIC’s behavior of serially issuing RDMA READs
from each QP. The results show a strong correlation: the
simulated throughput in Figure 8 closely tracks the real hard-
ware performance from Figure 7. The curves diverge only
when limited by different bottlenecks—the wider PCIe bus
in simulation versus the narrower Ethernet link on the real
hardware. This close match gives us high confidence in both
our simulation’s predictions and our emulation’s findings,
suggesting the benefits of our architecture will hold on real
systems.

6.6 Peer-to-Peer Experiments
The previous sections studied ordered read requests issued by
a single NIC to a single CPU root complex; however, systems
can have topologies involving multiple destination devices.
One example is peer-to-peer (P2P) transfers in PCIe [14].
This section discusses how read requests originating from the
same source device that target different destination devices
can be handled. There are two cases to consider:
Case 1: Requests originate from the same process and
R→R order is required. An example of such a scenario
would be a client application running at a device (e.g. a NIC)
that needs to read data fromGPUmemory after reading some
synchronization variable from CPU memory. Even if read
requests are ordered by the interconnect, we must guarantee
that a read request 𝑅2 at device 𝐷2 will be handled only after
a read request 𝑅1 at device 𝐷1 has been handled. In this case,
we revert to ordering at the source NIC by issuing 𝑅2 to 𝐷2
only after receiving the completion for 𝑅1 issued to 𝐷1.
Case 2: Requests originate from different processes
and R→R order is not required. An example of this case
would be different clients on a single machine reading from
two different devices. Since these read requests originate
from distinct clients, ordering is not required.

If strict ordering is enforced by the interconnect, or if net-
work resources are naively shared, a slow device can penalize
a fast destination. Specifically, suppose application 𝐴1 sends
read request 𝑅1 to device 𝐷1 and application 𝐴2 sends read
request 𝑅2 to device𝐷2. If𝐷1 is congested, requests targeting
it may fill the interconnect buffers. If the switch uses a single
shared queue, request 𝑅2 (targeting the uncongested𝐷2) gets
stuck behind 𝑅1. This is Head-of-Line (HOL) blocking. We
propose using Virtual Output Queues (VOQs) [24] to isolate
these flows and prevent such degradation.
To quantify the impact of HOL blocking and the efficacy

of VOQs, we simulated three system configurations:
• RC-opt (Baseline): A standard system where the source
device, a NIC, issues ordered reads to the CPU.

• P2P-VOQ: Adds a congested P2P device to the baseline.
The NIC connects to the CPU and the congested device via
a crossbar switch equipped with VOQs (separate queues
for each destination).

• P2P-noVOQ: Adds the same congested P2P device, but the
crossbar switch uses a single shared 32-entry queue for
all incoming requests, regardless of destination.
We used the Single Read protocol (§6.4) with two distinct

threads running on the NIC:
• Thread A (CPU Flow): Issues batches of 100 requests to
the CPU with a 1 µs inter-batch interval.

• Thread B (P2P Flow): Issues requests to the P2P device.
To simulate congestion, the P2P device is modeled with
a service time of 100 ns per request and an input limit of
one request at a time. Thread B attempts to issue requests
at the same rate as Thread A but without the inter-batch
delay, ensuring the P2P device is constantly saturated.
In the P2P-noVOQ configuration, the slow consumption

rate of the P2P device causes the shared 32-entry switch
queue to fill rapidly. Once full, the switch rejects new re-
quests from both threads. The NIC handles this backpressure
using a round-robin scheduler to retry failed requests. Hence,
the high-speed CPU flow is throttled to match the drain rate
of the slow P2P flow, as it must wait for free buffer space.

Figure 9 illustrates the results. In the P2P-noVOQ scenario,
the shared queue causes significant performance degrada-
tion: read throughput to the CPU drops by up to 167× for
8192 B objects compared to the baseline. In contrast, the
P2P-VOQ setup successfully isolates the flows. Throughput
is restored to near-baseline levels across all object sizes.

6.7 Ordered MMIOWrites
Section 2.2 showed that enforcing W→WMMIO ordering
in CPU-NIC transmit paths via sfence significantly hurts
throughput compared to unordered MMIO stores. Figure 4
illustrates this performance degradation observed on an
NVIDIA ConnectX-6 Dx NIC. To validate this observation,
we replicated the experiment in our simulator. The simulator
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Figure 10.MMIO write throughput in simulation. Inserting a fence
after every message enforces message order at the source.

Table 5. Estimate of Hardware Area

Area in mm2 % of I/O Hub

RLSQ 0.9693 0.6853
ROB 0.2330 0.1647

I/O Hub [10] 141.44 100

Table 6. Estimate of Static Power

Static Power in mW % of I/O Hub

RLSQ 49.2018 0.4920
ROB 4.8092 0.0481

I/O Hub [10] 10000 100

configuration is summarized in Table 3. Figure 10 shows sim-
ilar trends to the results on the NIC. MMIO write throughput
drops significantly when fences are used to ensure ordering.

6.8 Hardware Area and Static Power Overhead
We estimate the area required and the static power consump-
tion for the RLSQ and ROB using CACTI [4]. The RLSQ and
ROB are modeled as caches with 64 B blocks.
The RLSQ is modeled as a 256 block, fully-associative

cache with 1 read port, 1 write port and 1 search port. The
RLSQ is fully associative so that speculative loads can be in-
validated when invalidation messages are received. The ROB
is modeled as a 32 block, direct-mapped cache (indexed by
the sequence number) with 1 read port and 1 write port. The
ROB uses 32 blocks to implement separate virtual networks
for relaxed stores and release stores, each with 16 entries.
For comparison against the reported die area and idle

power consumption of the Intel I/O Hub design [10], the
CACTI models for the RLSQ and the ROB both use the same
65 nm process technology.
The hardware area estimate is presented in Table 5 and

static power estimate in Table 6. Overall, adding the RLSQ
and ROB to the I/O Hub would increase chip area by less
than 0.9% and increase static power by less than 0.6%.

7 Related Work
EfficientMemory ConsistencyModels (MCMs). Efficient
enforcement of MCMs has been the subject of extensive
research. Our proposed interface builds on Release Consis-
tency [13], which forms the foundation of prevalent modern
MCMs found in architectures like ARM, RISC-V [3], and
even in language-level specifications [18]. A key insight of
our work is that there is no fundamental reason for high-
performance interconnects like PCIe to operate with order-
ing semantics divorced from the well-established concepts
and best practices developed within the MCM community.
Our techniques for enforcing memory ordering draw in-

spiration from classic works on MCM enforcement in pro-
cessor pipelines. For example, our approach to speculative
memory ordering is inspired by seminal work such as [12].
However, there are crucial differences between a Remote
Load-Store Queue (RLSQ) and a traditional processor-centric
Load-Store Queue (LSQ). By definition, a processor LSQ is
local to a single core, whereas the RLSQ is shared by multiple
independent thread contexts within the connected device.
This fundamental difference underscores the criticality of in-
corporating our thread-context-based ordering optimization
in the RLSQ. Furthermore, the invalidation-based tracking
for speculative reads in the RLSQ presents another subtle
difference as the RLSQ itself does not maintain a coherent
cache. Despite these differences, our core contribution lies
in identifying the significant ordering challenges in contem-
porary high-speed interconnects, formalizing this problem
within the well-understood framework of memory consis-
tency models, and consequently enabling the adaptation and
application of these classic enforcement techniques to a new
and increasingly important domain.
Non-coherent interconnects. While this work focuses on
PCIe, our destination-based ordering concepts are equally ap-
plicable to other non-coherent fabrics. Here, we focus on two
publicly available non-coherent interconnects. CXL.io [8] ex-
plicitly inherits PCIe’s ordering rules, so our analysis trans-
fers directly. In the case of AMBA AXI [2], another widely
deployed non-coherent interconnect, the performance impli-
cations are even more significant. AXI does not guarantee or-
dering between transactions to different memory addresses—
even if they share the same Transaction ID. Consequently,
to implement a reliable Read→Read ordering (e.g., reading
data then a flag), current AXI systems must enforce strict
source-side serialization, waiting for the first response before
issuing the second. Our proposed release/acquire semantics
overcome this limitation by attaching explicit ordering at-
tributes to requests; this allows the source to pipeline ordered
reads efficiently, relying on the destination to enforce order
locally via the RLSQ mechanism.
Coherent Interconnects. Recent research has explored
cache-coherent I/O interconnects [30, 31] to achieve high
bandwidth, low-latency CPU-NIC communication. CC-NIC
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[31], a cache-coherent NIC interface, considered an MMIO-
based PCIe baseline but dismissed it due to the perceived
cost of ordering fences. Given MMIO’s capability to achieve
line rate and low latency without compromising ordering
(through our proposed mechanisms), there is little need for
coherence in CPU-NIC communication patterns. Instead,
coherence protocols like CXL (a MESI variant) can hinder ef-
ficient CPU-NIC producer-consumer communication. These
protocols typically require obtaining ownership and transi-
tioning to an exclusive state on writes, so a CPU producer
write pulls the cache block into an exclusive state. A subse-
quent consumer read by the NIC necessitates an indirection—
the data must be fetched from the CPU’s caches, thus increas-
ing latency. Creative optimizations in software [31] or the
protocol [30] can work around these inefficiencies, but we
contend that these optimizations are effectively striving to
achieve what our PCIe-based transmit path inherently pro-
vides: high throughput and low latency without the need for
complex workarounds layered on top of coherence proto-
cols. Our earlier work made a similar observation for MMIO
writes and NIC transmission paths [22], yet it stopped short
of proposing a holistic ordering framework for non-coherent
interconnects.
Other Devices. While our optimizations target CPU-NIC
interaction, the core concept of destination-based order-
ing also applies to other devices such as GPUs and FPGAs.
Yu et al. [36] recently proposed a directory-based ordering
mechanism tailored for efficient store→release ordering in
CPU-GPU systems; they also propose a mechanism for effi-
ciently enforcing ordering across multiple devices. In con-
trast, our approach introduces techniques to enforce both
store→release and acquire→load orderings. Future work
could integrate these ideas—CORD’s distributed coordina-
tion and our bidirectional ordering support—to create a uni-
fied ordering framework for heterogeneous systems.

8 Conclusion
The PCIe specification has been a cornerstone of system in-
terconnects for decades. However, its original design catered
to an era of slow I/O devices optimized for bulk data transfers.
The rise of heterogeneous computing and high-bandwidth,
low-latency interconnects has fundamentally transformed
the nature of host-device communication. In this context,
we have identified crucial inefficiencies in how current sys-
tems order remote memory operations. To address these
challenges, we have proposed a new PCIe interface designed
to integrate effectively with contemporary host memory
consistency models. Additionally, we have introduced novel
and efficient microarchitectural techniques for enforcing
remote memory ordering, drawing inspiration from estab-
lished methods used to enforce memory consistency models
in host processors. Ultimately, this work argues for a funda-
mental shift in interconnect design: treating ordering not as

an implicit property of the fabric, but as an explicit, first-class
semantic co-designed with the ISA, enabling fast and correct
I/O for future systems. By establishing a high-performance
baseline for non-coherent I/O, this work raises the question
of whether the complexity of coherent interconnects (like
CXL) is truly necessary for future host-device communica-
tion.
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