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Abstract. Map-based navigation in outdoor terrain lacking man-made structures or other
highly distinctive landmarks can produce severe localization problems. This paper presents
an approach to navigation which implements high level geometric reasoning and matching
strategies based on those used by skilled human navigators. This approach, which is demon-
strated on a real example involving imagery of mountainous terrain obtained with a video
camera and USGS map data, is designed to avoid many of the pitfalls occurring when an
attempt is made to navigate by modeling the environment mathematically. It exploits feature
attributes which cannot be easily expressed quantitatively but are central to the successful
human navigation process.
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1. Introduction

An essential aspect of map-based navigation is the determination of an agent’s
current location based on sensed data from the environment. Formally, this
amounts to specifying the current viewpoint in some world model coordinate
system. This localization process has two distinct components: one involving
the establishment of correspondences between aspects of the sensed data and
the map or model, and the other involving derivation of constraints on the
viewpoint based on the correspondences that have been determined. !

Correspondences can be established at the signal or feature level. Signal-
level matching correlates sensed data with predictions of how the sensed data
should appear. It works best when the uncertainty in the viewpoint is small
and when it is relatively easy to accurately generate expected sensor data.
For example, in the TERCOM and SITAN cruise missile guidance systems, a
digital elevation model is matched against a downward looking, radar sensed
elevation profile (Andreas et al. 1978; Baird and Abramson 1984).
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Several researchers have addressed the more difficult problem of signal-
based localization at or near ground level using horizontally oriented imaging
systems and passive sensing. Ernst and Flinchbaugh (1989) determine
deviations between expected and observed views using curve matching
algorithms. Yacoob and Davis (1991) and Talluri and Aggarwal (1992)
determine viewpoint under the assumption that viewpoint elevation is known
with high precision in the reference frame of the map, a situation which
dramatically reduces complexity but is unfortunately not likely to hold in
practice. Stein and Medioni (1992) proposed an alternate method for deter-
mining viewpoint based on the observed horizon line which is similar to
the characteristic view approach in object recognition. Cozman and Krotkoy
(1997) use a statistical approach to related landmarks in views and on a
map. In all of these methods, actual viewpoint determination is done using
the same types of methods involved in photogrammetry — which solves the
same problem (Sanso 1973; Thompson 1958), in alignment approaches to
object recognition (Huttenlocher and Ullman 1987; Grimson 1990), or using
an exhaustive search hypothesize-and-test approach.

For a vision-based system in such environments, there is limited a priori
knowledge about the viewpoint due to travel through indistinct terrain,
temporary occlusion of landmark features, or errors in position updating
processes. The view of the world at or near ground level is difficult to generate
from map data with sufficient fidelity to allow signal-level matching. Sensed
data can contain substantial geometric aberrations not easily described using
simple error models. Finally, available digital cartographic data sets contain
inaccuracies that can cause serious problems for correlation-based analysis.
For example, in one of the USGS DEMs that make up our test data, the
location of the high point of a significant peak is off by over 200 m. It is not
surprising that most of the published work on vision-based localization from a
ground-level perspective has been demonstrated only on synthetic data, where
these problems do not occur.

Feature-based approaches to vision-based localization hold the potential
for avoiding many of these problems. As shown in Figure 1, features are
extracted independently from sensed data (view features) and maps (map
Jfeatures) and then matched symbolically if they are likely to correspond to
the same physical landmarks (terrain features). As a result, there is no longer
a need to be able to synthesize an accurate rendition of expected sensed
data. The symbolic nature of matching and viewpoint inference allows the
introduction of sophisticated problem solving methods which are able to deal
with issues such as ambiguity and complex error models.

In the remainder of this paper, we describe one possible approach to
feature-based localization in outdoor terrain. Our emphasis is on matching
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Figure 1. Symbolic matching of landmark features extracted from map and view.

strategies that can accommodate ambiguity due to correspondence errors
and on qualitative geometric reasoning procedures for determining viewpoint
while maintaining an explicit representation of the uncertainty associated
with that determination. Rather than the traditional approach of applying
mathematical equations which often break down when faced with the above
described errors, this approach is modeled after the skills used by human
navigators, whose expertise is based on high level matching schemes and
reasoning instead of the solving of equations. The approach is demonstrated
on a real example involving imagery obtained with a video camera and map
data provided by the USGS.

2. Geometric inference about viewpoint

In photogrammetry and pose estimation, a set of view/model correspondence
is used to solve for the relative orientation between viewpoint and model. A
follow-up confirmation step is then often performed to verify that additional
model features appear where expected in the view. Some methods also yield
a simple statistical measure of error. The difficulty of uniquely identifying
landmarks in outdoor terrain makes this sort of approach problematic for
navigation due to the combinatorics of possible correspondences. In addition,
the nature of positional uncertainty cannot effectively be represented using
low order models of statistical deviation (Sutherland and Thompson 1994).
The methods of photogrammetry and pose estimation work by finding a
view transformation that optimally accounts for a set of view/model corre-
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spondences. In landmark-based navigation, the high likelihood of error in
at least some of the presumed correspondences plus the complex nature of
the errors associated with those correspondences which are in fact correct
argues for a separate analysis of small sets of correspondences, rather than
a single batch solution to the localization problem. This allows a separation
between viewpoint inference based on selected landmarks and the combining
of information about viewpoint based on an analysis of many landmarks.

2.1. Inference methods

Accurate measurements of the range to distant landmarks are seldom possible
without the use of specialized active sensors. As a result, we limit our analysis
to inference methods that depend primarily or exclusively on bearing and
visual angle in the view. We have identified four classes of geometric infer-
ence relevant to vision-based navigation using bearing or visual angle. A
fifth inference class that does not necessarily require visual processing also
appears to be quite important and will be briefly discussed in Section 3.1.

— Absolute bearing: This is the standard way to solve localization prob-
lems. The viewpoint is on a line from the landmark along a reciprocal
bearing to that of the viewed landmark (Bowditch 1958). To use this
inference method, an accurate compass registered to the map coordinate
system is required.

— Ordinal view: The ordinal position of two features (e.g., “A is left-of B”)
can be used to constrain the viewpoint to lie on one side of a line through
the positions of A and B (Kuipers and Levitt 1988; Levitt and Lawton
1990; Schlieder 1995) (see Figure 2).

— Relative bearing: Relative bearings between three or more image
features with known map positions lead to a classical pose estimation
problem. Well established numerical techniques exist for solving such
problems. Levitt and Lawton describe an alternate method in which
only two features are considered at a time (Levitt and Lawton 1990).
The visual angle between the two features with known map positions
constrains the viewpoint to lie on a particular circle on the map (see
Figure 3).

— Alignment: If two features line up along a line of sight, then the view-
point is constrained to lie on a line connecting the two features. In almost
all circumstances encountered in outdoor navigation, it is possible to
determine which of the two features is more distant and as a result
the viewpoint can be constrained to a half-line. This inference method
appears to be critical when human map users are solving difficult
localization problems (Pick 1996).
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Figure 2. Viewpoint is in shaded area if landmark A is seen to the left of landmark B.

Figure 3. Relative bearing to two landmarks constrains viewpoint to a circle.

2.2. Combining uncertain constraints on viewpoint

Three of the four inference methods above can be used to constrain the view-
point to a line or arc on the map. Two non-degenerate line or arc constraints
can be used to uniquely determine the viewpoint, although the arcs resulting
from the relative bearing methods may yield multiple solutions which require
additional constraints in order to select the true location. Uncertainty in
bearing estimates and map locations makes it desirable to use additional
constraints, though the resulting over-constrained system must then be solved
using some sort of optimization technique.

Figure 4 illustrates the common situation in which the absolute bearing to
more than two landmarks is measured. The classical approach to determining
a viewpoint estimate in this situation would be to use a linear least-squares
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Figure 4. Absolute bearing to three landmarks results in an over constrained system for
determining viewpoint.

method to find a viewpoint location “close” to all of the constraint lines. For
some configurations of landmarks, this is in fact a reasonable thing to do.
For other configurations, however, the use of least squares methods to find a
single estimate masks important aspects of the uncertainty in the estimates.
This becomes even more important with the non-linear cases resulting from
the use of relative bearing (Sutherland and Thompson 1994).

Two very different sorts of errors affect viewpoint estimates in feature-
based localization. Features are seldom sufficiently distinctive to be uniquely
identifiable in either the view or map. As a result, correspondence errors
are frequent. The effect is to associate a view feature with an incorrect map
location. Our approach to dealing with correspondence errors is discussed in
Section 4. Even when correspondences are correctly determined, there will be
uncertainty in the estimated positions of features in the map and view. These
feature localization errors, which can cause significant uncertainty in view-
point determinations, can be classified as either sensing errors or position
specification errors.

Most of the research on uncertainty in localization has been limited to
indoor applications for which 3-D sensors with well described error models
are used (e.g., Brooks 1985; Moravec 1988). The nature of localization uncer-
tainty in large-scale outdoor environments is much different. As previously
mentioned, accurate range to distant landmarks is seldom available. Measure-
ments of bearing or relative visual angle suffer from sensing errors due to
distortion, calibration inaccuracies, and sampling errors which can often be
severe, particularly over larger viewing angles. In addition, there is uncer-
tainty in the exact location of landmark features in both view and map, since
the features used as landmarks in outdoor terrain have substantial but ill-
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Figure 5. View localization uncertainty modeled as map uncertainty.

defined physical extent. These position specification errors are compounded
by viewpoint dependencies. For example, except when the line of sight is
horizontal, the apparent high point of a peak in the view will usually not
correspond to the actual high point.

It is important to distinguish between sensing and position specifica-
tion error when implementing algorithms for geometric inferences about
viewpoint and correspondences. Sensing errors manifest themselves as uncer-
tainties in either relative or absolute visual angle. The actual error model
needed is a function of the sensors involved. Our geometric inference tech-
niques presume the availability of a bound on maximum angular error. While
a statistical evaluation of possible viewpoints is feasible, assuming a uniform
distribution of sensor error across an interval is likely to be more believable
than those probabilistic models which require unrealistic assumptions about
the distribution of error.

Position specification errors for map features can easily be modeled by
introducing a region of uncertainty around the presumed map location of the
feature. View position specification errors would appear to be more difficult
to deal with, since they are viewpoint dependent: the larger the spatial extent
of the feature in the view the larger the uncertainty in feature location is likely
to be. It turns out to be possible to transfer this uncertainty to the map and treat
it in the same manner as for map features.

Figure 5 shows the reasoning. The uncertainty in locating a view feature
is a function of the extent of the feature in the view. This in turn is directly
related to the physical extent of the feature in the world and the viewing
distance. Thus, position specification errors can be accounted for by assuming
that there is an uncertainty in the location of map features sufficient to account
for errors in extracting both map and view feature locations. The magnitude
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Figure 6. The viewpoint is constrained to the gray area when there is uncertainty in absolute
bearing.

of this uncertainty is dependent on the nature of the local topography: Glaci-
ated terrain such as used in the example shown in Section 5 is characterized
by a predominance of sharp features that are relatively easy to localize,
while topographic features in rolling terrain have much greater positional
uncertainty.

We have found it useful to employ interval models of uncertainty in
sensor values and map accuracy, and use these to determine feasible view-
point regions. These regions are chosen to be compatible with the expected
variability of measured bearings. Multiple constraints are evaluated using
intersection to determine the region or regions compatible with each of
the constraints individually (A discussion of one way to do a probabil-
istic analysis of this problem can be found in Sutherland (1994)). Figure
6 shows the possible viewpoint region associated with a single absolute
bearing constraint, when there is uncertainty in the bearing. Figure 7 shows
the resulting viewpoint region in dark gray after intersecting three uncertain
absolute bearing constraints. Figure 8 illustrates the results of a complete
error analysis for three intersecting absolute bearing constraints. Each land-
mark is represented with a circle of uncertainty that captures imprecision in
the actual landmark location, plus likely difficulties in precisely locating the
landmark in the view. The wedge spreading out from these circles accounts
for errors in the measured bearings to each landmark. The viewpoint region
is shown in dark gray.

The gray area in Figure 9 is the area in which the viewpoint could lie
given an uncertain relative bearing measurement to two landmarks, assuming
sensing error within a given bound but no position specification error. The
landmarks are represented by the small black disks. An extensive analysis
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Figure 7. Intersecting multiple uncertain absolute bearing constraints. The viewpoint is
constrained to the dark gray region.

Figure 8. Intersecting absolute bearing constraints with both sensing and position specifica-
tion errors. The viewpoint lies in the dark gray region.

of the results in intersecting two or more such regions can be found in
Sutherland and Thompson (1994). Figure 10 shows an equivalent viewpoint
region with the uncertain relative bearing due to position specification error
but no sensing error. The landmark points are now surrounded by dark gray
circles of uncertainty. In Figure 11, the errors shown in the previous figures
are combined, resulting in a larger area in which the viewpoint might be
located. Unlike in the method of absolute bearing, the size of this area is not
only a function of the bound on sensing error and the radii of the circles of
uncertainty surrounding the landmark points, but also of the true visual angle
measure. For any given bounds on sensing and position specification errors,
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Figure 9. Viewpoint constraint based on relative visual angle with sensing errors.

Figure 10. Viewpoint constraint based on relative visual angle with position specification
erTors.

the area will increase in size as the visual angle decreases or, equivalently, as
the viewpoint moves further from the landmark pair.

Figure 12 shows the effect of sensing errors on viewpoint localization
using feature alignment. Rather clearly, it is important that the distance from
the actual viewpoint to the nearer feature not be too much larger than the
distance between the features. A similar effect occurs with ordinal position, as
shown in Figure 13. This serves to limit the usefulness of the ordinal position
inference methods, except for widely spaced landmarks.
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Figure 11. Viewpoint constraint based on relative visual angle with both sensing and position
specification errors.

Figure 12. Viewpoint constraint based on feature alignment with sensing errors.

Figure 13. Viewpoint constraint based on ordinal position with sensing errors.
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3. Constraint-based analysis

Ambiguity in landmark recognition and matching is a central problem in
outdoor navigation. Landmarks are seldom so distinctive that they can be
unambiguously recognized as unique entities. Dead reckoning errors and
errors in prior localization determinations hamper methods based solely on
predict-verify operations. These problems are particularly troublesome in
outdoor environments with few cultural features.

3.1. Interacting constraints

One way to reduce the impact of these effects is to use a constraint-
based approach which interleaves the establishment of correspondences with
the estimation of viewpoint: Easily determined correspondences are used
to obtain an initial estimate of viewpoint location which facilitates estab-
lishment of additional correspondences. This in turn allows the estimated
viewpoint location to be further refined. Uncertainty is represented explicitly
by allowing for alternate hypotheses about possible landmark correspond-
ences, with each hypothesis specifying the resulting regions within which the
viewpoint must lie if the hypothesis is correct. Constraint satisfaction is used
to discard hypothesized correspondences that lead to implausible predictions
and to refine the possible viewpoint regions associated with the remaining
hypothesized correspondences.

The geometric inference methods described in Section 2.1 are most
commonly used to generate viewpoint constraints specifying where the view-
point must lie to be consistent with a particular set of corresponding map and
view features. The validation of viewpoint hypotheses involves the generation
of distant constraints which specify additional correspondences for land-
marks distant from the proposed viewpoint that should hold if the hypothesis
is valid. These constraints can involve correspondences between map and
view features as well as relationships between features in either the map or
view. Information about the nature of the terrain in the immediate vicinity of
the viewpoint leads to local constraints which limit the viewpoint to compat-
ible terrain features on the map (E.g., “I'm standing on a hill. Therefore, the
viewpoint must be located at one of the hills found represented on the map.”)
These appear to be quite important for expert human map users (Pick et al.
1996).

Three types of geometric inference between these constraint types are
possible (Figure 14):

— Distant constraints = constraints on viewpoint: Map/view feature
correspondences for sets of distant features can be used to determine
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Figure 14. Reasoning about viewpoint involves interacting constraints.

constraints on the viewpoint using various forms of trigonometric
analysis.

— Constraints on viewpoint = expectations about distant constraints.
Hypotheses about viewpoint can be evaluated by examining distant
features. A possible viewpoint, together with one or more view features,
can be used to predict the location of the corresponding map feature(s).
Likewise, a map feature can be used to predict the nature and location
of view features. If these expectations fail to be met, the hypothesized
viewpoint is likely in error.

— Local constraints = constraints on viewpoint: Local constraints allow
for the enumeration of possible viewpoints. Such an enumeration can be
intersected with the constraint regions that usually arise from consider-
ation of distant features.

3.2. Evaluating viewpoint hypotheses

In addition to generating new hypotheses about the viewpoint, the inference
methods described in Section 2.1 can be used to to evaluate existing view-
point hypotheses as well. Two sorts of evaluation can occur. Features in the
view not used in forming the original viewpoint hypothesis can be used to
generate expectations about compatible terrain features that should appear
within particular regions of the map if the hypothesis is correct. Likewise,
features on the map can be used to generate expectations about features that
should appear in the view.

Outdoor terrain contains many similar appearing landmark features. As a
result, the discovery of a particular landmark where one is expected is only
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weak evidence confirming a viewpoint hypothesis. On the other hand, the
failure to find a feature where one is expected is strong evidence that the
hypothesis on which the expectation is based is incorrect. This disconfirma-
tion strafegy plays an important role in human map usage (Heinrichs et al.
1992).

3.2.1. Confirming view expectations on the map

Given an hypothesized viewpoint on the map, the absolute bearing to view
features can easily be used to specify a map region where the corresponding
map feature should appear. This map region is then searched for viable
matches to the view feature. This process is very important since it either
generates new feature correspondences, or, when no matching map features
are found in the region, provides sufficient disconfirming evidence to reject
the hypothesis.

Since hypothesized viewpoints typically specify regions on the map and
not just a single location, the area in which the feature is expected to lie is
also a region, not just a line specified by the bearing. The region is found
by taking the union of the half lines specified by the measured bearing from
all points within the supposed viewpoint region. Uncertainty due to sensing
errors can be accounted for by recognizing that a viewpoint location plus
a bearing specify a wedge within which the feature should lie. Figure 15
illustrates the method. The shaded area indicates a search region on the map
in which a feature appearing in the view at a particular bearing is expected to
be. This search region includes both the dark gray viewpoint region itself and
the light gray wedge emanating from it. As before, feature position specifi-
cation errors can be modeled by adding a circle of uncertainty around map
features. The expectation generated from the view is confirmed on the map if
the search region includes any part of the uncertainty circle from a compatible
map feature. Note that the search region can be constructed based only on an
analysis of the external contour of the viewpoint region. This is also true of
the other inference techniques described below.

Figure 16 shows the situation when the ordinal position of two features in
the view is known and one of those features has been localized on the map.
From the same dark gray viewpoint region as shown in Figure 15, any feature
seen to the “left” of F will be located either in region C1 or in one of the
darker gray areas shown in the figure. Any feature seen to the “right” of F
will be located either in region C2 or in one of the darker gray areas.

If we have one view feature that corresponds to a map feature, and another
view feature with a particular visual angle with respect to the first view
feature, then the map region in which we expect to find a match for the
second view feature is shown in Figure 17, with the darkly shaded region



305

Figure 15. Given a a viewpoint specified by the dark gray region and an uncertain abso-
lute bearing to a view feature, the corresponding map feature lies somewhere in either the
viewpoint region or the light gray wedge emanating from it.

Figure 16. The region in which a map feature is located can be determined using ordinal
position with respect to a second feature, F, previously localized on the map.

being the viewpoint region. Figure 18 is a special case of Figure 17 showing
the possible locations of a second map feature that appears in the view to
align with the marked feature, given a bound on the angular uncertainty with
which the features can be localized in the view.

The geometric constructions needed to determine these regions are
complex. Computational implementations can often benefit from simpli-
fications. It is important, however, to use a conservative approach. Since
constraints are intersected to find features and relationships that satisfy all
relevant constraints, it is important that the actual search regions used cover
all of the theoretically possible locations.
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Figure 17. Given a viewpoint specified by the dark gray region and an uncertain relative
bearing between one feature indicated by the black dot and another view feature, the corre-
sponding map feature lies somewhere in either the viewpoint region or the light gray region
emanating from it.

Figure 18. Possible map locations for a feature, given that it aligns with another feature in the
view.

3.2.2. Confirming map expectations in the view

Given landmark locations on the map and a map region which is known to
contain the viewpoint, it is possible to determine constraints on landmarks in
the view. In general, we assume that all view features are present on the map,
but the converse is not necessarily true. The map may well cover more terrain
than is visible in the view. Occlusion also results in missing view features.
Thus, the lack of a view feature where the map suggests one is not suffi-
cient cause to reject a hypothesis, making this a less useful process than the
view driven searches discussed in the previous section. For the same reasons,
human map users tend to concentrate on view features first (Heinrichs et
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Figure 19. Using absolute bearing to determine where a map feature should appear in the
view.

al. 1992). That is not to say that this process is not useful at all. It can be
used to verify an hypothesized viewpoint or possibly to establish additional
correspondences between features in the view and map.

If map and view orientations are registered using a compass or other
means, then absolute bearing can easily be used to determine possible
viewing directions from a viewpoint region to any particular map feature not
in the region. (If the feature is within the region, any viewing direction is
possible.) Figure 19 illustrates the situation. The region boundary is traversed
and the range of possible viewing directions is determined, as shown in the
upper left of the figure. Though not indicated here, a search for the feature
in the view should take into account any uncertainty in determining view
bearings that might exist.

Ordinal position can be used to predict that some view feature will be
found to the right of (or left of) some other view feature. In Figure 16, any
map feature in region C1 will show up in the view to the left of feature F
from anywhere within the viewpoint region. Likewise, any map feature in
region C2 will show up in the view to the right of F. Any feature located in
the dark gray areas might appear to either side of F, depending on where the
actual viewpoint is located. Such features are thus not useful for validating a
viewpoint hypothesis.

Figure 18 can be used to illustrate the way in which it is possible to
determine if two map features might appear aligned in the view. Any land-
mark feature located in one of the gray areas will appear aligned with the
marked feature from at least one location within the region of possible view-
points. Alignment will not in general occur at other possible viewpoints,
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Figure 20. Determining possible visual angles between two landmarks.

however. As a result, this form of analysis is of little value in confirming a
particular viewpoint hypothesis unless the viewpoint region is quite small.

As with absolute bearing, the range of relative visual angles between two
landmarks outside of the possible viewpoint region can be found by traversing
the region boundary, keeping track of the maximum and minimum angles
that are found. Figure 20 shows the two extrema angles, along with constant
visual angle contours in 10° increments in order to provide a sense of scale
and sensitivity.

3.3. Orienting a view

In the discussion thus far, the use of absolute bearing has presumed that some
sort of compass was available in order to transform viewing directions into
map orientations. In fact, it is possible to orient the view with respect to the
map in the absence of a compass once one or more of the other inference
methods have been used to narrow down the possible viewpoint region. If, in
the situation shown in Figure 19, we have no initial means to register map
and view orientations, but have determined both the view and map locations
of the feature by an inference method other than absolute bearing, we can then
determine the bearing to the view feature with respect to the map coordinate
system. This registration of the two coordinate systems is accurate to within
an uncertainty range that is a function of the size and shape of the view-
point region and the distance to the feature. It follows that north in the view,
corresponding to north on the map, can then be hypothesized. For a well
calibrated camera system, equivalent information is then provided on all of
the other view features as well. This is a potent tool, since it lets us bring into
play absolute bearing inferences even if we start out not knowing the orienta-
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tion of the view and have no direct way of determining that orientation. As
demonstrated in the example in Section 5, as more view features are matched
to features on the map, this hypothesis of view north can be refined. There
is evidence that human map users will try to orient the view with respect to
the map before generating detailed hypotheses about the viewpoint if they do
not have a compass or other indication of direction in the world (Pick et al.
1996).

4. Matching

Although constraint-based analysis using multiple hypotheses and a discon-
firmation strategy provides a powerful tool for dealing with the potential of
incorrect correspondences between map and view features, it is critical that
feature matching be done in a manner that reduces as much as possible the
chances for false matches. It is particularly important to restrict the possible
associations between map and view features (i.e., the distant constraints),
when initial hypotheses about the viewpoint are being formed. At this point
in the problem solving process the distant constraints will have little effect in
limiting matches. The likelihood that a view feature and a map feature corre-
spond to the same terrain landmark can be estimated based on two aspects of
the features: features must be of compatible types and should have compatible
geometric properties.

While landmarks are seldom uniquely identifiable in outdoor terrain where
distinctive man-made features are absent, they can be grouped into categories
based on feature type with some reliability (Brandli 1996). View features,
for example, can be divided into the classes of gaps, ridges, saddles, valleys,
inclines and peaks. Map features can be organized into a richer structure,
since more information is available about their actual geometric shape. This
much richer structure is due in large part to the fact that while 3-D structure
is directly available from the map, it is quite difficult to recover from the view
for both people and machines using passive range sensors. Figure 21 shows
a taxonomy of features in mountainous terrain that has proven useful both to
account for human performance and in computational simulations (Bennett
1992).2

To deal with viewpoint dependencies, it is possible to specify the a priori
likelihood that a particular view feature type and a particular map feature type
are compatible with a single terrain feature. Figure 22 shows a possible empir-
ically determined assignment of such likelihoods (Bennett 1992).? Likelihood
values range from a value of 5, indicating a strong likelihood of compatibility
to a value of 0, indicating no likelihood of compatibility between map and
view features. As an example, consider the map feature “Ridges” in Figure
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Figure 24. Peak and ridge feature properties.

rise angle (the angle of the ridge itself relative to the horizontal) and the break
angles of each of the faces (the slope of the face measured along its fall line).

For a horizontal viewing direction, the projection process is such that the
angle of the ridge in the view is never less than the rise angle. This is apparent
in Figure 23, where the angle of the ridge relative to the horizontal is equal
to the rise angle in the view on the left and greater in the view on the right. It
follows that the projected ridge angle in the view for ridges seen in profile is
never more than the break angle of the hidden face. If ridge features have been
flagged as having a high likelihood of compatibility, additional weight for
matching these features is given if the angle of inclination of the ridge in the
view lies between the rise angle of the ridge and the break angle of the face.
Since a ridge line is made up of multiple ridges, knowledge of the minimum
rise angles and maximum break angles in the ridge line on the map constrains
to an interval the ridge in the view. Likewise, if the angle of inclination in the
view lies outside of this interval, the match can be eliminated from further
consideration. In most realistic situations, the viewing angle is sufficiently
close to horizontal for this constraint to be useful.

While the geometric and topographic properties of map and view features
can help determine whether or not a particular feature match is valid, it is still
necessary to determine which features to attempt to match in the first place
and also necessary to resolve ambiguous matches. Geometric similarity can
only help in matching when there are few features present with similar shapes.
As a result, the key features to match are those with geometric properties that
are both prominent and unusual.

In the example presented in Section 5, we have implemented the selection
of features in the following way. Each feature type is characterized in terms
of a set of scalar properties. Figure 24 lists the peak and ridge properties used
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Figure 25. Panoramic image of terrain.

in the example. In this case, the same properties are used for view and map
features, with the values being actual on the map and apparent in the view.
Due to viewpoint dependencies and the lack of reliable 3-D information in the
view, these are not necessarily the same. For a given localization problem,
each property value has an associated prominence value, ranging from 0.0
to 1.0, that indicates the conspicuousness of the feature value within the
context of other features of the same type. Prominence alone is not a sufficient
criterion on which to select features for matching, however, since the terrain
may contain many prominent features, all with about the same shape. As a
result, a distinctiveness value is computed for each feature type, which has a
high value only if there are few features that are prominent with respect to
the feature type. Finally, the saliency of each feature type for each feature is
computed as the product of its prominence and distinctiveness. By ranking
each feature in terms of the maximum saliency over that feature’s properties
and focusing on those features with a saliency over a predefined threshold,
attention is concentrated on features most likely to be easily matched.

5. Example of feature-based localization

The geometric reasoning techniques described above have been tested on real
terrain data from the Wasatch mountains surrounding Salt Lake City, Utah
(Valiquette 1995). The panoramic image shown in Figure 25 provided the
view data. The map data was USGS 30 m DEM data covering approximately
21.4 by 28 km.

The view was searched for significant features. Only one feature, the
largest, highest peak, has an overall saliency value, as described in Section
4, above a predefined saliency threshold. Two proximity configurations were
formed involving the selected peak and each of two nearby ridge lines, one
immediately to the left of the peak and one immediately to the right. The
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physical characteristics of the peak and ridge line features combined are
likely to produce a smaller number of potential matches on the map than
would be produced if each feature was considered separately. The previously
described ordinal view and relative bearing inference methods were used
in the formation and refinement of localization hypotheses. Four of the six
strategies for localization introduced in Heinrichs et al. (1992) were used:
concentrate on the view first, organize features into configurations, pursue
multiple hypotheses and evaluate hypotheses using a disconfirmation strategy.

With no a priori knowledge of view orientation (see Section 3.3), the map
was searched for configurations involving a peak and a nearby ridge line.
Nineteen localization hypotheses were generated. An initial map location
region was generated for each hypothesis using the map feature positions and
the relative bearing between the view features. The view and map coordinate
systems were then used to determine for each hypothesis an estimate of abso-
lute bearing which will be referred to as view north. The accuracy of the view
north estimate determines the angular extent of map search and constraint
regions and must be updated as new feature correspondences are formed.

After estimating view north, a search was made for map features to match
other highly salient view features. If exactly one map feature was found to
match the view feature, another feature correspondence was added to the
hypothesis, used to refine view north, and then to refine the viewpoint region.
Ambiguous features were noted, and the search for a match was repeated later
when improvements in view north and/or reductions in the size of the location
region might lead to a smaller search region and subsequently a single match.
If no map features were found to match the view feature, this disconfirming
evidence was sufficient to reject the hypothesis. The steps of refining view
north, refining the map location region, and searching for ambiguous view
features were repeated until there was no longer improvement in localization.

Figures 26-28 demonstrate the refinement of the actual correct hypothesis.
In the figures, four types of uncertainty regions are overlaid on top of the
topographic map for a portion of the area in which the viewpoint lies. Light
gray specifies a region within which the viewpoint is hypothesized to lie
at a given point in the analysis. Mid-light gray illustrates the search region
used in the map to find a feature which appears in the view. When a possible
correspondence is found between a map and view feature, absolute bearing
can be used to constrain the possible viewpoint, as shown in mid-dark gray.
The intersection of the current (light gray) viewpoint hypothesis and the (mid-
dark gray) constraints derived from corresponding map and view features
often allows a reduction of the hypothesized viewpoint region, as shown in
dark gray.
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Figure 26. On the left is the search region for a map feature to match the long ridge in the
view. On the right is the constraint region based on that match. The circular region in both
figures is the initial map location region.

The left panel in Figure 26 shows a viewpoint location and the search
region for a map feature to match the long view ridge that wraps from one
edge of the image to the other. One map ridge line meeting the description
of the view ridge line was found in that region. This map feature and the
associated view bearing were then used to refine both view north and the map
location region. The map location region and the constraint region associated
with the newly matched ridge line are shown on the right. Although the map
location region was not reduced by this additional correspondence, it did
significantly reduce the view north estimate, evident in the smaller angular
extent of the constraint region as compared to that of the search region.

As a result of the newly matched ridgeline, the estimate of view north
changed. This affects the size of both search regions and constraint regions,
so the refinement based on the previously corresponded features is repeated
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Figure 27. The size of the map location region shown in Figure 26 is reduced by repeating
the refinement based on previously corresponded features.

Figure 28. The resulting viewpoint uncertainty region after applying the constraints illustrated
in Figure 27,

in an attempt to further reduce the map location region. The peak and nearby
ridgeline correspondences, on which the hypothesis was formed, are used in
this refinement. The constraint regions associated with each of these feature
correspondences are shown in Figure 28. The reduction of 79.1% in the size
of the map location region, from 1.486 km? to 0.1405 km? shows the benefit
of using distant features to refine view north followed by nearby features to
refine the map location region.
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Figure 29. The localization hypothesis with map location region shown on the left is rejected
when the search for a map feature to match the long view ridge line within the dark gray area
on the right is unsuccessful.
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Figure 30. Initial and final location regions for the three non-rejected hypotheses.

Sixteen of the 18 incorrect hypotheses were rejected. One of these had
the initial location region shown on the left of Figure 29. After estimating
view north, the search for a map ridgeline to match the long view ridge line
was unsuccessful. No ridgeline meeting the description of the view ridge
was found within the search region, shown on the right of Figure 29. This
disconfirming evidence caused the hypothesis to be rejected.
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Three hypotheses, including the correct solution, were accepted. Both of
the accepted but false hypotheses had incorrect estimates of view orientation.
This is a common occurrence among human navigators, who will often look
in the wrong direction on the map for a given view feature. The initial and
final map location regions for all three non-rejected hypotheses are shown in
Figure 30. The set of regions associated with the correct hypothesis is farthest
west on the map (with north being “up”). The two incorrect hypotheses were
not rejected because an inaccurate estimate of view north led to plausible
but incorrect feature matches. This error in estimate, caused by an initial
mismatch of features, was very large. Due to the complete lack of a priori
knowledge of view orientation, the northern direction was assumed to be
opposite what it actually was. Indeed, when view north was pre-specified
in an analysis of the same data set, only the correct hypothesis was accepted.
One goal of future work is to refine the feature correlation process so that
disconfirming evidence will force rejection of such an hypothesis, or, prefer-
ably, prevent the feature mismatch in the first place. A second goal would
be to compare this approach with one which incorporates existing work
(Papadias and Egenhofer 1997; Goyal and Egenhofer, in press) on hierarch-
ical reasoning about direction relations and determining cardinal directions
between objects into the decision algorithm.

6. Conclusion

We have presented in this paper an approach to feature-based localization in
outdoor terrain based on techniques used by experienced human navigators.
It implements high level matching strategies which are designed to handle
ambiguities such as those due to correspondence errors and gross misidenti-
fication of landmarks, and so can be used in situations where mathematical
modeling fails. This approach is demonstrated on a real example taken
from an outdoor environment lacking man-made features or other clearly
distinctive landmarks. Successful application of this type of reasoning in such
a problem points out that the exploitation of high level, but often ignored,
information can lead to a more robust navigational system.

Our work demonstrates the feasibility of using geometric reasoning
strategies which explicitly account for positional uncertainty, combined
with high-level problem solving, to perform localization tasks of real-world
complexity. Future work needs to address at least three limitations of the
current model. While our model captures positional uncertainly quite well,
it does not provide an effective mechanism for representing linear and area
features with imprecise extent (Burrough 1992; Clementini and Di Felice
1996). The model applies to a single, static viewpoint and doesn’t account
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for either viewpoint motion to confirm hypotheses (Heinrichs et al. 1989)
or the viewpoint estimation updating that occurs when an observer moves
through outdoor terrain starting from a known location. Finally, while the
general principles described here are likely to apply to a wide range of topo-
graphies, the detailed analysis of features will require significant extensions
in environments different than the high alpine region used in the example.
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Notes

1" The Navstar Global Positioning System (GPS) provides an alternate method of localiza-
tion. However, due to frequent occlusion of satellite signals in mountainous terrain, signal
distortion due to weather conditions, and other effects (Duerr 1992; Mattos 1992; Cohen et
al. 1993; Tranquilla and Al-Rizzo 1993), there is still an important role for perceptually based
competence in localization.

2 No single definitive taxonomy of terrain features exists. As a result, we have chosen terms
familiar to the experienced map readers that have been involved in our studies of human and
machine navigation.

3 The taxonomy in Figure 21 and the compatibilities listed in Figure 22 were derived based
on experience with mountainous terrain in Wyoming and Utah. Modifications will likely be
required for different types of topography and different geographic areas.
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