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Abstract

Micro-terrain features are topographic structures rel-
evant to the behavior of a simulation but with a hori-
zontal extent significantly less than the resolution of the
base-level terrain data covering the area in which these
structures occur. These features are thus not directly ex-
tractable from elevation data. While they are often ap-
parent in aerial imagery, micro-terrain features are easily
missed or confused with other features, making reliable
detection based on imagery alone problematic. This paper
describes an automated method for extracting high fidelity
models of small-scale ravine features by augmenting a hy-
drological analysis with computer vision techniques.

Introduction

Sensor technology, limitations of photogrammetry,
storage constraints, and requirements for real-time ren-
dering all limit the fidelity with which terrain can be ef-
fectively represented in a geospatial database. For certain
applications, it is critical that these databases include spe-
cific micro-terrain features with a lateral extent less than
the resolution of base-level terrain description. Ravines
and other, similar drainage features are examples of topo-
graphic micro-terrain that can critically affect the realism
of simulations.

While ravines and dry washes are usually at least par-
tially visible on aerial photographs, accurate detection and
localization is difficult. In addition, ravines are easily con-
fused with roads, tracks, and other structures commonly
appearing in non-urban environments. Photogrammetry
fails to extract many ravine features because of their re-
stricted depth and small width relative to the resolution
with which terrain elevation is extracted. The photogram-
metric overlaps usually used for non-urban terrain pre-
clude the ability to see into many ravine bottoms or mea-
sure the slopes of their sides. As a result, adding such
features to terrain databases currently requires substantial
manual processing.

The dry wash shown in Figure 1 is located in the live
fire range (Range 400) of the USMC Air Ground Com-
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Figure 1: Shallow wash located within Range 400.

bat Center, located at Twentynine Palms, CA. The wash is
1m-2m deep and 2m-3m across. Thoughverysmall com-
pared to the resolution at which terrain features are usu-
ally modeled, such ravines are of critical tactical signifi-
cance to both dismounted infantry and trafficability, and
therefore all units in a combat force. This area is included
within the coverage of the Army’s Close Combat Tactical
Trainer Southwest United States Desert Database (CCTT
Primary Two) (Pope et al., 1995). As a result, it provides
an effective opportunity to investigate the utility of meth-
ods such as presented here compared to current practice.

Standard NIMA data product are available for this area,
including DTED level 1 and 2 elevation data and ITD fea-
ture data. DTED, and to a lesser degree ITD, was never
intended to support high resolution simlulation require-
ments. In practice, however, these and similar resolution
data sources will continue to form the basis for terrain
skin construction for some time to come. In addition, a
3.3km by 2.2km area is covered by a custom-produced
high-quality DEM with a 1m post spacing and a relative
vertical accuracy on the order of 0.1 to 0.3 meters with
a matching orthoimage at the same resolution (Richbourg
et al., 1995; Richbourg and Olson, 1996). This provides
an indication of the true topography, which we can com-
pare with estimates extracted from more commonly avail-
able data sources.

Approach

The nominal resolution of elevation data on which ter-
rain models are based is commonly on the order of 30m
or greater. Due to the smoothing inherent in the manner
in which the elevation data is obtained, the effective res-
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Figure 2: Combining terrain analysis and computer vision
for ravine extraction.

olution, measured in terms of the size of distinct features
apparent in the data, is much coarser. Thus, even with
DEM data finer than a 30m grid, terrain structure such
as shown in Figure 1 is likely to go unrepresented. Nev-
ertheless, coarse resolution DEMs can be used to predict
likely locations where smaller terrain deformations are to
be expected.

Ravines are erosional features generated by large-scale
processes, even if the final effect is visible mostly on
a fine-scale. As a result, hydrological analysis can be
used to predict where such erosion is most likely to oc-
cur. Effective algorithms for performing this analysis even
on low-resolution, error-full representations of the terrain
skin are now a standard function in many geographic in-
formation systems (GIS). Such operations can be used to
effectively estimate the existence and location of ravine
features using DEM data with a post spacing significantly
greater than the width of the features of interest.

Hydrological analysis alone is not sufficient to confirm
that a ravine actually exists or to accurately determine its
location. Our approach therefore uses computer vision
techniques applied to higher resolution aerial images to
refine the results of the hydrological processing. Figure 2
illustrates the method. The contour maps show elevations
in a small patch of terrain, determined based on DTED
level 2 data with a post spacing of approximately 30m.
Hydrologic features are overlayed on the right-most map.
The lower left shows a 1m resolution orthoimage of the
same area. To its right is the results of a standard edge
detector applied to this image. Neither the hydrological
drainage features nor the edge features are enough in iso-
lation to accurately located the ravines. Taken together,
however, accurate localization is possible, as shown on
the far right of the figure. Here, the results of automated
ravine extraction are overlayed on a shaded relief render-
ing of the area, derived from the high-resolution DEM.
Essentially, this indicates the “ground truth” topography.

Background

Hydrological Analysis for Terrain Analysis

The earliest ideas on using DEM data to find ravines
were based upon using local surface properties to look for
a part of the topographic surface that is locally concave-
upward, and mark this position as a valley or ravine, pre-
suming that it is where surface water runoff is likely to be
concentrated (e.g., (Peucker and Douglas, 1975; Chorow-
icz et al., 1989; Tribe, 1992)). Many researchers (e.g.,
(Mark, 1983; Jenson and Domingue, 1988)) have used a
method that is more physically justifiable in nature. In this
method, a direction is assigned to each cell of the DEM,
corresponding to the direction that water would flow out
of that cell. This direction is that of steepest decent (i.e.
one of the 8 compass directions that corresponds to the
steepest downhill slope from that cell). Given this “direc-
tion matrix”, the total number of cells of the DEM that
contribute drainage through each cell is calculated. Those
cells that accumulate drainage above a certain threshold
are considered part of the drainage network.

Active Contours for Image Analysis

Active contours (often calledsnakes) are a powerful
tool for finding long curving linear structures in images
(Kass et al., 1988). Snakes are introduced as energy-
minimizing splines, whose energy is a weighted sum of
internal and external energies. There are two different in-
ternal energies which may be weighted in order to force a
snake to act more like a membrane or string, in the sense
of it resisting stretching, or more like a thin-plate or rod,
in that it resists bending (Leymarie and Levine, 1993).
The external energy equation is a function of the image on
which it is acting. This equation can be specified to favor
various image properties, such as edges and lines. Snakes
bring to bear a high-level, global knowledge across the
entire curve, instead of relying solely on local, low-level
knowledge(Kass et al., 1988; Menet et al., 1990).

In recent years, much research has been directed at
various aspects of snakes, including initialization (e.g.,
(Berger and Mohr, 1990; Neuenschwander et al., 1994)),
different underlying representation of snakes (e.g., (Menet
et al., 1990; Wang et al., 1996)), formulation of energy
functions (e.g., (Radeva et al., 1995; Lai and Chin, 1993)),
imposing constraints (e.g., (Neuenschwander et al., 1995;
Fua and Brechbuehler, 1995)),and the method of solution
(e.g., (Wang et al., 1996; Amini et al., 1990)).

Ravine Extraction

Our method uses a hydrological analysis to infer likely
ravine locations. This information is used to initialize the
snaking process. The external energy function is based
on standard edge detection methods applied to an aerial
image covering the same terrain. The refinement of con-
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Figure 3: Overview of ravine extraction process.

tour location using the snaking process proceeds in two
steps. The first adjusts individual segments of the tree
of drainage patterns to best fit the imagery, subject to
the contour smoothing criteria. The second step adjusts
the junctions connecting multiple contour segments. (See
Figure 3.)

Finding Drainage Features

Hydrological analysis was done usingArc/Info func-
tions flowdirection , flowaccumulation , con ,
andstreamline , which implement the steepest descent
approach. DTED level 2 elevation source data was used.
This is represented in a geographic (latitude/longitude)
coordinate system, with a post spacing of 1 arc-second in
both latitude and longitude. We used the slightly uncon-
ventional approach of doing the hydrological analysis in
this spherical coordinate system to avoid the interpolation
artifacts that would have been generated by reprojecting
the geographic coordinates into a planar coordinate sys-
tem. Instead, reprojection to a UTM coordinate system
was done after the drainage patterns were found.

Figure 4 shows the NIMA ITD drainage features for a
portion of the Range 400 area, overlayed onto an aerial
image of the same region. Only one feature is present
in this area and it is mislocated by a significant amount.
Figure 5 shows the drainage features for the same area,
determined using the hydrological analysis. Many more
relevant features are included. Locations are still incor-
rect, however, which is not surprising given the limited
resolution of the source data.

Figure 4: ITD drainage features in a portion of Range 400.

Figure 5: Drainage features for the same regions as shown
in Figure 4, determined using hydrological analysis.

Refining Drainage Features Using Aerial Imagery

A single aerial image, georeferenced to the elevation
data on which the hydrological analysis is based, can be
used to refine the location of drainage patterns to preci-
sions on the order of the resolution of the image. Since
high resolution imagery is much more likely to be avail-
able for a given area than is high resolution elevation data,
this can greatly improve the fidelity of a terrain database.

While we can guess at the locations of ravines in im-
ages such as shown in Figure 4, the visual signature of
ravines is easily confused with other commonly occurring
terrain and cultural features. This ambiguity can be sig-
nificantly reduced if we use a top-down approach which
uses the results of hydrological analysis as a starting point
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for searching for ravines in the aerial imagery. Such an
approach is easily implemented by using the results of the
hydrological analysis as the starting estimate for a snaking
computation. Snakes have the computational property
that they will modify this estimate only in ways that make
it better conform to the imagery.

The detailed appearance of ravines varies enormously,
depending on local topography, soil type, and vegetation.
As a result, standard contour extraction methods from
computer vision won’t work. Instead, we need a method
for finding linear patterns that vary in some visual prop-
erty, without knowing the details of the variation. Using
edge density has proven to be effective in implementing
this criteria. Figures 6–12 show an example. Figure 6
is a 1m orthoimage of the same area shown in Figures 4
and 5. Figure 7 shows the output of a Canny edge de-
tector applied to this orthoimage. Automated methods for
choosing the threshold and size parameters of the Canny
operator are described in (Thoenen, 1998).

Snaking requires a potential function with a spatial ex-
tent at least as big as the likely uncertainty in initial con-
tour location. We do this by applying a Gaussian blur to a
binary representation of the edge image, using a standard
deviation on the order of the resolution of the elevation
image used as the basis of the hydrological analysis (Fig-
ure 8). As iterations of the snaking process proceed, the
potential function is modified by reducing the amount of
blur applied to the edge image (Thoenen, 1998). This has
the effect of increasing the spatial localization of the final
estimates.

Figure 9 shows the the final results of this process, in-
dicating how much refinement has occurred over an anal-
ysis based only on the DTED level 2 elevation data (Fig-
ure 5). In Figure 10, these features have been overlayed
on top of the original aerial image. The availability of ac-
curate, high-resolution elevation data for Range 400 lets
us compare the results with the actual terrain. Figure 11
shows the final estimated ravine locations overlayed on
a shaded relief rendering of the terrain, based on the 1m
DEM. Over most of the area, ravine centerlines are found
to within a few meters of the correct location. It is impor-
tant to note that the 1m elevation data is used only to vali-
date results. The actual data extraction is based on DTED
level 2 elevation data (with approximately 30m post spac-
ing and well above 30m resolvable detail) and a single, 1m
resolution aerial image. Figure 12 shows the final ravine
features extracted over the whole of the Range 400 area,
again overlayed onto a shaded relief rendering of the high-
resolution DEM.

Figures 13 and 14 give an indication of the improve-
ments that can be obtained from this approach on real
terrain simulation applications. Figure 13 shows a view
generated from the CCTT Primary Two database from a
vantage point in the Range 400 area. The ravine that is
shown was entered into the database using ITD features.

Figure 12: Final features – full Range 400, overlayed onto
shaded relief.
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Figure 6: Aerial image. Figure 7: Edges derived from Figure 6.

Figure 8: Potential function derived from edges shown in
Figure 7.

Figure 9: Final features.

Figure 10: Final features, overlayed onto aerial image.Figure 11: Final features, overlayed onto shaded relief
generated from 1m elevation data.
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In Figure 14, the database has been modified by removing
ITD drainage features and replacing them with the fea-
tures shown in Figure 12. The improvement in realism
is immediately apparent. (The ravines remain standard
width in order to satisfy CCTT SAF constraints – see next
section.)

Determine the Width of Ravines

The method just described is effective at finding the
centerlines of ravines, but it tells us nothing about the
cross-section of the ravine. A complete cross-section
analysis would require high-resolution 3–D photogram-
metry, which in turn depends on the availability of very
precisely controlled and calibrated stereo imagery. A
straightforward extension of the snaking procedure out-
lined above, however, can be used to find the location of
the two side-walls of a ravine using only a single aerial
image.

If ravines had near constant width,ribbon snakes(Fua
and Leclerc, 1990; Neuenschwander et al., 1994; Da-
vatzikos and Prince, 1996) could be used. Since width
is highly variable, a different approach is needed. Our
method starts by first finding the location of ravine center-
lines. This is used to initialize a second snaking process.
Each centerline is split into two contours. These contours
are optimized using a second potential function that is the
gradient magnitude of the first potential function (which
in turn was based on edges in the image). The effect is to
create a new potential function with local maxima where
the edge density in the image is changing most rapidly.
The dot product of the gradient direction of the first po-
tential function and the normal of the initial contours is
used to insure that one contour is drawn to each side of
the ravine.

Figures 15–20 show the results of applying this ap-
proach. Figures 15 and 16 are the same image and initial
potential function as shown in Figures 6 and 8. Figure 17
shows the gradient magnitude of Figure 8. Figures 19 and
20 show the final ravine sidewall locations, overlayed onto
the original aerial image and onto the shaded relief render-
ing of the 1m elevation data. Again, the high-resolution
elevation data is used only to validate the results, it was
not part of the feature extraction process. Figure 21 shows
the final ravine sidewall features extracted over the whole
of the Range 400 area, overlayed onto a shaded relief ren-
dering of the high-resolution DEM. Figure 22 gives an in-
dication of just how accurate these extracted features are.
The figure was produced by draping the aerial image and
the ravine sidewall extracted from the lower-resolution el-
evation data onto the high resolution DEM. It is likely that
hand processing would not have produced results more ac-
curate than this automated process.

Figure 21: Extracted ravine sides – full Range 400, over-
layed onto shaded relief.

Figure 22: Extracted ravine sides rendered onto high-
resolution DEM.
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Figure 13: CCTT database with ITD-based drainage fea-
tures.

Figure 14: CCTT database with improved ravine features.

Using Active Contours to Refine Existing Features

The method described above uses snakes (active con-
tours) to refine the location of linear features first esti-
mated from medium resolution elevation data using a hy-
drological analysis. The computer vision component of
this approach can also be used to improve the accuracy of
features already present in a database. Figures 23 and 24
give an example. Figure 23 shows an ITD drainage feature
in a canyon section of the Range 400 area, overlayed onto
an aerial image of the same region. Clearly, the feature
is not accurately located. Figure 24 shows the results of
using the ITD feature as an initial estimate in the snaking
process and then refining this estimate using the imagery.
The result is far better localization of the features.

More generally, tools such as this will become increas-
ingly important as more and more visual simulations use
image mapping techniques rather than stereotypical tex-
ture mapping. When image mapping is utilized, it is crit-
ical that the geometry and functional behavior of the ter-
rain model match the image that is rendered. The same
top-down, model-driven image analysis techniques used
for ravine extraction can aid in consistent modeling of a
wide range of features.
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