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Abstract. Most optical flow estimation techniques have substantial difficulties dealing with flow discontinuities.
Methods which simultaneously detect flow boundaries and use the detected boundaries to aid in flow estimation
can produce significantly improved results. Current approaches to implementing these methods still have important
limitations, however. We demonstrate three such problems: errors due to the mixture of image properties across
boundaries, an intrinsic ambiguity in boundary location when only short sequences are considered, and difficulties
insuring that the motion of a boundary aids in flow estimation for the surface to which it is attached without
corrupting the flow estimates for the occluded surface on the other side. The first problem can be fixed by basing
flow estimation only on image changes at edges. The second requires an analysis of longer time intervals. The
third can be aided by using a boundary detection mechanism which classifies the sides of boundaries as occluding

and occluded at the same time as the boundaries are detected.
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1. Introduction

Discontinuities in optical flow are normally viewed as
a serious impediment to producing accurate estimates
of the flow. Due to the ambiguous nature of flow within
small space-time neighborhoods of an image sequence,
all methods for estimating flow either explicitly or im-
plicitly assume some sort of spatial and/or temporal
continuity. This assumption is often violated at surface
boundaries. This paper points out important shortcom-
ings in one class of methods for estimating possibly
discontinuous optical flow and indicates how improve-
ments can be made.

Two general approaches to dealing with flow discon-
tinuities are found in the literature. The first explicitly
allows for a mixed distribution near boundaries. Marr
and Poggio (1977) and Barnard and Thompson (1980)
did this by basing their analyses on prominent modes
of possible disparities over local neighborhoods. Us-

ing currently popular terminology, the modes acted
as a robust estimator for the dominant disparity in
the neighborhood, though neither paper explained this
effect. Some years later, Prazdny (1985) made the
idea explicit. Scott’s principal component approach
(Scott, 1988) and Schunck’s constraint line clustering
(Schunck, 1989) utilized the same concept. More re-
cently, Black and Anadan (1990) explicitly used robust
estimation in determining optical flow near boundaries.
Bergen et al. (1990) used a more specialized approach
in which one dominant motion is found first and then
used to produce a new image sequence in which the
found motion is nulled, allowing a second motion to be
more easily estimated. Once flow is estimated using
any of the above approaches, it is relatively straight-
forward to find the flow discontinuities (Thompson,
1985).

The second approach is to make discontinuities ex-
plicit, thus avoiding the need to deal with mixed distri-
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butions. All of these methods follow the basic struc-
ture of Geman and Geman (1984) or Blake and Zis-
serman (1987). The most common approach utilizes a
Markov random field (MRF) formulation with explicit
line processes (Murray and Buxton, 1987; Gamble and
Poggio 1987; Hutchinson et al., 1988; Koch ez al.,
1989; Konrad and Dubois, 1992; Heitz and Bouthemy,
1993). Interacting region and line processes are in-
volved. The region processes combine information
over local neighborhoods to reduce ambiguity and im-
prove reliability of individual flow estimates. The line
processes estimate locations of discontinuities and act

to keep points on opposite sides from interacting in -

the region processes. The estimation of discontinu-
ities can be greatly assisted if independent information
about possible surface boundaries is available. In par-
ticular, most of the papers referenced above allow the
assertion of a boundary element only at locations likely
to correspond to contrast edges.

This paper addresses optical flow estimation using
explicit discontinuity detection. We provide evidence
for three claims:

¢ Line processes, as usually implemented, do not
completely remove undesirable interactions be-
tween surfaces on either side of a motion boundary.

o There is an intrinsic ambiguity in the localization
of motion boundaries which can only be resolved
over multiple frame pairs.

¢ Distinguishing between the occluding and oc-
cluded sides of an optical flow boundary can aid
the flow estimation process.

Ways of exploiting these observations are demon-
strated using a simple flow estimation procedure. They
can easily be incorporated into more complete flow es-
timation systems.

2. Estimating Optical Flow in the Presence of Dis-
continuities

Existing flow estimation techniques which involve ex-
plicit motion boundary detection suffer from two de-
ficiencies when applied to image sequences with tex-
tured backgrounds. Interactions between surfaces on
either side of the boundary can still occur, degrading
the accuracy of the estimated flow. Furthermore, mo-
tion boundary detection itself is subject to a localization
ambiguity when only a single frame pair is analyzed at
a time.

2.1. Mixed image properties near the boundary

Clearly, optical flow cannot be determined based only
on a single space/time image point. All methods for es-
timating optical flow use image properties that must be
computed over neighborhoods. Gradient-based tech-
niques (e.g, Fennema and Thompson, 1979; Horn and
Schunck, 1981) require the estimation of spatial and
temporal derivatives using some form of finite differ-
ence. Region-based methods (e.g., Anandan, 1989)
compare local neighborhoods around selected points in
each frame. Space-time filtering methods (e.g., Adel-
son and Bergen, 1986; Heeger, 1988; Fleet and Jepson,
1990) are implemented using FIR filters with finite spa-
tial and temporal extent. Image properties are often
computed after some form of pre-filtering (Kearney er
al., 1987; Barron et al., 1994) also involving opera-
tions with finite spatial and/or temporal extent. In ad-
dition, many flow estimation methods impose explicit
flow continuity constraints (e.g., Fennema and Thomp-
son (1979), Barnard and Thompson (1980), Horn and
Schunck (1981), and the various MRF algorithms).

The line processes used to deal with flow discon-
tinuities in MRF-like methods in fact only affect the
imposition of explicit flow continuity constraints. Im-
age properties associated with points to one side of an
asserted boundary can still be effected by the intensity
patterns on the other side of the boundary. Derivatives
estimated using finite differences and pre-filtering will
have substantial errors in the vicinity of motion bound-
aries, particularly if the surfaces to one of both sides
are highly textured. A similar effect occurs with spa-
tiotemporal filters. While the line processes stop direct
interactions between estimated flow to either side of
a surface boundary, the flow estimates themselves can
still be highly inaccurate.

If done in a systematic manner, the use of adaptive
window sizes can reduce the effects of mixed image
properties at boundaries (Kanade and Okutomi, 1994,
Nagel, 1995). An alternate and more easily imple-
mented solution is to base flow estimates on correctly
chosen sparse image features. The features must be
lines or points that necessarily occur either well away
from surface boundaries or occur exactly at the bound-
ary and for which localization is not significantly ef-
fected by image structure to either side of the bound-
ary. The Moravec “interest operator” (Barnard and
Thompson, 1980), extrema in the difference of Gaus-
sians (Mutch and Thompson, 1983), corner detectors



(Ranagrajan et al., 1988), and methods based on con-
trast edges (Hildreth, 1983; Waxman et al., 1988) sat-
isfy this property.

2.2, Ambiguity of surface boundary location

Many of the methods for detecting flow discontinuities
are based on looking for large magnitude values of the
flow gradient. Unless the location of the flow discon-
tinuity is already known or methods which allow for
multiple motions near boundarics are used, estimated
flow will be smoothed over near the boundary. Figure 1
illustrates the problem. Estimated flow magnitude is
plotted against position along an axis perpendicular to
a surface boundary. Away from the boundary, flow es-
timates will be reasonably accurate. They should also
be accurate on the occluding surface near the boundary,
since the boundary itself will have sufficient structure
to allow flow estimation and is moving with the oc-
cluding surface. On the occluded side, however, flow
estimates won’t be accurate until observed sufficiently
far from the boundary to allow the moving texture of
the occluded surface to dominate any effects associated
with the surface boundary, which is moving with a dif-
ferent optical flow. The maximum rate of change in
flow will typically be noticeably offset from the actual
boundary.

Whatever flow-based boundary detection method is
used, there is an intrinsic localization ambiguity as-
sociated with instantaneous flow that cannot be over-
come without either non-motion cues to the boundary
location or analysis over longer time intervals (Thomp-
son and Barnard, 1981).! Consider the pattern shown
on the left in Figure 2. Three bars, «, [, and v, are
moving to the left. Three other bars, a, b, and ¢, are
moving to the right. Assuming that occlusion bound-
aries are likely to have associated contrast edges, then
the edge of the occluding surface is either along the
right side of bar -y or the left side of bar ¢. Without
additional information, there is no way to resolve this
ambiguity. Not until the next time step, shown on the
right in the figure, is it apparent that the lighter col-
ored bars on the left are occluding the darker colored
bars to the right and that the true occlusion boundary
is at the edge of bar . This problem affects not only
boundary detection based on flow gradients, but also
methods which are based on the appearance and dis-
appearance of surface texture (Kaplan, 1969; Mutch
and Thompson, 1985), methods which allow for multi-
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Fig. 1. Optical flow gradients are not sufficient to accurately locate
flow boundaries.
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ple motions within a local neighborhood, and methods
which attempt to recognize occlusion boundaries using
properties of similarity surfaces (e.g., Anandan, 1989).
A method for deciding which possibility - bar -, bar
¢, or the newly appeared bar d — really corresponds to
the surface boundary is described in section 3.2.1.

3. An Algorithm for Flow Estimation in the Pres-
ence of Discontinuities

This section outlines an optical flow estimation algo-
rithm which effectively addresses the problems dis-
cussed in section 2. It has similarities to the method
presented in Heitz and Bouthemy (1993), though dif-
fers in a number of important regards: the algorithm
correctly deals with mixed image properties near sur-
face boundaries, it uses a more complete classification
of boundary types, and it is able to resolve boundary
ambiguities when textured backgrounds are present.
The algorithm utilizes explicit line processes to avoid
undesirable interactions across motion discontinuities
in a manner analogous to the MRF methods, but using
a much simpler formulation. The important features
of this algorithm can be added to most existing flow
estimation approaches.

In the remainder of this paper, our analysis excludes
motions consisting exclusively of rotations of revo-
lute objects around an axis perpendicular to the line of
sight and corresponding to the axis of symmetry of the
object. This particular situation introduces additional
ambiguities, the resolution of which is still largely an
open question (Thompson ez al., 1992; Thompson and
Painter, 1992).
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Fig. 2. Intrinsic ambiguity in boundary location at one instant in time.

3.1. Dealing with discontinuities

At flow discontinuities, effective flow estimation meth-
ods must avoid smoothing the flow across the boundary
and must also keep image properties associated with a
surface on one side of the boundary from corrupting
the flow estimation for the surface on the other side.
We deal with this second problem by basing flow es-
timation solely on image features which are relatively
unaffected by this mixture of image properties. In par-
ticular, we base flow calculations only on image prop-
erties at edges. As long as no temporal pre-filtering is
performed, spatial contrast edges will either be close
approximations to surface boundaries or far enough
away from surface boundaries so that local image prop-
erties near the edge are largely unaffected by image
regions that are part of other surfaces. This has the
additional advantage of minimizing difficulties due to
apparent misregistrations between contrast and motion
edges due to localization errors when separate image
primitives are used. The standard Horn and Schunck
(1981) method is utilized, modified so that spatial and
temporal image gradients are only used at spatial edges.
For other image locations, flow is estimated using the
interpolation properties intrinsic to the method.

Given information about the location of surface
boundaries, it is straightforward to avoid flow computa-
tion interactions across boundaries. The Gauss-Seidel
method used in the basic Horn and Schunck algorithm
bases flow estimates for a given pixel at a particular it-
eration step on the average values at neighboring pixels
in the previous iteration. It is only necessary to make
sure this average does not include any pixels on the
other side of a motion discontinuity.

Discontinuity detection is based on an analysis of
flow differences across contrast edges which poten-

time t0 time t1
-« —> -« —>
-« —> -« —>
-« —> -« —>

Fig. 3. 'The surface to the left has an optical flow different from that
of the boundary and hence is an occluded surface. Since it is moving
away from the boundary, it is in fact being disoccluded.

tially signal surface boundaries. When possible, the
surfaces to either side of a detected boundary are clas-
sified as occluding or occluded using the boundary
flow constraint, which states that the flow associated
with the occluding surface immediately adjacent to the
boundary will be equal to the flow of the boundary
(Thompson et al., 1985). Violations of the boundary
flow constraint can be used to identify occluded or dis-
occluded surfaces, as shown in Figure 3, without any
need to know the camera or object motions involved.
This relationship is only useful when there are differ-
ences across the boundary in the component of flow
normal to the boundary. If the flows to either side of
a boundary are parallel to the boundary itself, then it
is not possible to determine which side is occluding
the other without additional information about camera
motion. Such sheer boundaries still indicate occlusion,
however.

To detect and classify motion boundaries, the flow
associated with every point on a contrast edge is com-
pared to the flow to either side. The flows to either
side are separated into components normal to the edge
orientation, fi- and f3- and parallel to the edge, fl‘l

and f2”. Detection and classification proceeds by first
checking to see if one surface is progressively occlud-



ing or disoccluding the other. If not, sheering surfaces
are checked for:

di =l fi- —f |, dy =| f& — |
if max(di,ds) > Ty
if di > dy
side 1 is occluded, side 2 1is
occluding
else
gside 1 is occluding, side 2 is
occluded.
else if |fl—fl1>m
sides 1 and 2 are sheer

This method, while less elegant that the detection
and classification scheme described in Thompson et
al. (1985) is more reliable. Note in particular that fi-
and f5- are separately compared to the normal flow of
the edge, rather than just taking their difference. This is
important, as it increases the sensitivity of the edge de-
tection. Because of the effects described in section 2.2,
the difference in flow normal to the edge attributable
to one surface moving relative to another will be con-
centrated in di- or d3 . Additional differences in flow
normal to the edge will arise due to smooth variations
in flow on the occluding side of the edge and from
various noise effects. As a result, basing detection on
| fi- — fo- | will increase the classification error rate.

Flow estimation at a boundary pixel neither affects
nor is affected by the flow at pixels to the occluding
side of the boundary. Interactions to the occluding
side, however, are allowed, since the boundary is part
of that surface. A conservative approach is taken for
sheer boundaries. The flow estimation at the boundary
is isolated from the flow values to either side, but does
interact with the estimation of other values along the
boundary. The complete algorithm interleaves flow

occluded
J region

disoccluded
region \

Zero
flow

A

occlusion boundary

occlusion boundary

Fig. 4. Projecting flow into occlusion and disocclusion regions.
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estimation and boundary detection. Enough Gauss-
Seidel iterations are done to get a reasonable estimate
of flow values. Boundaries are then detected and classi-
fied. Better flow estimates are obtained by performing
additional iterations using this information. The pro-
cess is repeated as necessary.

3.2.  Improving boundary localization over time

Optical flow estimation over sequences longer than a
single frame pair can improve the efficiency of itera-
tive algorithms by providing reasonably accurate initial
values and can improve the accuracy of many methods
by using some form of temporal coherence to reduce
the effects of noise. It turns out that longer sequences
are also the key to resolving the localization ambiguity
described in section 2.2.

3.2.1. Boundary projection Surface boundaries
persist over time. Once these boundaries are found at
one time step, their position can be easily predicted for
the next time step. This is done by taking each point
on a detected occlusion boundary and looking for a
contrast edge in the future frame at the corresponding
location, offset by the flow of the boundary point. Sub-
stantial efficiency is achieved by starting the iterations
at the next time step using these predicted boundary
locations. Even more importantly, over time actual
surface boundaries will be maintained while detected
boundaries that in fact correspond to surface texture
near true boundaries will disappear.

To see why this is so, consider Figure 2. At time
step 0, the interleaved iterate and classify algorithm
will end up finding potential occlusion boundaries to
the right of bar -y and to the left of bar c. The flow
estimates assigned to the region between the bars is
likely to be a muddle. At time step 1, bar d has ap-
peared. The flow of this new “texture element” will
initially propagate both left and right, since there is no
surface boundary indication associated with the bar. As
the flow propagation approaches bar €, the differential
flow across the (false) boundary on the left side of ¢
is reduced, leading to a reclassification of the edge as
non-occluding. The sides of d never get classified as
occluding, since the only flow not consistent with the
edge motion is blocked by the boundary at -y from prop-
agating towards d. The situation shown in Figure 2 is
extreme in that a full texture element appears over a
single time step. In practice, texture element spacing
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Fig. 5. Original image sequence, frames 1 — 4.

sheer boundaries
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/ occluding sides /
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Fig. 6. “True” boundary classifications for moving rectangle test
sequence.

is usually much larger than inter-frame motions and the
effect described above takes place more gradually.

3.2.2.  Flow projection Horn and Schunck suggest
improving the efficiency of their algorithm by using
the results obtained for one time step to initialize the
iterations at the next time step. Simply using the flow
obtained for each pixel at one time step to initialize
the estimates for the same pixel at the next time step
is adequate over smooth surfaces, but can actually lead
to worse results at occlusion boundaries than if a de-
fault of zero flow is used in the initialization. This is
because the flow associated with a disoccluded surface
region will typically be very different from the flow of
the surface which was previously occluding it. Some
improvement can be obtained by projecting the flow
estimates at one time step to pixels in the next time in
a manner that takes into account the flow value itself.
This fails, however, to provide initial estimates for flow
in occluded regions where multiple flow values project
to the same point and in disocclusion regions where
no flow values from the previous time step will project
(Black and Anandan, 1990).

Effective projection of flow into occluded and dis-
occluded regions in the next time step is possible if oc-
clusion boundaries have been detected and classified in
the current time step. Figure 4 shows a simplified situ-

ation in which an occlusion boundary is stationary, the
occluding surface is to the left, the occluded surface
is to the right, and the motion of the occluded sur-
face is normal to the boundary. Two possibiliiies exist:
the occluded surface is moving either towards or away
from the boundary. (In the case of pure sheer motion,
no occlusion or disocclusion regions exist.) Movement
away from the boundary causes disocclusion. The gray
area on the left of Figure 4 indicates the region in the
next time step that will correspond to surface visible for
the first time and which will have flow close to that on
the occluded side of the boundary. Movement towards
the boundary causes occlusion. The gray area on the
right in Figure 4 indicates the region in the next time
step where flow vectors from two different surfaces will
both project. The best estimate of the actual flow will
be the flow of the boundary itself. In either case, the re-
gion of occlusion/disocclusion runs from the boundary
to a line found by adding the flow vector of the occluded
surface point nearest each boundary point to the bound-
ary point location. For the more general case of moving
boundaries, the region of occlusion/disocclusion runs
from the projection of the boundary into the next time
step to the line found by adding the flow vector of the
occluded surface point nearest each boundary point to
the projected boundary point location. The flow to be
filled into these regions is either the flow of the bound-
ary or the flow of the nearest occluded surface point,
depending on the classification of the boundary.

Note that the principal goal here is to improve effi-
ciency, not implement some sort of temporal continuity
constraint. Temporal consistency can also be used to
improve accuracy in flow estimation, though this con-
straint can lead to problems in occlusion/disocclusion
regions (Murray and Buxton, 1987). Thus, the ap-
proach described in the preceding paragraph might be
extended to better exploit temporal continuity at and
near boundaries.
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Fig. 8. Flow estimation using Horn and Schunck with explicit boundary detection (first four frame pairs).

4. Experimental Results

This section presents results from controlled experi-
ments run on synthetic data. Implementation details
and results on real imagery are presented in Thompson
(1995). While the limitations of using synthetic data
are well known, it is the only way to do fair quantitative
comparisons between alternate approaches. The accu-
racy of estimated flow was measured using the inter-
frame angular deviation described in Barron, 1994.
While this measure is useful in evaluating the results of
the controlled experiments described below, the abso-
lute magnitudes of flow errors should not be compared
with those obtained in other circumstances. In the tests
reported here, most of the flow estimation error occurs
at flow discontinuities, which correspond to a substan-
tial number of the pixels in the test sequences. This
is not the case with other image sequences, such as
those used in Barron, 1994. Error magnitude com-
parisons between dissimilar image sequences will be
dominated by the number of pixels at or near discon-
tinuities at least as much as by the quality of the flow
estimation algorithms applied.

In evaluating the results, it is also important to note
that the performance of the methods described here de-

pends on both the particular motion analysis algorithm
used and the quality of the (static) edges on which it
is based. In order to provide a grounds for compar-
ing algorithms, a simple edge detector was used and
manipulations of the test sequences were structured to
avoid perturbations of edge detector performance. For
example, sub-pixel motions were avoided, since edge
detector results would be affected by the anti-aliasing
scheme used to generate synthetic images with non-
integral motions. To get the best possible performance,
as would be desirable if quantitative comparisons were
been done with competing methods, a more sophisti-
cated edge detector should be used.

Figure 5 shows the first four images from an 120 by
160 pixel synthetically generated sequence with a tex-
tured rectangle moving across a textured background.
The rectangle is moving four pixels to the right and two
pixel down per frame. The background is moving two
pixel down and to the left per frame. Figure 6 shows the
true occluded/occluding and sheer boundaries for this
sequence. In this and subsequent figures, sheer bound-
aries are marked by a light gray pattern on either side
of a dark line while occluded/occluding boundaries are
marked by a darker gray pattern on the occluded side
of the edge.
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Fig. 9. Edge-based flow estimation using explicit discontinuity detection.
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Fig. 10. Flow estimation using explicit discontinuity detection and projection.

fecting accuracy, however. Figure 10 shows the effect

of using boundary projection to initialize processing at

Figure 7 shows the optical flow estimated by the stan-
dard Horn and Schunck algorithm, applied to the first
four frame pairs of the moving rectangle sequence. The
errors in flow estimation, particularly at and near the

boundaries of the moving rectangle, are obvious. Fig-

the next time step. The boundary classification errors
have largely been eliminated and the flow estimates cor-

respondingly improved. Table 1 lists the quantitative

average errors associated with each of these algorithms.

ure 8§ demonstrates the results of adding explicit bound-
ary analysis to the basic Horn and Schunck algorithm.
The final flow estimates and boundary classifications
at each time step are shown. While the flow estimates
are improved, substantial error remains due to the mix-

The next set of experiments tests the value of clas-
sifying surface boundaries by labeling the sides as oc-

cluding or occluded. A test sequence consisting of
a uniform intensity disk moving over a textured back-
ground was used, with foreground and background mo-

ing of image properties across the boundaries, which
seriously distorts the gradient computations. Figure 9

tions as in the previous tests (Figure 11). To insure
convergence given the large, uniform brightness area,

uses the same algorithm as Figure §, except that only

image properties at contrast edges are used in the flow

600 iterations were run at every time step. Occlud-

This minimizes the effects of image

property mixing between surfaces.

computations.

ing/occluded boundary classification should allow the

Results for four

motion of the disk boundary itself to propagate into the
otherwise featureless interior of the disk. Asis clearin

Table 2, accuracy is improved.

frame pairs are shown. Flow estimates are further im-

proved. The ambiguity in detecting and classifying

boundaries when background texture appears near oc-

cluding contours, which is manifested in the figure as
missing and extraneous boundary segments, is still af-



Table 1.
frame pair: 1 2

Basic Horn and Schunck 13.38°  14.05°
Horn z}nd Schunck with boundary 11.31° 11.75°
detection

Edge—based flow estimation with boundary 7550 8.28°
detection

Edge-based flow est. with boundary 7550 5350

detection, projection

Table 2.

frame pair: 1
Symmetric boundary classification 6.75°
Asymmetric boundary classification 5.55°

The final set of experiments address the issue of how
well projecting the estimated flow from one time step
to initialize computations at the next time step helps in
flow determination. The image sequence used was that
shown in Figure 5. A total of 30 iterations were run at
each time step, as compared to 150/step for the results
shown in Figures 7-10. Five cases were examined,
with the resulting errors shown in Table 3. For the first
case, the algorithm employing boundary classification
and boundary projection was used as in Figure 10, only
with the reduced number of iterations. In the second
case, no boundary projection was done, but flow in
each time step after the first was initialized copying
the values obtained in the previous time step. (While
boundaries were not projected from frame to frame,
boundary detection and classification was used within
each time step.) With reduced iteration, initializing
flow estimates is clearly more valuable than initializing
boundary estimates. In the third test, there was no
boundary projection and flow estimates were initialized
using the projection method described in section 3.2.2.
There is a substantial improvement in accuracy. The
last two cases use boundary projection and flow that is

9.32°

7.26°
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Flow errors for different estimation algorithms.

Flow errors using symmetric and asymmetric boundary classification.

3 4 5 6 7 8
1591°  15.62° 13.14° 15.52° 13.84° 13.43°
13.27°  12.88° 11.18° 13.90° 11.77° 10.88°

8.76° 7.15°  10.38° 9.74° 9.02° 7.09°
4.75° 4.65° 5.28¢ 5.29° 4.81° 4.25°

3 4 5 6 7 8

8.51° 528° 540° 6.62° 6.81° 7.07°

7.00°  3.86° 4.07° 4.67° 495° 550°

initialized by either copying or projecting values from
the previous time step. Again, flow projection is clearly
superior to simple copying.

5. Summary

This paper has examined a number of important issues
affecting the accuracy of optical flow estimates made
by algorithms which explicitly take into account flow
discontinuities. Theoretical and experimental evidence
has been presented showing that the line processes typ-
ically used to keep flow smoothness constraints from
corrupting estimates across boundaries can still allow
image properties associated with a surface to one side of
a boundary to improperly influence flow computations
on the other side of the boundary. A second problem
affecting flow estimation is the intrinsic ambiguity of
boundary localization in textured environments when
only two frames are considered at a time. This effect
was clearly demonstrated using one particular flow es-
timation algorithm, but occurs independent of the al-
gorithm used. Experimentation has shown the value of
distinguishing between occluding and occluded sides
of a surface corresponding to a flow discontinuity. This
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Tuble 3. Flow errors when total iterations are reduced.

frame pair: 1 2 3 4 5 6 7 8
Boundary projection, no flow projection 21.99°  22.95° 2237° 2328° 22.74° 2324° 2265° 21.15°
No boundary projection, copied flow 21.99°  14.93°  1346° 12.53°  12.43° 12.66° 1225° 12.26°
No boundary projection, projected flow 21.99°  15.88°  13.34° 11.89° 11.29° 11.06° 10.96° 9.96°
Boundary projection, copied flow. 21.99°  1447°  11.59°  10.23° 10.07° 9.50° 9.06° 9.39°
Boundary projection, projected flow. 21.99°  15.01°  10.86° 8.74° 7.58° 7.04° 6.67° 5.56°

Fig. 11. Moving disk image sequence.

information can be used to improve flow estimates and
is important in projecting flow estimates to future time
steps so as to reduce computational requirements. Fi-
nally, we have shown how the line processes used in
MRF formulations for estimating optical flow can also
be used in the conceptually simpler Horn and Schunck
algorithm. While the techniques we have described
for improving flow estimation at boundaries are most
easily implemented in algorithms such as Horn and
Schunck and MRF methods, they can be applied across
the spectrum of approaches to optical flow estimation.
For example, the area correlation algorithm described
in Smitley and Bajcsy (1981) can be viewed as utilizing
something akin to a line process when matching image
regions.
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Notes

1. There is evidence that the human vision system resolves this
ambiguity by favoring whichever possible boundary has the
strongest non-motion edge properties (Yonas, 1990).
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