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Abstract

Localization based on visual landmarks re-
quires feature extraction from views and map,
matching of features between views and map,
and viewpoint hypothesis generation and ver-
ification. In this paper, we describe lower-
level image and map understanding procedures
for extracting features and higher-level problem
solving methods for establishing feature corre-
spondences and making inferences about the
viewpoint. Each of these processes, including
the interaction of high-level and low-level sub-
systems, is demonstrated on real data.

1 Introduction.

An essential aspect of map-based navigation is the deter-
mination of an agent’s current location based on sensed
data from the environment. Formally, this amounts to
specifying the current viewpoint in some world model
coordinate system. This localization process has two
distinct components: one involving the establishment of
correspondences between aspects of the sensed data and
the map or model and the other involving derivation
of constraints on the viewpoint based on the correspon-
dences that have been determined.

Correspondences can be established at the signal or
feature level. Signal-level matching correlates sensed
data with predictions of how the sensed data should ap-
pear. It works best when the uncertainty in the view-
point is small and when it is relatively easy to accu-
rately generate expected sensor data. For example, in
the TERCOM and SITAN cruise missile guidance sys-
tems, a digital elevation model is matched against a
downward looking, radar sensed elevation profile [An-
dreas et al., 1978, Baird and Abramson, 1984). Several
researchers have addressed the more difficult problem
of signal-based localization at or near ground level us-
ing horizontally oriented imaging systems and passive
sensing. In [Ernst and Flinchbaugh, 1989], deviations
between expected and observered views are determined
using curve matching algorithms and a weak perspective
model is used to update the position estimate. [Yacoob
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and Davis, 1991] and [Talluri and Aggarwal, 1992] de-
termine viewpoint under the assumption that viewpoint
elevation is known with high precision in the reference
frame of the map, a situation which dramatically re-
duces complexity but is unfortunately not likely to hold
in practice. [Stein and Medioni, 1992] proposed an al-
ternate method for determining viewpoint based on the
observed horizon line which is similar to the character-
istic view approach in object recognition.

Vision-based navigation in unstructured terrain can
violate many of the assumptions used in the approaches
described above. Often there is limited a priori knowl-
edge about the viewpoint due to travel through indis-
tinct terrain, temporary occlusion of landmark features,
or errors in position updating processes. The view of
the world at or near ground level is difficult to generate
from map data with sufficient fidelity to allow signal-level
matching. Furthermore, available digital cartographic
data sets often contain inaccuracies that can cause seri-
ous problems for correlation-based analysis. For exam-
ple, in one of the USGS DEMs that make up our test
data, the location of the high point of a significant peak
is off by over 200m. It is not surprising that most of
the published work on vision-based localization from a
ground-level perspective has been demonstrated only on
synthetic data, where these problems do not occur.

With signal-based techniques, actual viewpoint deter-
mination is done using the same types of methods in-
volved in photogrammetry (which solves the same prob-
lem) [Sanso, 1973, Thompson, 1958] or in alignment ap-
proaches to object recognition [Huttenlocher and Ull-
man, 1987, Grimson, 1990]. The principal shortcoming
in both these methods is the difficulty of introducing
realistic error models or effective representations of the
uncertainty in viewpoint estimates.

Feature-based approaches hold the potential for avoid-
ing many of these problems. Features are extracted inde-
pendently from sensed data and maps and then matched
symbolically. As a result, there is no longer a need to
be able to synthesize an accurate rendition of expected
sensed data. The symbolic nature of matching and view-
point inference allows the introduction of sophisticated
problem solving methods which are able to deal with
issues such as ambiguity and complex error models.

In the remainder of this paper, we describe one pos-
sible approach to feature-based localization in unstruc-



tured, outdoor terrain. We outline methods for extract-
ing terrain features from maps and image data, show how
matching can be performed, and describe a collection of
qualitative geometric reasoning procedures for determin-
ing viewpoint while maintaining an explicit representa-
tion of the uncertainty associated with that determina-
tion. The approach is demonstrated on a real example

involving imagery obtained with a video camera and map
data provided by the USGS.

2 Feature Extraction.

Three classes of entities are central to the localization
process: Terrain is the physical layout of the land. Maps
are geometric representations of a particular region of
terrain, typically from a downward-looking perspective
and possibly augmented with information about culture
and/or vegetation. Views are visually sensed images of
a particular region of terrain.

Each class of entities can be described in terms of fea-
tures. In the case of terrain, features are commonly used
geographic properties: hills, valleys, ridges, etc. These
features can exist across a range of scales, specified in
terms of physical extent. (We never actually deal with
terrain features, only with manifestations of such fea-
tures in the map and view.) In the case of maps and
views, we need to distinguish between data-level and
terrain-level features: Data-level features are distinctive
patterns in the data (e.g., a configuration of edge frag-
ments in a view or a locally defined topographic struc-
ture in a map). Terrain-level features are patterns of
data-level features likely to correspond to some partic-
ular terrain feature. Terrain features, terrain-level map
features, and terrain-level view features are distinct, even
though they may have common names.

2.1 View features.

Currently, we are concentrating on those view features
associated with occluding contours. Because the im-
agery is acquired from a horizontal perspective, these
typically correspond to ridge lines. Ridge line extraction
is a classical segmentation problem. The type of data
we are working with, however, causes significant difficul-
ties. Image contours corresponding to actual ridge lines
should be long, connected, and relatively smooth. Ex-
cept in pathological cases, they should never fold back
on themselves. While this might suggest an approach
which looks for “large scale” image features, things are
not so simple. Contrast variations across edges that cor-
respond to actual ridge lines can be small and of limited
spatial extent. For portions of many ridge lines, con-
trast variations can be lacking altogether. As a result,
scale-space approaches will not succeed.

Instead, we use an approach similar to [Sha’ashua and
Ullman, 1988, Nevatia et al., 1992]. An initial edge map
is computed using a zero-crossing edge detector. Edge
segments are alternately filtered to remove portions in-
consistent with the geometric properties of ridge lines
and augmented using properties of good continuation to
account for locally indistinct ridge segments. Extraction
of longer ridge lines is done using A* search [Martelli,

Figure 1: Original Image
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Figure 3. Edge filtering and gap filling
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Figure 4: Extracted features

1972] which allows the specification of more global op-
timization criteria. This is particularly important for
the horizon line, which can be difficult to find due to
clouds or aerial perspective. Once these operations are
completed, junctions, end points, and vertical contour
extrema are located, since these often correspond to to-
pographically relevant features.

Figure 1 shows an image of mountainous terrain. Fig-
ure 2 shows the actual ridge lines apparent from the
viewpoint associated with Figure 1, as determined from
DEM data. Figure 3 shows four stages in the edge filter-
ing/gap filling process. The first frame is the output of a
hysteresis thresholded zero-crossing edge detector. The
next two frames show intermediate results, with filled
gaps indicated by darker lines. The last frame shows
the final edges. Figure 4 shows extracted line segments,
peaks, saddles, T-junctions, and end points.

2.2 Map features.

The extraction of map features involves different prob-
lems than those associated with the view, but many of
the processing steps are similar. (The cartographic com-
munity has done related work, but not specifically in
support of localization.) Since we are operating directly
on elevation data, we do not need to deal with the am-
biguity associated with low-level contrast features in the
view. However, we do have to find long ridge contours
that may not be immediately apparent at a given scale.
The analysis starts with a characterization of local sur-
face shape of the map in terms of ridges, valleys, peaks,
and saddles using the method described in [Haralick et
al., 1983]. Instead of resampling to produce precise ridge
lines, we found it sufficient to impose thresholds when
extracting ridge lines and use a thinning algorithm to
extract ridge contours.

Navigationally salient ridge lines and peaks cannot
be detected from an analysis of features extracted from
local differential properties alone. Visually prominent
ridge lines often contain broad sections where the spa-
tial derivatives of elevation are low, resulting in a clas-
sification as flat ground and so creating breaks in the
ridge lines. Local maxima in elevation may or may not
correspond to visually identifiable peaks, depending on
the nature of surrounding peaks and saddles. Relatively
simple gap filling and filtering operations can signifi-
cantly improve the utility of features extracted using lo-
cal methods.

The features resulting from this process span a wide
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Figure 6: Extracted peaks and ridges at coarser scale.

range of spatial scales. Again, the linear nature of
ridge lines limits the value of a straightforward scale-
space analysis. A local analysis of ridge line junctions
has proven adequate for distinguishing between dom-
inant and subsidiary ridges. This allows the creation
of a graph-like description of ridge structure, since spur
ridges can in turn contain sub-spurs. Access to this hier-
archy can prove significantly beneficial in feature match-
ing. At initial stages of the matching process, only main
ridges should be considered. When precise localization
hypotheses are being evaluated, however, the detailed
structure of the ridge line may become relevant. The
hierarchical description makes it easy to avoid this level
of detail unless needed.

Figure 7: Alternate, viewpoint dependent ridge hierar-
chies.



Local analysis at times is unable to distinguish with
confidence the major and minor ridges coming into a
junction. Rather than being a deficiency of the ap-
proach, it may provide useful information. These sit-
uations are exactly those where there is a viewpoint de-
pendence in the ridges which needs to be attended to. As
a result, we can isolate the viewpoint dependent aspects
of the representation, use with greater confidence those
parts that show no obvious ambiguity, and distinguish
between dominant and subsidiary features if and when
hypotheses about the viewpoint are available.

Figure 5 shows significant peaks and ridges extracted
at one particular spatial scale overlaid onto the cor-
responding contour map. Figure 6 shows peaks and
ridges extracted at a coarser spatial scale. Figure 7 illus-
trates the hierarchical nature of extracted ridge features.
“Dominant” ridge lines are often viewpoint dependent,
as shown in the two parts of the figure, each with a view
position indicated by a black dot.

3 Matching and Geometric Inference.

Feature-based localization involves problem solving
[Heinrichs et al, 1992]. The integration of symbolic
problem solving with signal-level image analysis has long
been a goal for many in the computer vision commu-
nity. Few successful examples exist, however. In our
case, we are able to effect this integration by restricting
ourselves to a specific task and establishing a protocol
for the interaction between high and low level analysis
routines that is tailored to that task. The problem solv-
ing component of the system interacts with the feature
extraction modules as if they were databases. Query
and response languages were defined that make it possi-
ble to easily express relevant information about terrain
features. Geometric inference is integrated in a similar
manner. The result is a system in which the individual
components can be constructed in a nearly independent
manner, without a need to understand the details of in-
ternal representations and algorithms of other modules.
Figure 8 shows the basic organization.

Overall control is determined by the high-level match-
ing and inference system. Both top-down and bottom-
up feature extraction is easily accomplished, however.
For example, early in the localization process reconnais-
sance queries can request a general examination of map
or view to determine significant features. Later, expecta-
tions can be verified in a top-down manner by generating
highly constrained queries and examining whether or not
any items are returned.

3.1 Matching.

One key observation arising from our study of how expert
map users solve difficult localization problems is that
they organize map and view features into configurations
before attempting to match them [Pick et al., in press].
Configurations are small groupings of features (typically
two or three) that are close together and often satisfy
particular topographic and/or geometric properties that
make them distinctive. Matching configurations rather
than individual features significantly reduces the com-
binatorics in two ways: there are fewer candidates for
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Figure 8: Interaction of high-level and low-level subsys-
tems.

matching and each potential match involves a richer set
of properties which can be evaluated for compatibility.

Complexity and possible ambiguity are further re-
duced by forming target configurations that are likely
to be matched. Each map and view feature has a set of
associated properties which constitute a geometric de-
scription of its shape and position. Particular property
values such as high or sharp peaks or near level ridges are
an indication that the feature is likely to be easy to find
in both map and view. Specific combinations of feature
properties are used to compute a set of prominence val-
ues, represented using a number in the range [0.0 - 1.0}.
Prominence alone is a poor criterion by which to select
features for forming configurations, however, since it is
computed on a per-feature basis and it may turn out for
a particular case that there are many features high in
some particular property prominence. The distinctive-
ness of a particular prominence type is characterized by
a value that is large when the population of features is
such that a few have large values for the prominence in
question and the rest have small values. The saliency
of each feature property is computed by multiplying the
property prominence by the property distinctiveness. Fi-
nally, the overall saliency for features is computed using
a simple product rule that favors features with several
highly salient prominences:

Soverall(fi) =1.0- H(lo - Sj (.fz))

where Soveran(fi) is the overall saliency of feature (f;)
and S;(f;) is the individual saliency of the j-th property
of feature (f;).

The formation of configurations is implemented by
first sending a reconnaissance query to either the map or
view feature extraction subsystems, requesting that indi-
vidual features with high prominence be returned. These
are filtered to remove all but the features with the high-
est overall saliency. Configurations are then formed with



a combination query to the same low-level subsystem,
requesting any sets of features that contain at least one
of the salient individual features and satisfy particular
geometric and/or topographic properties. Any configu-
rations that result from this process can be searched for
using a similar combination query to the other low-level
feature extraction subsystem.

3.2 Inference.

Localization involves the determination of viewpoint
constraints based on possible correspondences between
image and map features. These constraints are used in
geometric reasoning operations that either hypothesize a
possible viewpoint or evaluate a hypothesis by predicting
additional constraints that should be satisfied. There are
distinct categories of information about feature position
that in turn lead to distinct constraints on viewpoint:

Absolute bearing: This is the “standard” way to solve
localization problems. It requires an accurate compass
registered to the map coordinate system. Determination
of viewpoint is done using straightforward trigonometry.

Relative bearing: Relative bearings between three or
more image features with known map positions lead to a
classical “pose estimation” problem. Well established
numerical techniques exist for solving such problems.
[Levitt et al., 1987] describe an alternate method in
which only two features are considered at a time. The vi-
sual angle between the two features constrains the view-
point to lie on a particular circle on the map. Using
multiple pairs of features usually allows a unique view-
point to be found by intersection.

Ordinal view: [Levitt et al., 1987] show how ordinal po-
sition of two features (e.g., “A is left-of B”) can be used
to constrain the viewpoint to lie on one side of a line
through the positions of A and B [Levitt et al., 1987,
Levitt et al., 1988). They suggest intersecting this con-
straint for many different pairs of features.

Ezact Alignment: If two features line up along a line of
sight, then the viewpoint is constrained to lie on a line
connecting the two features. In almost all circumstances
encountered in outdoor navigation, it is possible to de-
termine which of the two features is more distant and as
a result the viewpoint can be constrained to a half-line.

Approzimate Alignmeni: If two features are much closer
laterally (i.e., perpendicular to the line of sight) than in
depth (i.e., parallel to the line of sight), then not only is
the viewpoint constrained to lie on one side of a line con-
necting the two features, but it will be “near” this line.
This constraint appears to be used with some frequency
by expert map users solving real navigation problems.

Viewpoint terrain type: A locomoting agent often has
more complete information about its immediate envi-
ronment than it does about more distant aspects of the
terrain. This information relates in a direct manner to
the determination of viewpoint. (E.g., “I’'m standing on
a hill. Therefore, the viewpoint must be located at one
of the hills found represented on the map.”)

Constraints arising from the information sources listed
above can be divided into two categories. All but the

Distant
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Viewpoint
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Figure 9: Reasoning about viewpoint involves interact-
ing constraints.

Figure 10: Distant constraints on viewpoint: a) abso-
lute bearing, b) relative bearing if approximate depth
information is available, ¢) relative bearing if no depth
information is available, d) ordinal position, e) exact
alignment, f) approximate alignment

last constitute distant constraints, since they are based
on features distant from the viewpoint. Trigonometric
relations are required to relate distant constraints to
viewpoint, although qualitative as well as quantitative
solutions exist. Viewpoint terrain type leads to local
constraints which limit the viewpoint to compatible ter-
rain features on the map. Distant and local constraints
can be used in three kinds of reasoning about viewpoint
(Figure 9):

Distant constraints = constrainis on viewpoint: Map-
view feature correspondences for sets of distant features
can be used to determine constraints on viewpoint using
geometric reasoning methods applied to any combination
of the information sources described above.

Local constraints = constrainis on viewpoint: Local con-
straints allow for the enumeration of possible viewpoints.
Such an enumeration can be intersected with the con-
straint regions that usually arise from consideration of
distant features.

Constraints on viewpoini = expectalions aboutl distant
constraints: Hypotheses about viewpoint can be evalu-
ated by examining distant features using the geometric
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Figure 11:

reasoning methods applied to any combination of the
information sources described above. Positional and/or
orientational constraints on viewpoint can be exploited.

In order to implement the constraint satisfaction
shown in Figure 9, geometric representations are needed
for viewpoint regions (areas in the map corresponding
to possible viewpoints), map search regions (map re-
gions possibly containing terrain features visible in the
view), and view search regions (portions of the view in
which particular terrain features indicated by the map
are expected to be found). A variety of representational
formalisms are possible, each with advantages and dis-
advantages. [Sutherland and Thompson, 1993] use an
analytical description of the bounding curve associated
with the region in which there is any chance that the
viewpoint is located. The localization example shown
in section 4 uses a much simpler convex polygon repre-
sentation. This provides a compact description that is
efficient to manipulate. It also fits fairly well with peo-
ple’s intuition about the geometry involved. With a few
exceptions, convex polygons have proven to be an ade-
quate basis on which to build the geometric constraint
satisfaction algorithms, though they sometimes lead to
a very conservative approach such as describing the rela-
tive bearing constraint using a circle rather than a cres-
cent (see Figure 10). Figure 10 indicates how distant
constraints on viewpoint can be represented using the
convex polygon approach. Similar regions have been de-
fined for using viewpoint to develop constraints on view
and map positions [Thompson, 1993].

Geometric inference is implemented using a query lan-
guage similar in principle to that used to interact with
the low-level feature extraction subsystems. Viewpoint
regions are hypothesized or refined using a query con-
taining a (possibly empty) current viewpoint region hy-
pothesis, a set of corresponding map and view feature
locations, and a particular inference method to use. The
geometric inference subsystem applies the method to
produce a viewpoint region constraint, intersects this
with the initial regions supplied, and returns the result.
Map search regions result from queries which specify a
current viewpoint region hypothesis, a set of view fea-
ture locations, and an inference method. View search
regions are obtained in an analogous manner.

4 Example.

We have demonstrated the sufficiency of the approach
described above by applying it to a real example from
the mountains just southeast of Salt Lake City, UT. View
features were extracted from the panorama image shown
in Figure 11. Note that, rather than the synthesized
views commonly used in much of the reported research
on outdoor localization, we are using an actual terrain
image. Map features were extracted from USGS 30m

View.

DEM data covering the equivalent of four 1:24000 7.5/
quadrangles (approximately 21.4 km by 28 km), the up-
per half of which appears in Figures 5 and 6. The com-
pass orientation of the view was known, but no infor-
mation about viewpoint was provided other than that it
was somewhere within the available map area.

The problem solving subsystem responsible for feature
matching and hypothesis generation and evaluation was
implemented in Lisp. The geometric inference subsys-
tem was also implemented in Lisp and was interfaced
via function calls. Both of the low-level feature extrac-
tion subsystems were implemented in C, ran on different
machines than the Lisp processes, and were interfaced
using simple database-like query/response techniques.

The example used four of the six high-level reasoning
strategies described in [Heinrichs et al., 1992]: concen-
trate on the view first, organize features into configu-
rations, pursue multiple hypotheses, and evaluate hy-
potheses using a disconfirmation process. Two types of
distant constraints on viewpoint (section 3.2) and one
type of constraint for determining map search regions
based on hypothesized viewpoint were used. Execution
proceeded in five stages:

View reconnaissance: The view (image) was searched for
significant features. The highest peak in the image stood
out well above other features in overall saliency.

Form wview configurations: View configurations were
formed from the selected peak feature and other nearby
features that were prominent. Prominence rather than
saliency was used, since the configuration is more dis-
tinct than its components. Two dual-feature configura-
tions resulted, one involving the horizontal ridge segment
to the left of the peak and one involving the ridge seg-
ment to the right. In fact, the second of these was a
bad choice. The ridge to the right is actually quite dis-
tant from the peak, but this was not detected by the low
level image analysis routines since the corresponding T
junction was not found. Simultaneous consideration of
multiple hypotheses combined with the disconfirmation
strategy resulted in a system tolerant of such errors.

Search for configurations in map: Configurations con-
sisting of a high, sharp peak and a nearby horizontal
ridge were searched for in the map. Three such configu-
rations were found.

Generate initial hypotheses: Six configuration match-
ing hypotheses were postulated (two view configurations
times three map configurations). Each configuration
match specified two feature matches which were used
to generate a hypothesized viewpoint region using the
relative bearing constraint, as shown in Figure 12.

Refine hypotheses and evaluate using disconfirmation
strategy: For each hypothesis, highly salient view fea-



Figure 12: Viewpoint regions corresponding to the six
initial hypotheses.

tures were considered in turn and searched for in the
map. If exactly one map feature of the correct type was
found in the expected location, a match was established
and the absolute bearing constraint was used to refine
the viewpoint region. If two or more map features were
found, no inferences were drawn and the next view fea-
ture was processed. If no map feature was found where
one was expected, the hypothesis was disconfirmed.

Figure 13 shows the refinement of the hypothesis cor-
responding to the actual viewpoint. Four view fea-
tures were searched for in the map: the high peak men-
tioned previously, two other peaks towards the left of
the panorama, and the long ridge line that wraps around
from the right edge to the left edge of the panorama im-
age. Three unique matches were found, involving two of
the peaks and the long ridge. The remaining peak was
ambiguous, with two possible peaks in the map located
in positions that could plausibly correspond to the lo-
cation of the view feature. On the left of the figure is
shown the search for corresponding map features. The
current viewpoint hypothesis is show together with the
search region predicted from the bearing to the chosen
view feature. Black dots indicate map features that were
found. For the first three view features considered, a
unique map feature was found. On the right is shown
the current viewpoint, the constraint regions associated
with the map feature just found, and the intersection
which becomes the refined viewpoint region. The last
map search returned an ambiguous result, as can be seen
by the two features present within the search region. As
a result, no refinement of the viewpoint region was pos-
sible. The plot on the lower right of the figure shows
the final region, with the actual viewpoint marked. The
original viewpoint hypothesis had an area of approxi-
mately 1.489 km?. After the first absolute bearing con-
straint was imposed, the size of the region was down to
72,800 m2. The second absolute bearing constraint left
this unchanged. The final constraint reduced the area to
less than 71,700 m2, or about .07 km?.
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TSI
i

2

Figure 13: Viewpoint refinement and final region.

Figure 14 shows an attempt to refine one of the in-
correct hypotheses. The upper left panel shows the map
search region used to look for the most salient view peak.
The feature being searched for is shown as an open cir-
cle. Due to the fact that the hypothesized viewpoint is
wrong, a different feature was found, as indicated by the
black dot. The viewpoint region was refined based on
this match as shown to the right. The next most salient
view feature was the long ridge line. As shown in the
lower left panel, this was not found where expected and
so the hypothesis was rejected All five hypotheses not
including the true viewpoint were rejected in a similar
manner.
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Figure 14: Validation of “incorrect” hypothesis.
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