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Abstract. Existing computational models of structure-
from-motion — the appearance of three-dimensional
motion generated by moving two-dimensional pat-
terns — are all based on variations of optical flow or
feature point correspondence within the interior of single
objects. Three separate phenomena provide strong evi-
dence that in human vision, structure-from-motion is
significantly affected by surface boundary cues. In the
first, a rotating cylinder is seen, though no variation in
optical flow exists across the apparent cylinder. In the
second, the shape of the bounding contour of a moving
pattern dominates the actual differential motion within
the pattern. In the third, the appearance of indepen-
dently moving objects changes significantly when the
boundary between them becomes indistinct. We describe
a simple computational model sufficient to account for
these effects. The model is based on qualitative con-
straints relating possible object motions to patterns of
flow, together with an understanding of the patterns of
flow that can be discriminated in practice.

1 Introduction

The inference of three-dimensional structure and mo-
tion from changes in a two-dimensional image has for
many years been an important topic of research in both
the perceptual psychology and computational vision
communities. Wallach and O’Connell (1953) demon-
strated the ‘“kinetic depth effect” in which people were
able to recognize the three-dimensional shape of unfa-
miliar moving objects based on the changing projection
of the objects onto a screen. More recently, Ullman
(1979) did the first extensive computational analysis of
this problem, showing that correspondences between a
small number of image features over a few frames can
be used to recover the relative three-dimensional posi-
tion of the corresponding object points and the object
motion occurring between frames. Many hundreds of
papers on aspects of this structure-from-motion (SFM)
problem followed.

Except for special cases involving jointed motion,
all computational models of structure-from-motion
have been based on an analysis of spatial and/or tem-
poral variations in either optical flow or feature point
correspondences within the interior of a single object.
No methods yet described explicitly use information
available at surface boundaries. If boundaries are men-
tioned at all, it is to claim that such boundaries can
somehow be used to segment the scene into components
involving a single rigid object before the SFM al-
gorithms are applied.

In this paper, we demonstrate that rotational mo-
tion and curvature in depth can be perceived in situa-
tions where there are no spatial or temporal changes in
optical flow across the surface of the object. We then
provide a simple compuational model which explains
how information obtained from patterns of optical flow
at surface boundaries can indicate that such object
motion is occurring. Our analysis starts with observa-
tions about the patterns of flow at boundaries and over
surfaces that can be discriminated in practice. We then
show that these discriminable patterns lead to qualita-
tive constraints on the kinds of object motion that can
be occurring. When appropriately combined, these con-
straints predict the motion and surface shape that is
actually seen.

2 Boundary effects can cause the perception of rotation

The only visual cues for rotation in depth described in
the computational vision literature involve spatial vari-
ations in optical flow or discrete point correspon-
dences.! These computational models are thus unable to
explain illusions that have been reported in which rota-
tion in depth can be seen when there is no spatial
variation in flow over the surface which appears to be
part of a rotating object. Kaplan (1969), in a study of

! “Rotation in depth” involves object rotation around an axis per-
pendicular to the line of sight
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the depth effect induced by the dynamic accretion or
deletion of surface texture at a boundary, reported that
when accretion/deletion was occurring on both sides of
a boundary most subjects saw what appeared to be
surfaces moving over a roller. All of Kaplan’s displays
were generated using uniform translational motion and
hence contained none of the traditional image cues for
rotation. Royden et al. (1988) briefly described a simi-
lar effect, suggesting that it involved an interaction
between optical flow perpendicular to some region
boundaries and parallel to others. Ramachandran et al.
(1988) showed that two transparent planes of dots
superimposed on each other and moving in opposite
directions at constant velocities appeared as a rotating
cylinder when viewed through the appropriate aperture.

Ramachandran et al. (1988) reported on a series of
experiments in which moving dots consistent with ac-
tual rotation in depth interact with boundary effects.
For example, they reported that when a pattern of dots
representing a rotating, transparent, 3-dimensional
cylinder was viewed through a triangular aperture, it
appeared to look like a 3-D cone. They concluded that
“...the segmentation boundaries that delineate the object
in motion (ie., the edges of the triangular window)
seem to have a strong influence on the magnitude of
perceived depth.”

The same paper went on to describe another effect
that may be even more significant. The display con-
sisted of dot patterns consistent with two, vertically
oriented transparent cylinders undergoing a short
clockwise-counterclockwise, in-phase rocking motion.
When sufficiently distant horizontally, the two dot clus-
ters were seen as separate, rocking cylinders. When the
dot clusters were moved towards each other until they
almost touched, they appeared to fuse into a single
larger cylinder rocking on an axis centered between the
two constituent clusters. Ramachandran et al. observed
that this effect is striking for two reasons. First of all,
even though a single cylinder was seen there was no
single rigid interpretation possible for the pattern as
presented. Secondly, the range of depth perceived when
the dot clusters were close was significantly greater than
what would be predicted by an analysis of the clusters
in isolation.

Neither Kaplan, Royden et al., nor Ramachandran
et al. provided a computational model for the processes
that might be involved in the effects described above.

Figure 1 illustrates an illusion that we investigate
quantitatively in the next section. It is similar to that
described in Royden et al. (1988). This stimulus captures
the essential features that a computational model must
address. A random dot kinematogram is divided up into
two regions — a vertically oriented central slit and a larger
surrounding region. Random dots are rendered onto both
regions. Dots in the central region move horizontally in
one direction. Dots in the outer region move horizontally
in the opposite direction. Dots moving towards a
boundary between regions disappear at the boundary.
Dots moving away from a boundary first appear at the
boundary. The boundary is otherwise not marked. (The
dashed line in Fig. 1 1s for illustration only.)
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Fig. 1. Certain translational flow patterns appear as a spinning
cylinder

Under appropriate conditions of slit size and dot
velocities, the central region in Fig. 1 1s usuvally seen as
a cylinder rotating in front of a translating background.

2.1 Psychophysics

In order to explore conditions for which a spinning
cylinder is likely to be seen in moving dot patterns such
as Fig. 1, we measured subject responses for a range of
inside and outside speeds, and widths.

2.1.1 Methods. Random moving dot patterns were
generated with a Sun SPARCstation computer and
displayed on a monochrome raster monitor. The out-
side square was 10.5 x 10.5 deg. The height of the in-
side rectangle was 9.48 deg, and the width varied from
0.11 to 6.05 deg in half octave steps. The dot density
was 4%, and the dot size was 2 x 2 pixels, and sub-
tended 0.06 x 0.06 deg. The speeds of both inside and
outside were: 0, +144, +2.89, +43, +577, and
+7.22 deg/s. All pairs of speed combinations, except
for identical inside and outside velocities, were tested.
The frame rate was 47.4 Hz, with less than 0.5% stan-
dard variation from trial to trial. The screen was viewed
monocularly from a distance of 57 cm.

On a given trial, observers fixated a small stationary
mark at the center of the screen. The moving dot
pattern was shown for 4.2s (200 frames) after which
the subject had to decide whether the central rectangle
appeared to be a cylinder, an open slot, a flat plane, or
none of these. There was an inter-stimulus interval of
3s, after which the next trial began. There were four
observers. Two of the subjects were authors, and two
were naive as to the purposes of the experiment. All
had normal or corrected normal vision.

2.1.2 Results. As one would expect, when the central
patch was stationary, observers reported a flat plane in
front of a moving background. And when the back-
ground was stationary, observers generally saw moving
central patches appear as slots. Generally, as the outside
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Fig. 2. Proportion of times central patch perceived as a rotating
cylinder as a function of outer and inner patch velocities for six patch

speed slowed relative to the inside, observers were likely
to report seeing an open stot. Flat planes were increas-
ingly likely to be seen when the inside speed was slow.

When both inner and outer regions were moving,
observers reported seeing cylinders, flat planes or slots
depending on the condition. There are widths (from
0.21 to 1.07deg) in which cylinder judgments were
reported for all speed combinations, except zero inside
velocities and where the inner and outer patch speeds
were the same. This includes some cases in which inner
and outer velocities are in the same direction, but with
different speeds. Because the case of the spinning cylin-
der is the major focus of this paper, we will examine the
proportion of cylinder judgments in detail.

The central observations pertaining to cylinder
judgments can be seen in Fig. 2A and B showing the
data for naive and experienced subjects, respectively.
Each figure consists of 6 panels corresponding to 6
central patch widths. Because there were negligible
differences in the data between neighboring widths, the
data for pairs of the original 12 widths were averaged
and labeled with the geometric mean of the two widths.
In each panel, the proportion of cylinder judgments
averaged over two observers is shown proportional to
lightness. The lightness ranges from black to white and

widths. Panel A shows data for naive observers. Panel B shows data
for experienced observers

indicates from 0 (black) to 100 (white) per cent cylinder
judgments. The outer speed is shown on the ordinate,
and ranges from —8 to +8 deg/s. The inner speed is
shown on the abscissa, and ranges from 0 to 8 deg/s.
Apart from the zero speed points, each square datum
point represents a total of 8 judgments. (There were
four judgments for each speed combination for all but
the zero velocity conditions for each observer.) The
lower and upper halves of a panel represent data for
opposite and same velocity directions, respectively. The
zero speed conditions show up as black, indicating 0%
cylinder judgments. The black diagonal apparent in the
upper half of the first 4 panels shows where inner and
outer velocities are identical.

There are two main features of the data to empha-
size. First, when the inner and outer velocities are
opposing (lower half of panels in Fig. 2), spinning
cylinders can be seen over the entire range of central
patch widths. However, the number of cylinder judg-
ments, averaged over all speed combinations, drops off
to near zero as widths increase towards the maximum
of 6 deg. This is shown in Fig. 3. The highest percent-
age of cylinder judgments was obtained near 0.44 deg.
The error bars show the maximum and minimum range
of proportions across the four observers.
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Fig. 3. Proportion of rotating cylinder judgments as a function of
patch width

Second, it is also apparent from Fig. 2 that as the
width of the central patch increases, higher inside
speeds are required to see spinning cylinders. In Fig. 4A
and B, we have plotted the proportion of cylinder
judgments for naive and experienced observers, respec-
tively. The data were averaged over the opposing outer
speeds, as a function of central patch speed, for the 12
widths. The proportion of cylinder judgments gradually
increases with velocity for widths above 1 deg (filled
symbols). Although there are some differences between
naive and experienced observers for the narrowest
widths, it is clear that the inner speed corresponding to
the peak shifts right as width increases.

Under the relatively short presentation times used
in this experiment, a rotating cylinder was seldom seen
if the outer patch was stationary. If such displays were
viewed for longer intervals, however, some observers
reported a bistable effect in which the central patch is
sometimes seen as a flat surface viewed through a slit in
the surrounding patch and sometimes as a rotating
cylinder in front of the surrounding patch.

What are the essential features of the data that a
computational model must address? We have seen that
under appropriate conditions of slit size and dot veloc-

ities, the central region in Fig. 1 is usually seen as a
cylinder rotating in front of a translating background.
Further, if the width of the central region is increased,
the effect is gradually reduced, to be replaced with an
uncomfortable sensation that surfaces are jumping
around on the screen. Since there is no differential
motion within either of the regions, the sense of rota-
tion must be due at least in part to effects of the
discontinuous motion at the region boundaries. Since
the effect occurs for motions that are equal in speed but
opposite in direction, the cause cannot be simply occlu-
sion cues at the boundaries. In such cases, motion is
symmetric on either side of the boundary — either both
surfaces are moving away from the boundary or both
surfaces are moving towards the boundary. The effect
even persists, at least to an extent, if a conflicting
occlusion cue is introduced. When the outer region is
held stationary, there is a strong occlusion cue indicat-
ing that the central region corresponds to a surface
moving behind a slit in another surface corresponding
to the outer region. In fact, this is often seen. The
display is bistable, however, and a spinning cylinder is
also sometimes seen.

In the next section, we provide a computational
account for these data and those of Kaplan (1969);
Royden et al. (1988); and Ramachandran et al. (1988).

3 Computational theory

If optical flow is known exactly, then a simple qualita-
tive test can be used to determine whether or not a
smooth surface is rotating in depth. First of all, we
observe that spatial discontinuities in optical flow can
only occur due to discontinuities in depth between two
surfaces moving rigidly with respect to the observation
point and/or one surface moving relative to another.
Discontinuities in flow signal more than just the pres-
ence of surface boundaries, however. If the image plane
motion of the discontinuity itself (the boundary flow) is
considered along with the optical flow observed on
either side, it is possible to determine information about
occlusion. In particular, the boundary flow constraint
states that the flow associated with the occluding sur-
face immediately adjacent to the boundary will be equal

Experienced subjects
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Fig. 4. Proportion of rotating
cylinder judgments as a function
of inner patch velocity for six
patch widths. Panel A shows
averaged data for two naive
observers. Panel B shows
averaged data for two
experienced observers
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Fig. 5. Optical flow for rotating cylinders and translating flat surface

to the flow of the boundary (Thompson et al. 1985).2
The boundary flow constraint holds whether or not the
surface boundary is due to a sharp edge or to a smooth
surface rotating in depth and thus progressively occlud-
ing or disoccluding itself. For sharp edges, the validity
of the constraint is obvious since the motion of the
boundary and the motion of the surface adjacent to the
boundary are one and the same. For curved surfaces
rotating in depth, the situation is more complicated.
Somewhere on the curved surface will be a generating
contour that projects to the edge of the surface region in
the image. Three-dimensional surface motion at the
generating contour will in general not be the same as
the 3-D motion of the contour. Nevertheless, when
projected into the image the optical flows are the same.

Now, consider the pattern of optical flow in Fig. 1
at and immediately to the left of the right side of the
slit. Figure 5 shows two possibilities. The solid line
shows the flow that would arise from a cylinder rotat-
ing in depth. Since the front of the cylinder is a (self)
occluding surface, it satisfies the boundary flow con-
straint. In the limit as the position of the boundary is
approached, the surface flow is equal to the boundary
flow.* The dashed line shows the flow that would arise
from a flat, translating surface moving behind an oc-
cluding contour. In this case, the surface flow is not
equal to the boundary flow. This sort of pattern can
only arise in situations where the flat surface is translat-
ing behind some other occluding surface. (For our
purposes, rotation of objects with sharp occluding con-
tours is effectively equivalent to translation, though the
flow would not be constant over the slit.)

2 It is easiest to consider only the component of flow perpendicular to
the orientation of the boundary, since flow parallel to the boundary
provides no additional constraints on spatial organization unless
additional information is known

3 To determine unambiguously that the pattern shown corresponds
to rotation in depth of a smooth surface, it is useful to consider both
boundary flow and the accretion/deletion of surface texture on the
cylinder. In particular, rotation in depth is signaled by a surface
which satisfies the boundary flow constraint yet which is progressively
appearing or disappearing at the boundary (Thompson et al. 1985)
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This discussion suggests that a simple test involving
boundary flow and the patterns of surface flow immedi-
ately adjacent should be sufficient to distinguish
whether situations involving differential optical flow
correspond to translating or rotating motion. In fact,
this i1s not the case. For curved surfaces rotating in
depth, the boundary flow constraint predicts that sur-
face flow will approach boundary flow in the limit as
the surface point at which flow is evaluated approaches
the generating contour for the region boundary. For
surfaces with a small radius of curvature, the rapid
change in flow near the generating contour may make it
impossible in practice to determine that surface flow is
actually approaching boundary flow.

To see this, consider the orthographic projection of
a unit radius cylinder with rotation axis coincident with
the y axis and rotational velocity such that the magni-
tude of maximum optical flow is f,,.. Over the projec-
tion of the cylinder, the optical flow at image location x
is given by:

ﬂOW :fmax\/ 1 —X2

The derivative of the flow with respect to x is:
dﬁow _ fmaxx
dx 1 —x2

For x =0.95 (a position 5% of the radius from the
boundary), this leads to a derivative of flow with a
magnitude in excess of 3f,... All techniques for esti-
mating optical flow at a point explicitly or implicitly
assume that flow is either constant or slowly varying
within some local neighborhood around the point.
These methods will have substantial difficulty dealing
with flow fields which change this rapidly. In particular,
it is likely that surfaces rotating in depth and with a
small radius of curvature relative to the neighborhood
over which flow is determined may generate apparent
flow patterns distinctly different from the flow of the
boundary.* In such situations, rotation in depth of a
curved surface in front of some other surface may not
be easily distinguishable from two flat surfaces translat-
ing with respect to one another.

To be useful, a computational model of motion
perception must be based on image properties that can
actually be discriminated in practice. As we have just
argued, a pattern of optical flow near a flow discontinu-
ity which appears to have values significantly different
from the flow of the boundary itself can be due either
to the self occlusion of a rotating smooth object or to
the translation of one surface behind another. Fortu-
nately, the situation is not completely ambiguous. By
considering the flow patterns on both sides of a
boundary, constraints on possible interpretations can
be discovered. Figure 6 gives the possible relationships
between recognizable flow patterns at a boundary and

4 Quantitative predictions of the flow magnitude and radius of curva-
ture for which this problem becomes significant requires an analysis
of optical flow estimation that is beyond the scope of this article



— ! Visual motion towards side of edge.
<—l Visual motion away from side of edge.
® i No visual motion to side of edge.

3 Curved surface rotating away from edge.

(Similar for curved surface on other side of edge.)

D Curved surface rotating towards edge.
(Similar for curved surface on other side of edge.)

Distant, flat surface moving to left.
(Similar for surface moving to right.)
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Fig. 6. Optical flow constraints on translation/rotation at a boundary

the surface motions generating the flow. The top row of
the figure shows all possible combinations of flow mov-
ing towards, away from, or with a boundary. (For
simplicity, the coordinate system has been chosen so
that the boundary appears stationary and symmetric
cases have been removed.) The columns give the possi-
ble surface motions corresponding to the flow pattern,
under the assumption that rotation in depth of curved
surfaces will generate a flow pattern that appears to
differ from the boundary flow. Figure 6 helps to limit
the combinatorics associated with determining surface
motion, since certain combinations are not allowed.
For example, the pattern shown in the first column
cannot be due to two flat surfaces translating with
respect to one another.

The effects seen in Fig. 1 can be explained by a
model based on combinining two distinct visual cues:

@ Patterns of flow at boundaries provide constraints
on possible motions, surface orientations and curva-
tures, and relative depth.

® Uniform flow across surfaces provides a constraint
limiting surface curvature.

(Since the model presented here is qualitative, we will
not discuss the effects of absolute flow magnitude in the
perception of shape and motion.)

In the case of Fig. 1, the constraints from Fig. 6
allow only possibilities d, i, and n at the left edge of the
central region and possibilities a, f, and k at the right
edge of the central region. The constant optical flow
over the large, surrounding region gives strong evidence
that this region is flat, eliminating possibilities d and n
from the left and f and k from the right edge. Estimates
of differential flow must be made over a neighborhood.
As a result, it is less easy to determine how, if at all,
flow is changing within the central region. This leads to
a weaker (or non-existent) constraint indicating surface
flatness for this region, allowing interpretation i on the
left edge and a on the right edge to remain viable. The
result is a perception in which the central region is seen
as rotating in front of flat, translating regions which are
visible to either side.

As the width of the central region increases, it
becomes easier to determine that there is no differential
flow within. The result is a constraint that the central
region is likely to be flat. This is inconsistent with any
of the possibilities in Fig. 6 and explains why the
pattern appears to look so strange.

In the case where the outside region is stationary,
the flow patterns at the left edge of the central region
allow for possibilities e, j, and o in Fig. 6 (flipped
left-for-right to account for the stationary surface being
on the left). At the right edge, possibilities ¢, h, and m
are allowed. The lack of differential flow in the outer
region does not further constrain the interpretation.
Weak evidence for the flatness of the surface corre-
sponding to the central region favors possibility e on
the left and ¢ on the right, corresponding to a translat-
ing, flat surface seen through a slit in a stationary
surface that is in front. Interpretations j on the left and
h on the right are still possible, corresponding to the
occasionally seen situation of a cylinder rotating in
front of a flat, stationary surface. The interpretation
with o on the left and m on the right, corresponding to
a rotating cylinder seen through a slit is seldom if ever
seen. Perhaps that is because this situation involves a
singular and therefore unlikely viewpoint. If so, possi-
bilities m and o should be removed from Fig. 6.

4 Discussion

As described above, current computational models of
structure-from-motion are unable to account for the
sense of three-dimensional objects rotating in depth
produced by three related classes of displays:

@ Translational motion viewed through a rectangular
aperture.

For sufficiently narrow apertures, a rotating cylinder
is seen. The effect occurs for both dark surroundings
{Ramachandran et al. 1988) and for a surround moving
with constant velocity in the opposite direction
(Royden et al. 1988, and our own work).

® Cylindrical motion, view through a triangular aper-
ture.



A spinning cone is seen, even though the motion of
the dots is not consistent with such an object except at
the widest portion of the aperture.

® Adjacent, rotating cylinders.

Unlike the previous two cases, this pattern does have
an interpretation in terms of rigidly moving objects.
This is not what is actually seen, however. Instead, the
perception is of a single larger rotating cylinder.

The section on Computational Theory shows how
our model accounts for the first of these effects. The
case of the triangular aperture suggests that the vision
system weights the qualitative constraints present at
boundaries more than the quantitative information pro-
vided by the differential optical flow within the aper-
ture. The case of the two adjacent cylinders 1s perhaps
the most interesting. Ramachandran et al. (1988) sug-
gest that the width of perceived objects affects the
magnitude of perceived depth. We can now provide a
more complete explanation. Local spatial gradients of
optical flow provide a strong cue that the surfaces of
the individual cylinders are curved, a weak cue as to the
magnitude of the curvature, but little or no information
about the sign of curvature or the actual surface orien-
tation. Significant, detectable discontinuities in optical
flow are seen to the outsides of the cylinder pair, but
not along the line where the two cylinders touch. (The
direction and magnitude of flow near this line is the
same on both sides.) As a result, the surface/boundary
constraints given in Fig. 6 apply only at the outsides of
the merged patterns of dots. These boundary con-
straints, together with the spatial gradient of flow,
suggests a single curved surface rotating in depth. The
vision system, absent accurate information about the
radius of curvature, approximates a single smooth sur-
face between the two apparent boundaries.

A number of important open questions remain. All
the displays used by Ramachandran et al. are trans-
parent. Our own experience also suggests that overlay-
ing dot patterns with motions of equal magnitude but
opposite direction strengthens the sense of rotation.
Transparency thus needs to be accounted for in a
more complete computational model.> The sense of

% In fact, almost all of the computational models for surface recov-
ery yet developed fail to account for transparency (see Prazdny
1985)

333

rotation in depth for displays such as Fig. 1 is made
more compelling when the motion of the central region
is made to truly correspond to a rotating cylinder. A
more complete account of this effect will require a
theory that embodies both the qualitative constraints
we have described and more traditional quantitative
structure-from-motion analysis. The qualitative con-
straints are important in their own right, however, since
they are simple, easily and reliably computed, informa-
tive, and thus likely to be part of many possible quanti-
tative models.
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