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Abstract

The detection of moving objects is important in many tasks. This paper examines moving object detection based
primarily on optical flow. We conclude that in realistic situations, detection using visual information alone is quite
difficult, particularly when the camera may also be moving. The availability of additional information about camera
motion and/or scene structure greatly simplifies the problem. Two general classes of techniques are examined.
The first is based upon the motion epipolar constraint—translational motion produces a flow field radially expanding
from a “focus of expansion” (FOE). Epipolar methods depend on knowing at least partial information about camera
translation and/or rotation. The second class of methods is based on comparison of observed optical flow with
other information about depth, for example from stereo vision. Examples of several of these techniques are presented.

1 Introduction

One important function of a vision system is to recog-
nize the presence of moving objects in a scene. If the
camera is stationary and illumination constant, this can
be done by simple techniques that compare successive
image frames looking for significant differences. If the
camera is moving, the problem is considerably more
complex. For the purposes of this discussion, moving
objects are taken to be any objects moving with respect
to the stationary portions of the scene, which we refer
to as the environment. For a moving camera, both mov-
ing objects and stationary portions of the scene may
be changing position with respect to the camera and
thus generating visual motion in the imagery. A mov-
ing camera leads to difficulties because of the need to
determine objects moving with respect to the environ-
ment, rather than the much easier problem of finding
objects moving with respect to the camera. In this arti-
cle, we deal with the problem of detecting moving
objects from a moving camera based on optical flow.

The visual detection of moving objects is a surpris-
ingly difficult task. A simple example illustrates just
how serious the problem can be. Consider the optical
flow field shown in figure 1, which appears to show
a small, square region in the center of the image moving

*A preliminary version of this article appeared in The Proceedings
of the First International Conference on Computer Vision, London,
June 1987.

Fig. 1. Ts the central region a moving object?

to the right and surrounded by an apparently stationary
background. Such a flow field can arise from several
equally plausible situations: (1) The camera is stationary
with respect to the environment, and the central region
corresponds to an object moving to the right. (2) The
camera is moving to the left with respect to the environ-
ment, most of the environment is sufficiently distant
so that the generated optical flow is effectively zero,
while the central region corresponds to a surface near
to the camera but stationary with respect to the environ-
ment. (3) The camera and object are moving with re-
spect to both the environment and each other, though
the environment is sufficiently distant so that there is
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no perceived optical flow. It is not possible to tell
whether or not this seemingly simple pattern corre-
sponds to a moving object!!

Figure 1 provides one example of why a general and
reliable solution to the problem of moving object detec-
tion based only on optical flow is not feasible. Robust
solutions require that additional information about
camera motion and/or scene structure be available. In
this article, we examine three types of information that
might be available. Each information source places con-
straints on the optical flow fields that can be generated
by a camera moving through an otherwise static envi-
ronment. Violations of these constraints are thus nec-
essarily due to moving objects. One group of techniques
depends on knowing partial information about how the
camera is moving. A second approach requires that an
object of interest be actively tracked by the camera
system. The final group of methods is based on knowing
information about the depth to surface points, either
directly from approaches such as stereo or indirectly
via a priori knowledge that object motion takes place
over smooth surfaces.

At least three general approaches to moving object
detection are possible. Each exploits a particular con-
straint that must hold if a camera is moving through
an otherwise static environment. Detecting moving
objects becomes equivalent to a search for violated
constraints.

® Motion epipolar constraint: Translational camera
motion produces a distinctive optical flow pattern.
Flow vectors appear to radiate out from a ““focus of
expansion” (FOE) corresponding to the line of sight
coincident with the direction of motion. This has the
effect of constraining the orientation of flow vectors.
Visual motion that violates this orientational con-
straint must be due to moving objects. Under some
circumstances, the motion epipolar constraint may
still be used when camera rotation is added to the
translational movement.

Depth/flow constraint: The optical flow generated
by a surface point is a function of the relative motion
between camera and surface and of the range to the

'The flow pattern in figure 1 provides little information about actual
camera motion. Apparently stationary image regions can be due to
the viewing of distant surfaces and/or rotational motion that tracks
a surface point, keeping it at a fixed point in the field of view. Even
with significant nonzero flow existing over the whole of the image,
ambiguities exist between flow patterns due to translational motion
and due to rotational motion [1].

surface. If range values are available, then inconsis-
tencies between optical flow, range, and observer
motion signal moving objects.

*® Rigidity constraint: A scene containing moving ob-
jects can be thought of as undergoing nonrigid motion
with respect to the camera. Structure-from-motion
techniques which are sensitive to the presence of non-
rigid motion ‘can thus be used to detect moving
objects.

This paper will concentrate on epipolar and depth/
flow methods. Though potentially effective, methods
based directly on the rigidity constraint require longer
frame sequences, temporal derivatives of optical flow,
and/or a wide field of view to enhance perspective
effects.

Many theoretically plausible techniques for analyzing
visual motion are ineffective in practice. Typically, the
assumptions on which these techniques are either ex-
plicitly or implicitly founded do not accurately repre-
sent real problems. For this work, we start with the
presumption that motion detection algorithms should
be designed with the following properties in mind:

¢ The field of view may be relatively narrow: Motion
detection should not depend on the use of wide-angle
imaging systems. Such systems may not be available
in a particular situation, and if used may increase
the difficulty of recognizing small moving objects.
As a result, detection algorithms should not depend
on subtle properties of perspective.

® The image of moving objects may be small with
respect to the field of view: This is clearly desirable
for reliability. Moving objects may be far away and
subtended by relatively small visual angles. We need
methods capable of identifying single image points,
or at least small collections of points, as correspond-
ing to moving objects. Detection algorithms thus can-
not depend on variations in flow over a potentially
moving object.

® Estimated optical flow fields will be noisy: No
method is capable of estimating optical flow with ar-
bitrary accuracy. Motion detection based on optical
flow must be tolerant of noisy input.

2 Background
An extensive literature has developed on computational

approaches to the analysis of visual motion (e.g., see
[21). The majority of this work deals with what Ullman



[3] has called the structure-from-motion and motion-
from-structure problems. Visual motion is used to
determine the three-dimensional position of surface
points under view and/or the parameters of motion
relating camera and object. Almost without exception,
papers describing structure-from-motion and motion-
from-structure algorithms deal only with a single, rigid
object in the field of view. If the problem of separately
moving objects is mentioned at all, it is in a comment
that the image must be segmented into separately
moving objects before the method being described is
applied.

Some work has been done on the segmentation of
images based on visual motion. The easiest form of this
problem occurs with a camera known to be stationary.
In such circumstances, object motion leads to signifi-
cant temporal differences in an image sequence. Such
differences correspond to moving objects, and further-
more can be used to estimate the boundaries of the ob-
jects (e.g., [4, 5]). More classical edge-detection tech-
niques can also be applied to time-varying imagery [6,
7, 8,9, 10, 11]. Such approaches work for both moving
and stationary cameras. When the camera is moving,
however, sharp spatial changes in visual motion can cor-
respond to either the boundaries of moving objects or
to depth discontinuities between two rigidly attached
surfaces. As a result, motion-based edge detection is
not sufficient to detect moving objects. In particular,
moving-object detection in the general case is a very
different and more difficult problem than motion-based
segmentation.

Ullman suggested the use of a rigidity check to segre-
gate a scene into features corresponding to separately
moving objects [3]. Jain explicitly dealt with the prob-
lem of detecting moving objects using a moving camera
[8]. His approach exploited the motion epipolar con-
straint which says that for translational camera motion
with respect to a static environment, optical flow will
expand radially from a focus of expansion correspond-
ing to the direction of translation. For translational
motion, any flow values violating the epipolar con-
straint must be due to moving objects in the scene. Un-
fortunately, this approach requires knowledge of the
direction of translation and does not work if the motion
has a rotational component. Heeger and Hager [12] and
Zhang et al. [13] find moving objects by solving for
the parameters of camera motion and then finding areas
of the scene that move relative to the camera in 2 man-
ner inconsistent with these estimated parameters. This
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approach may have difficulty in situations such as nar-
row viewing angles in which accurate recovery of
camera motion is-difficult. In addition, Zhang et al.
require a calibrated stereo system.

3 The Optical Flow Equation

The basic mathematics governing the optical flow gen-
erated by a moving camera is well known. Our notation
is similar to [l4], using a coordinate system fixed to
the camera (e.g., the world can be thought of as moving
by a stationary camera). Optical flow values are a func-
tion of image location, the relative motion between the
camera and the surface point corresponding to the im-
age location, and the distance from the camera to the
corresponding surface point:

F(p) = %%) + F,(p) (1)
F, = (-U + xW, =V + yW) )

F, = [Axy — B(x> + 1) + Oy,
A@* + 1) — Bxy — Cx)] 3)

where F is the optical flow at image location p = (x, y),
x and y are normalized by the focal length, r(p) is the
range from the camera to the surface point imaged at
p. T =,V w specifies the translational velocity
of the camera, and w = (4, B, C)T specifies camera
rotation.

Most work on the analysis of optical flow has dealt
with a camera moving through an otherwise static envi-
ronment or, equivalently, a single rigid object moving
in front of a fixed camera. In such cases, single values
of T and w govern the flow over the whole image. If
moving objects are present, then the relative motion
between camera and environment will be different than
the relative motion between camera and moving object.
Notationally, we will specify the camera motion with
respect to the environment by T®™ and ™. The
parameters specifying the relative motion between the
camera and an arbitrary scene point p will be indicated
by T® and «®. p lies on a moving object if T® 3
TC™ and/or w® # ©™.

4 Detection Based on Epipolar Constraint
If complete information about instantaneous camera

motion is available, then T®™ and w® are known.
If the camera is translating but not rotating with respect
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to the background, w®™) = 0, F, = 0, and all flow
vectors due to the moving image of the background will
radiate away from a focus of expansion (FOE). From
equations (1) and (2) it is easy to see that the image
plane location of the FOE is at

|4
(x, Y)rog = [yW, W )

While the location of the FOE depends only on the
direction of translation and not on the speed, it is im-
portant for detectability that the speed be sufficient to
generate measurable optical flow. The FOE is not re-
stricted to lie within the visible portion of the image
(and in fact may be a focus of contraction). An FOE
at oo corresponds to pure lateral motion, which gener-
ates a parallel optical flow pattern.

4.1 Direct Use of Motion Epipolar Constraint for
Known Camera Motion

For pure translational motion, the direction of motion
specifies the direction of optical flow associated with
any surface point stationary with respect to the
environment:

_1V_Wy

U — Wx )

0FOE = tan
where Opop is the expected flow orientation at the
point (x, y), predicted using the motion epipolar con-
straint. Note that this equation is still well defined when
W = 0, corresponding to a focus of expansion at oo
in image coordinates. Any flow values with a signifi-
cantly different direction correspond to moving objects
[8]. (The converse is not necessarily true. It is possible
that moving objects coincidentally generate flow values
compatible with this constraint.) This approach requires
the estimation of only the direction of flow, not either
the magnitude or spatial variation of flow.

Camera rotation introduces considerable complexity.
Knowledge of camera motion no longer constrains the
direction of background flow. Nevertheless, at a given
point p, flow is constrained to a one-dimensional family
of possible vector values. The family is given by equa-
tions (1)-(3) where r ranges over all positive values.
The analysis can be simplified because of the linear
nature of (1). F, depends only on the parameters of
rotation and not on any shape property of the environ-
ment. Because the value of F, at a particular p does
not depend on r(p), it can be predicted knowing only

w. At every point within the field of view, this value
can be subtracted from the observed optical flow field,
leaving a translational flow field:

Ftrans =F - Fr (6)

This field behaves just as if no rotation was occurring,
and thus moving objects can be located using the FOE
technique described above. For the remainder of this
paper, when rotation is present, we will take the term
FOE to refer to the focus of expansion of this transla-
tional field.

In principle, even if camera motion is not known
T and »©™ may be estimated from the imagery
(e.g., [14]), subject to a positive, multiplicative scale
factor for T®™). Two serious problems exist, however.
Narrow angles of view make estimation of camera mo-
tion difficult, as significantly different parameters of
motion and surface shape can yield nearly identical op-
tical flow patterns [1]. In addition, techniques such as
{14] use a global minimization approach which will not
perform well if moving objects make up a substantial
portion of the field of view. A clustering approach (e.g.,
{15]) can be made tolerant of the moving objects, though
great difficulty can be expected dealing with a five-
dimensional cluster space.

4.2 Indirect Use of Motion Epipolar Constraint

The motion epipolar constraint has an important impli-
cation for motion analysis methods that operate only
over small image neighborhoods. Away from the FOE,
F(p) and F,(p) vary slowly with p (see equations (2)
and (3)). Over a small neighborhood, both F,(p) and
F,(p) are essentially constant. As a result, over a small
neighborhood, the component of flow due to rotational
motion is essentially constant, while the translational
flow, F\ s, varies only by a scalar multiple dependent
on depth. That is, over the neighborhood Fi.,s is
essentially constant in direction. We can use this result
to simplify problems arising from rotational camera
motion. In one technique, we explicitly compensate for
rotation. In a second technique, active tracking of poten-
tially moving objects leads to a particularly simple com-
putational scheme.

4.2.1 Known Rotation. Often, information about camera
rotation is available, even when the direction of transla-
tion is not known. Nonvisual information about camera
motion often comes from inertial sources. Such sources



are much more accurate in determining rotation than
translation. Rotation involves a continuous acceleration
which is easily measured. The determination of transla-
tion requires the integration of accelerations, along with
a starting boundary value. Errors in estimated transla-
tion values rapidly accumulate. A simple technique
allows the detection of moving objects when only camera
rotation is known.

If all motion parameters are known, knowledge of
camera rotation makes it possible to compute the trans-
lational flow field, F,,;. Knowledge of translation can
then be used to locate the FOE and thus constrain the
direction-of-flow vectors associated with the environ-
ment. If only rotation is known, it is still possible to
determine the translational flow field, but not the FOE.
Visual methods can be applied to the translational flow
field to estimate the location of the FOE, but these
methods suffer from a number of practical limitations
when applied to noisy data.

An alternate approach can be used which does not
require the prior determination of the FOE. The transla-
tional flow field extends radially from the focus of ex-
pansion. From the arguments given above, we know
that over any local area away from the FOE, variations
in the direction (but not necessarily magnitude) of the
translational flow field will be small. Flow arising due
to moving objects is of course not subject to this restric-
tion. The gradient of flow field direction can thus be
used to detect the boundaries of moving objects. At these
boundaries, flow direction will vary discontinuously2

A complementary technique is available to deal with
situations in which translation but not rotation is known.
We can expect these situations to be rare, however. If the
direction of translation were known over some interval
of time, it would be an easy matter to determine the
rotation by examining the rate of change of direction.

4.2.2 Active Tracking. A vision system that can ac-
tively control camera direction is capable of tracking
regions of interest over time, keeping some particular
object centered within the field of view. Tracking
regions of interest is desirable for many reasons other
than the detection of moving objects (e.g., [17]), though
the analysis of imagery arising from a tracking camera

2Marr [16] claims “if direction of [visual] motion is ever discontinuous
at more than one point—along a line, for example—then an object
boundary is present.”” Note that this is only necessarily true if no
camera rotation is occurring (or equivalently, if camera rotation has
been normalized by using the translational flow field).
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has not received much study by the computer vision
community. If there are significant variations in depth
over the visible portion of the background and if moving
objects are relatively small with respect to the field of
view, then moving object detection based on tracking
can be accomplished without any actual knowledge of
camera motion. (For motion detection, the tracking
can easily be simulated if the camera is not actively
controllable.)

If an object is being tracked, then its optical flow
is zero.? Flow-based methods for determining whether
or not a tracked object is moving must depend wholly
on the patterns of flow in the background. Object track-
ing helps in moving object detection because it mini-
mizes many of the difficulties due to camera rotation.
When dealing with instantaneous flow fields, we can
decompose the problem by considering all translational
motion to be due to movement of the camera platform
and all rotational motion due to pan and tilt of the
camera to accomplish the tracking. (We will disregard
any effects due to spin around the line of sight.) Con-
sider the effect of tracking a point that is in fact part
of the environment. Tracking is effected by generating
a rotational motion that exactly compensates for the
translational flow at the center of the image. This is
accomplished by choosing F, such that:

F.0, 9

0, 0) )

F,0,0) = -
For a small enough neighborhood, F, and F, can be
treated as constant, leading to the foliowing flow
equation:

1 1
Firac(p) = [;(‘15 - r_(f),_())j F, )

The effect on the optical flow field is that in the neigh-
borhood of the tracked point, the direction of flow will
be approximately constant (modulo 180°), with a mag-
nitude dependent on the difference between the range
to the corresponding surface point and the range to the
tracked point.

Now, consider tracking a point that is moving with
respect to the environment. If environmental surface
points are visible in the neighborhood of the tracked
point, F, and F, are no longer constant within the
neighborhood. For environmental points:

3To simplify discussion, we ignore the case of an object rotating at
constant depth. The method developed does in fact deal effectively
with this situation.
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(env) F(object)
[ (env) __ ¢t
Ftrack(p) r(p) + Fr 7"(0, 0) (9)

Fge""), Fﬁenv), and F ;"bjw) will in general differ in orien-
tation. If there is a variation in range to visible environ-
mental points, then there will be a variation in direc-
tion of observed flow over the neighborhood. (Note that
detection is not possible if there is no variation in r(p)
over the visible environment. This situation is similar
to that depicted in figure 1.)

Figures 2 and 3 illustrate the effect. Figure 2 shows
the optical flow over a neighborhood in which no motion
is occurring with respect to the environment. Figure 2a

shows the flow before any tracking motions are initi-
ated. The dashed line indicates the translational compo-
nent of flow. The rotational component of flow is indi-
cated by the dotted line. The solid line is the observed
optical flow, the sum of the translational and rotational
components. The translational components are parallel.
The variations in magnitude correspond to underlying
variations in range. The rotational components are con-
stant over the neighborhood. Note that the observed
flow varies in orientation—as previously indicated, ori-
entational variability alone is not enough to detect mov-
ing objects. Figure 2b shows the flow that results when
the point in the center of the region is being tracked.

b

Fig. 2. Tracking a stationary surface point. (a) Before tracking. (b) After tracking.

Fig. 3. Tracking a moving object. (a) Before tracking. (b) After tracking.



The center flow is of course zero. The dashed lines now
indicate the flow that would be observed without track-
ing. The dotted lines indicate the rotational flow that
is introduced to stabilize the center point within the field
of view. The solid line shows the resulting optical flow.
Note that the flow vectors are parallel, but in this case
differ by 180°

Figure 3 shows the same flow vectors in the case
where the center point corresponds to a moving object
and the two other points correspond to portions of the
environment. Note that in figure 3a, the translational
flow varies significantly in orientation. If we actually
knew the translational flow, this fact would be enough
to determine that a moving object was present. Without
information about camera rotation, however, we must
resort to more indirect methods.

5 Detection Based on Flow/Depth Constraint

Recently, efforts have been made to develop integrated
approaches to analyzing stereo and motion (e.g., [6, 18]).
These approaches simultaneously deal with motion and
stereo disparity, either by comparing flow fields taken
from different viewing positions or by establishing point
correspondences over both time and viewing directions.
Similar multi-cue analysis can greatly aid in the detec-
tion of moving objects. We claim, however, that it is
not necessary to adopt a strategy requiring the unified
low-level integration of motion and stereo. Rather, depth
estimates from whatever sources are available and can
be used. In addition to stereo, these sources can include
the full range of nonmotion depth cues: familiar size,
focus, gradients of various properties, aerial perspec-
tive, and many more [19]. Furthermore, while precise
estimates of depth are obviously useful, relative depth
or coarse approximations to depth can also aid in the
analysis.

5.1 Objects Moving on Surfaces

Knowledge of the shape of environmental surfaces can
be used to simplify the motion detection problem. Scene
structure may be known precisely (e.g., the range to
visible surface points) or in terms of general properties
(e.g., significant depth discontinuities can be expected).
If moving objects must remain in contact with environ-
mental surfaces (e.g., vehicular motion), a less complex
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technique is possible; it depends only on knowing the
image plane locations corresponding to discontinuities
in range. If no objects are moving within the field of
view, equations (1)-(3) show that flow varies inversely
with distance for fixed p. Both F, and F, vary slowly
(and continuously) with p. Discontinuities in F thus
correspond to discontinuities in 7. This relationship
holds only for relative motion between the camera and
a single, rigid structure. When multiple moving objects
are present, equation (1) must be modified so that there
is a separate F and F® specifying the relative motion
between the sensor and each rigid object. Discontinui-
ties in flow can now arise due either to a discontinuity
in range or to the boundaries of a moving object. If
independent information is available on the location of
range discontinuities, other discontinuities in flow must
be due to moving objects.

The motion detection problem becomes particularly
simple if the environment is planar. In this case, depth
discontinuities are not possible and any discontinuity
in flow (either direction or magnitude) corresponds to
the boundary of a moving object. Note that it is not
sufficient to know simply that the environment is a
“smooth” surface. From some viewing positions, even
smooth surfaces may exhibit range discontinuities.

5.2 Direct Comparison of Depth and Flow

A simple way of combining depth and visual motion
to detect moving objects is possible if accurate 3-D posi-
tion information is available for a sufficient number of
surface points in the environment and on any moving
objects. If both the optical flow and the depth are known
for a collection of surface points in the environment,
then equations (1)-(3) can be used to create a system
of equations which can be solved for the parameters
of motion T®™ and ™. (Knowing depth values
makes this an easier task than the standard structure-
from-motion problem.) If the collection of points in-
cludes some values associated with the environment and
others associated with one or more objects moving with
respect to the environment, the system of equations used
to solve for T and w will be inconsistent. Checking the
system for consistency can therefore be used as a test
for the presence of a moving object (e.g., a test for non-
rigid motion in the field of view). Only the consistency
of the system is important. The actual values of T and
w are not relevant to the detection problem.
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5.3 Indirect Comparison of Depth and Flow

The availability of accurate 3-D position estimates
depends in large part on having accurately calibrated
camera systems. Not only is this calibration difficult,
but it is continuously subject to variability due to
mechanical compliance. Relative measures of visible
motion and/or stereo can be used to avoid this calibra-
tion problem (e.g., [20]). For example, Reiger and
Lawton have shown how to use local spatial differences
to minimize difficulties due to rotation [21]. If no mov-
ing objects are visible, then large local differences in
flow can only be due to a change in depth. If p© and
p¥ are image points on either side of such a boundary,
then from equation (1) we have

. . () ()
Fr(p(l)) - Fr(p(])) + Ft(p ) _ Ft(p )

AF =
e re?

10)

If p® and p® are sufficiently close, F,(p?) = F.(p?)
and F(p®) = F(p"). As a result the rotational com-
ponent of flow cancels out in the spatial difference and

Fp) A [%j

That is, the difference in flow across the edge is propor-
tional to the difference of the reciprocal of depth across
the edge. The relationship between stereo disparity and
depth is very similar to the relationship between optical
flow and depth:

AF = 1D

dy(p)
dip) = d + ==L 12
P = d(p) ) (12)
where d(p) is the stereo disparity at p, d, is a term
dependent on the camera vergence, and d,, is a term
dependent on the baseline separating the cameras.
Using the same argument as above, we have

dy(p) A [—} ] ” (13)

Over a local neighborhood, F; and d; will remain
essentially constant, while A(1/r) will generally vary.
Dividing equation (11) by equation (13) shows that the
ratio of AF to Ad remains constant, as long as the points
over which the differences are taken are the same for
flow and disparity.

Flow boundaries associated with moving objects are
not subject to this constraint. As a result, we can detect
moving objects by looking for local neighborhoods over
which the ratio AF/Ad varies significantly. We never

Ad =

have to solve for the actual depth, nor do we need to
know the functions F,, F,, d,, or d,,. The solution does
not depend on information about camera motion or rel-
ative camera geometry. For this approach to work, how-
ever, there must be significant changes in depth over
the background, not just between the background and
any moving objects. There is reason to believe that such
variation is important to a large class of moving object
detection algorithms.

6 Examples

All of the methods described in Sections 4 and 5 have
been tested experimentally. Four examples are presented
in this section, all involve a moving camera and poten-
tially moving objects. Two cases exploit the epipolar
constraint. The first of these involves a situation in
which camera rotation is known, but not camera trans-
lation. In the second case, a potentially moving object
is being actively tracked. Results are also presented for
two methods utilizing constraints resulting from the
comparison of depth and flow. The simplest of these
involves objects moving over a smooth environment.
The final example compares flow and disparity across
boundaries of possibly moving objects, using the tech-
nique of Section 5.3.

Figure 4 shows the first frame in a sequence of im-
ages of an outdoor scene. In this example, the camera
rotates and translates with respect to the environment
while the toy vehicle moves to the right between image
frames. The rotational velocity of the camera with re-
spect to the environment was measured. The optical
flow field shown in figure 5 was obtained by the token
matching technique described in [22]. The translational
flow field shown in figure 6 was obtained by subtract-
ing the rotational flow component computed from the
known rotational velocity from the observed optical
flow field (figure 5). The gradient of flow direction in
the translational flow field was used to detect the boun-
daries of moving objects. Figure 7 shows the detected
boundary of a moving object overlaid onto the first
frame of figure 4.

In figure 8 the mechanical toy creature in the center
of the image is being tracked by the camera while the
camera is translating to the left with respect to the envi-
ronment. Figure 9 shows the estimated optical flow.
Figure 10 shows a histogram of the directions of the
optical flow. Note that there are two distinct peaks in
the histogram. The variation in flow direction over the
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Fig. 5. Optical flow field obtained from the image sequence of figure 4.
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Fig. 7. Boundary of a moving object overlaid onto the first image of figure 4.
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Fig. 9. Optical flow field obtained from the image sequence of figure 8.
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Fig. 10. Histogram of the flow direction of the optical flow vectors in figure 9.

image was computed to be approximately 34 °, indicat-
ing that the tracked object was in fact moving.

As a comparison, a similar experiment in which the
tracked object, a rock, is stationary with respect to the
environment while the camera is moving was also per-
formed. A pair of images similar to that of figure 8
were obtained. The resulting estimated optical flow
field is shown in figure 11. Its corresponding histogram
is shown in figure 12. Note that only one distinct peak
is observed in this histogram. The global variation in
flow direction in this case was computed to be approx-
imately 11° which is significantly smaller than that of
the previous example.

An image sequence starting with the frame shown
in figure 13 is used to illustrate the technique for detect-
ing objects moving in a smooth environment. In this
example, the camera moves with respect to an environ-
ment consisting of various small pieces of hardware
lying on a planar surface. The optical flow field shown
in figure 14 was obtained in the same manner as in fig-
ure 5. Figure 15 shows the locations of large variations
in optical flow values, corresponding to the boundary
of a moving object.

A stereo image sequence starting with the stereo pair
shown in figure 16 is used to illustrate the technique
of indirect comparison of flow and disparity as a basis
for moving object detection. Both the flow field shown

in figure 17, and the disparity field shown in figure 18
were obtained using the method of figure 5. Comparing
the ratio of the change in disparity values to the change
in flow values across neighboring points, and selecting
as the boundaries of moving objects those areas in
which there is a distinct discontinuity in that ratio,
results in the identification of the boundaries indicated
in figure 19.

7 Discussion
7.1 Which Method to Use?

This paper presents a collection of loosely related tech-
niques for visually detecting moving objects. Detection
based purely on visual motion from a single camera
seems quite difficult. Each of the methods presented
here uses some sort of additional information, about
either current camera motion or scene structure. The
methods are characterized by the additional informa-
tion used, the underlying constraints exploited, and the
particular computational structure used to implement
the technique. It is likely that reliable moving object
detection will require several complementary tech-
niques, along with a method for selecting which detec-
tor to trust in any particular situation.
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Fig. 11. Optical flow field obtained from tracking an object that is stationary with respect to the environment.

Fig. 12. Histogram of the flow direction of the optical flow vectors in figure 11.
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Fig. 14. Optical flow field obtained from the image sequence of figure 13.
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Fig. I5. Boundary of a moving object overlaid onto figure 13.

7.2 Computational Structure

The methods just described can be grouped into three
classes. Point-based techniques (completely known
motion) compare individual optical flow vectors against
some standard to determine incompatibilities with the
motion of the camera relative to the environment. In
all cases described here, the compatibility measure is
based on a directional constraint associated with the
focus of expansion of the translational flow field. Point-
based methods have the advantages of computational
simplicity and the ability to detect very small moving
objects. They will be most effective when parameters
of motion are known precisely and the magnitude of
the translational flow field at the point in question is
sufficiently large to allow an accurate estimate of direc-
tion. Fdge-based techniques (known rotation, smooth
surface) roughly correspond to traditional edge detec-
tion. Edge-based motion detection is characterized by
the differential flow properties examined and by the
filtering technique used to separate edges due to range
discontinuities from those due to moving objects. The
approach is effective when surfaces are smooth and
techniques exist for accurately locating those range
discontinuities that do exist. Edge-based methods have

the advantage of specifying the outline of moving ob-
jects that are detected. They are likely to be of limited
use when moving objects are quite small. Region-based
techniques (tracked object, depth/flow comparisons) ex-
amine optical flow values over a region, searching for
distributions incompatible with rigid motion. As with
edge-based approaches, the viewed region must include
portions of both object and environment. As long as
the region includes portions of both object and environ-
ment, this is an effective test for moving objects and
does not require any information about camera motion.
The region-based method based on tracking potentially
moving objects does not require any information about
camera motion, but does require that there be signifi-
cant variations in range over the visible portions of the
environment.

7.3 Limitations

All detection algorithms founded on the motion epipolar
constraint share two important shortcomings. First, en-
vironmental flow vectors will be small near the FOE
regardless of the ranges involved. As a result, detection
based on flow orientation will be unreliable within a
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Fig. 16.(b) Right image of first stereo pair.
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Fig. 18 Disparity field obtained across the stereo pair in figure 16.
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Fig. 19. Boundary of a moving object overlaid onto the right image of the stereo pair in figure 16.

region around the FOE # This means that epipolar-based
methods will have difficulties for viewing directions
close to the direction of motion. This is of course the
direction in which moving object detection is likely to
be most important. One heuristic for partially overcom-
ing limitations near the FOE is to look for large magni-
tude values of translational flow near the FOE. Such
values correspond either to moving objects or to environ-
mental points that are very close to the camera. Sec-
ondly, while the motion epipolar methods were devel-
oped to allow for the possibility of a moving camera,
translational camera motion is actually a requirement.
Without translational motion, there is no motion epipolar
constraint to violate. More specifically, not only must
the camera be moving, but significant portions of the
visible environment must be sufficiently close to gen-
erate detectable nonzero translational flow values. Most
methods based on the depth/flow or rigidity constraints
should work for both moving and stationary cameras.

No method for detecting moving objects will be effec-
tive if it depends on knowing precise values of optical
flow.- Techniques for estimating optical flow are intrin-

“Lawton talks about a “dead zone” around the FOE within which
no information based exclusively on camera motion is available [23].
This effect is a problem not only for moving object detection, but
also for techniques such as motion stereo.

sically noisy (e.g., see [24]). Additional difficulties arise
due to the idealized nature of equations (1)-(3). Real
cameras are not point-projection systems. Substantial
effort is required to accurately determine the values of
x and y in (1)-(3). Geometric distortions in the optical
and sensing systems affect measured locations on the
image plane. Variabilities in effective focal length can be
substantial. Reliable techniques will be based on search-
ing for large-magnitude effects in the flow field [25].
All of the methods described here compare flow vectors
to some predetermined standard, or look for significant
differences across flow boundaries. As a result, all deal
with relatively large-magnitude effects. Reliability is
still dependent on scene structure, the nature of camera
motion, and position in the visual field relative to the
direction of translation. Furthermore, many optical flow
estimation techniques perform poorly in the vicinity
of discontinuities in flow. Improvements in this regard
will lead to more sensitive moving object detection.
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