OCCLUSION-SENSITIVE MATCHING

William B. Thompson

Rand P. Whillock

Computer Science Department
University of Minnesota
Minneapolis, MN 55455

Abstract

\odel-based recognition of partially occluded objects is a diffi-
cult task because of the need to accept matches in which only
a subset of model features correspond to image features. Most
approaches to implementing these partial matches are subject
to serious problems due to ambiguity. Improvements in perfor-
mance are possible by directly exploiting evidence for occlusion
in the image. Once a potential match has been hypothesized, oc-
clusion cues can be used to predict portions of an object model
that are not likely to be visible in the image. We describe both
an algorithm for matching using occlusion cues, and a method
for determining the presence of occlusion based only on image
properties. Occluding surfaces are recognized with an approach
that combines motion and contrast information. The method ac-
curately localizes edges, detects only those edges likely to corre-
spond to surface boundaries, and provides an indication of which
side of an edge corresponds to the occluding surface.

1 Introduction.

Many computational models for object recognition depend in
some way on matching two-dimensional object models to im-
age teatures. 2-D matching is not limited to template matching
algorithms. Recently, many recognition approaches have been
developed which use three-dimensional part/object models and
sophisticated 3-D matching strategies. Because of the highly am-
biguous nature of the problem, the final stage in such methods
is tvpically a verification step in which hypothesized information
about identification, position, and orientation is used to project
a model back into the image to be matched against the actual
linage features.

Two significant problems plague matching operations. First of
all. image features (lines, corners, holes, etc.) cannot be de-
termined in a highly reliable manner. Model features are often
missing in the image. Many patterns detected as image features
either do not correspond to actual object properties or are not
contained within the models. Secondly, in complex scenes objects
are oiten partially occluded. Dealing with occlusion by accepting
partial matches increases computational compiexity while reduc-
ing the reliability of the matching process.
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This paper outlines two methods for improving the reliability of
matching in the presence of partial occlusion. First, we describe
a technique in which visual motion can be combined with static
cdge cues to improve the effectiveness of the edge detection pro-
cess. Our technique recognizes that static and dvnamic edge cues
provide different sorts of information about a boundary. Static
cues such as contrast edges give good spatial localization, but are
subject to highly ambiguous interpretations. Visual motion is a
robust indicator of surface boundaries, but does not yield pre-
cise information on the location of the boundary. The approach
given here accurately locates edges due to surface boundaries,
without generating many “false” edges. Even more importantly,
the method gives a direct indication of which side of an edge
corresponds to the occluding surface generating the edge.

The second technique uses information about occlusion to aid in
the matching process. Most existing matching algorithms that
are tolerant of occlusion look for a partial correspondence be-
tween model and image features. If a partial match is found, un-
matched model components are assumed to be hidden by an oc-
clusion. This approach leads to difficulties because of the chances
for partial matches occurring coincidentally. In our method, in-
formation about occlusion boundaries is used to explicitly iden-
tifv model features that will not be visible in the image. Most
of the remaining model features should be findable if the match
is in fact correct. Occluded model features are determined based
directly on image properties at boundaries, rather than just on
the absence of an image feature at some expected location. The
result is a significant decrease in ambiguity.

2 Background.

2.1 Combining motion and contrast information
for edge detection.

Segmentation schemes which combine motion and contrast infor-
mation date back to at least to the work of Jain. Martin, and
Aggarwal [1]. This approach used a difference operator between
two frames to find areas in the image that had changed due to
motion. A static segmenter was then run within these areas to
find the boundaries of the moving regions. Thompson used a re-
oion merger approach that grouped pixels into regions based on
similarities in contrast and motion information [2]. Hayves and
Jain developed an edge detector based on a product of the spa-

tial gradient and a temporal operator [3]. The purpose was to



limit sensitivity to areas signaled by both static and dynamic
effects. More recently, Gamble and Poggio have developed a
Markov Random Field model for recovering optical flow in a man-
ner that integrated contrast boundaries with visual motion [4].
Their approach constrained discontinuities in flow to occur only
at intensity edges.

Relatively little work has been done on differentiating between
occluding and occluded surfaces without resort to fitting ob ject or
part models. Waltz used constraints associated with line drawing
vertices to identify extremal contours and to determine which side
of such a contour corresponded to an occluding surface [5]. Smit-
ley and Bajcsy identified occluding surfaces in stereo imagery by
comparing correlations between frames for images patches on ei-
ther side of a boundary [6). If the correlations differed substan-
tially, the boundary was assumed to be due to occlusion and the
region with the highest correlation between views was assumed
to correspond to the occluding surface. Thompson, Mutch, and
Berzins showed how edges in optical flow could be used to recog-
nize occluding surfaces [7]. Their approach is discussed in more
detail in section 3.

2.2 Matching.

Template matching was one of the first methods proposed for the
visual recognition of objects. Template matching utilizes a corre-
lation measure between one or more model patterns and images
to be analyzed. Invariance to translation and/or rotation can be
obtained by appropriate scanning of the template pattern over
an image. While useful in some applications, template matching
suffers from problems due to computational complexity and is
unable to deal effectively with the matching of three-dimensional
models to two-dimensional imagery.

Recognition of three-dimensional objects is often done by us-
ing configurations of image features to estimate how a three-
dimensional object is being projected into the two-dimensional
image. The object model is subjected to the appropriate pro-
jection, resulting in a prediction of the objects appearance in
the image. A verification process is used to determine if the
predicted configuration of object features actually appears in the
image (e.g., [8,9,10]). Such methods avoid many of the problems
associated with straightforward template matching.

Recognition of partially occluded objects has been a major chal-
lenge for many years. Most approaches attempt to find good
partial matches between subsets of ob ject models and image fea-
tures (e.g., [11,12,13]). Allowing for partial matches increases
the likelihood of false positive classification errors. In addition,
the extraneous configurations of boundaries generated by over-
{apping objects causes additional confusion.

Some preliminary attempts have been made to directly incorpo-
rate occlusion information into the matching process. Fisher de-
veloped evidence for extraneous or missing image features based
on boundary topology and other information about the depth
ordering of surfaces [14]. Specialized heuristics were used to dis-
count the irrelevant mismatches during a verification stage. Cas-
tan used the results of a partial matching process to determine
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estimates of model features likely to be hidden by occlusions [15].
Evidence for visibility and occlusion came from a presumption
that visible features were spatially adjacent, rather than from
any three-dimensional analysis of the imagery.

3 Motion-based Segmentation.

Thompson, Mutch, and Berzins develop an edge detector for op-
tical flow fields [7]. One important aspect of this work is that
motion-based edge detection directly yields information about
which side of the edge corresponds to the occluding surface.
This identification is based on a comparison between the opti-
cal flow on either side of the boundary and the visual motion
of the boundary itself. (Aperture effects usually require that all
image flows be projected onto an axis parallel to the normal to
the edge.) The principle underlying the identification of occluded
surfaces is summarized in the boundary flow constraint:

At a surface boundary, the visual motion of the bound-
ary itself is the same as the visual motion of the sur-
face generating the boundary.

At a boundary, we need only look at the image-plane motion of
the boundary (the boundary flow) and the optical flow immedi-
ately to either side. Optical flow inconsistent with the boundary
flow corresponds to an occluded surface.

One problem with exploiting the boundary flow constraint is the
apparent need to determine the actual motion of the boundary.
In many circumstances, this can result in a difficult correspon-
dence problem. [7] demonstrated how the motion of optical flow
edges can be related to the boundary flow constraint in a man-
ner that does not explicitly compute boundary motion. In that
work, the boundary that was moving was itself indicated by a
motion cue. Here, we extend the result to show how any zero-
crossing style edge operator can be easily used to distinguish
between occluding and occluded surface. As shown in [7], with
an appropriate change of coordinate systems it is sufficient to
consider only two cases. In one, two surfaces are moving towards
one another with equal but opposite optical flows. In the sec-
ond case, the surfaces are moving away from one another with
equal but opposite flows. Over time, the Laplacian pattern at the
boundary will move with the surface to which it is attached. If a
zero-crossing edge detector is applied to an optical flow pattern,
all that is necessary to classify the edge is to observe the sign of
the Laplacian pattern as it translates.

The situation is somewhat more complicated if edges are sig-
naled by some feature other than optical flow. In such cases, it
is necessary to consider both the contrast orientation of the edge
and the pattern of motion to either side. The sign of the Lapla-
cian function can be used to determine the direction of boundary
movement relative to the direction of the gradient at the bound-
ary. If we observe the value of the Laplacian at the zero cross-
ing and that value goes negative, then we know that the edge
has moved in the direction of the gradient. If the value of the
Laplacian goes positive, then the edge motion is in the direction
opposite to the gradient. It is still necessary to compare edge



motions and surface motions. Again using the coordinate system
transform, we need only determine whether the two surfaces are
moving towards or away from each other. It is not necessary to
quantitatively estimate actual surface and boundary flows.

The following algorithm implements this process:

[

. Find an edge point. Zo, in frame tg. Compute the gradient
Vi(Zg), where i(...) is any perceivable function of z that
corresponds to surface properties.

NS

. Project all optical flow values onto an axis parallel to Vi(Zy).

W

. Normalize coordinates by locating an evaluation point &7 =
Fo+ f, In frame 11, where f, is the average inter-frame flow
in the neighborhood of Zg.

da. Tle direction of Vi(Zy) points towards the side of the bound-
ary corresponding to the occluding surface if V2G () is
negative and the two surfaces are approaching one another
or if V2@ i(Fy) is positive and the two surfaces are sepa-
rating.

4b. The direction of Vi(Zp) points towards the side of the bound-
ary opposite the occluding surface if V3G i(#) is posi-
tive and the two surfaces are approaching one another or if
V2G (%) is negative and the two surfaces are separating.

Note that if surface motion is paraliel to the boundary, no deter-
mination of occluding and occluded surfaces is made. In fact, in
this situation no definitive determination is possible based only
on visual motion.

One advantage of this particular algorithm is that it directly
provides a mechanism for combining motion-based boundary de-
tection with static edge cues. Discontinuities in optical flow can
only occur due to discontinuities in depth and/or due to two
surfaces moving relative to one another. Thus, flow edges can
arise from far fewer causes than edges due to changes in inten-
sitv. texture, color, etc. Unfortunately, flow edges are difficult to
localize preciselv. The above algorithm can be used to filter out
I static edges that are not associated with a change in optical

v over the ne

borhood of the edge, The effect is to use mo-
tion to reduce ambiguity, while using the static cues to preserve
localization. In our current algorithm. we are only interested in
boundary points at which we can differentiate between occluding
and occluded surfaces. As a result, we delete all edge elements
that do not have some differential optical flow along an axis per-
pendicular to the edge. This is easily done by modifving the
above algorithm as follows:

3b. If the magnitude of V(G i(T) is close to zero, delete the
edge element at zq from further consideration.

Only a bit more complexity is required in order to recognize edges
with differential motion only tangential to the edge orientation.
Such edges signal surface boundaries, but it is not possible to
distinguish between the occluding and occluded sides.

4 Occlusion-Sensitive Matching.

We have developed a simple model of how occlusion information
might be used to aild in recognition. The model uses occlusion
cues arising from the boundary flow constraint to reduce ambi-
zuity in template matching applied to partially occluded objects.
In presenting this model. our aim is to demonstrate the utility of
incorporating occlusion information directly into the recognition
process. The specifics of the algorithm are for purposes of illus-
tration only. The approach will work for verification as well as
standard template matching. Any occlusion cue can be used: the
method is not limited to using just motion information. More
efficient and reliable implementations are possible. The basic
principles of our approach can be summarized as follows:

» Determine a matching “score” based on searching for model
Jeatures in the image.

e Introduce penalities for model features not in the image, but
only if there is not evidence for the features being hidden
by an occlusion.

s Do not introduce penalties for image features not accounted
Jfor in the model.

[n the examples presented below. we define the matching score to
be the percentage of model features found in the image. This is
done by computing the ratio of matched model features to poten-
tially matchable model features. The features used in our simple
example are silhouette edge elements. Only image edges with
differential motion across the edge are used. A small distance
toleration is allowed for to accommodate noise and other distor-
tions. Information about occluding edges in the image is used
in two ways. First of all. the model/non-model sides of the tem-
plate edge must be compatible with the occluding/occluded sides
of the image edges. {Note that this is a stronger requirement than
just orientational compatibility.) Secondly, a model edge element
is considered potentially matchable if it is not masked. When a
model is being matched at a particular image location, masking
occurs if there are significant occlusion edges in the image within
the interior of the model. Masking regions are "grown” outward
from the occluding side of any interior image edges. To assure
that it will not extend beyond any occluding surface. the mask-
ing region ends at the first image edge reached. In our current
implementation, matching is first done without using the mask-
ing operation. Areas of partial match are then reevaluated using
the masking procedure.

A set of simple examples was created to test our approach of oc-
clusion sensitive matching. We used artificially created objects
io better control for ambiguity in matching. However, the exam-
ples all involve real imagery and automatically determined optical
flow. Figure 1 shows a set of fourteen object models. Two actual
objects were used. one T shaped. the other L shaped. Figure 2
shows one frame from a sequence in which the T is moving behind
a wall to the right. The wall is partiallv occluding the T. As a
result. simple template matching may not be effective for recogni-
tion. Figure 3 shows contrast edges in the T sequence. The edges
were determined using a large kernel zero-crossing operator. Fig-
ire 4 shows motion/contrast edges determined bv deleting edge
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Figure 1: Model set.
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Figure 4: T motion/contrast edges.

Figure 5: Best fit location for model.

Figure 6: Unmatched edges.

Figure 7: Masked portions of T model.

elements in figure 3 that are not associated with differential op-
tical flow across the edge. Figure 5 shows the position of the
T model in the image resulting in the highest matching score.
Figure 6 shows the unmatched edges within the T model when
applied to the image at the location shown in figure 5. The hash
marks along the edges point to the occluding surface, as indi-
cated by the boundary flow constraint. Finally, figure 7 shows
the portions of the T model which have been masked as a result
of the internal edges shown in figure 6.

Table 1 shows the matching scores for all model types evaluated
against the T and L sequences. The highest scores in each column
have been italicized. The models are matched against the raw
contrast edges, the motion/contrast edges, the motion/contrast
edges using the model/non-model orientational compatibility con-
straint, and finally using all of the matching constraints described
above (differential motion, model/non-model edge orientation,
and masking). The data, while currently limited to a few test
cases, suggests that using occlusion information can reduce am-
biguity in matching. Using all of the available matching con-
straints, both examples are correctly classified. Using either tra-
ditional template matching or using only a subset of the matching
constraints causes one or both of the images to be misclassified.



5 Summary.

Edge detection is possible based on both contrast and motion
information. Contrast edges can arise from a large number of
causes and thus are difficult to accurately interpret. Motion
edges are always associated with depth and/or surface bound-
aries, but are difficult to localize precisely. The motion-based
segmentation technique described above combines motion and
contrast cues in an integrated edge detection process. Localiza-
tion is based on contrast edges, while motion information is used
to filter out edges not likely to correspond to surface boundaries.
The method further gives a direct indication of the side of the
boundary corresponding to the occluded surface.

Identification of occluded and occluding surface can significantly
ald in recognition tasks. We have presented a simple matching al-
gorithm in which the presence of occlusion boundaries is used to
avoid penalizing matches for situations in which model features
are hidden from view by other objects. While our algorithm
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T image sequence L image sequence
Model contrast motion/ model/ occlusion | contrast motion/ model/ occlusion
edges contrast non-model masking edges contrast non-model masking
M (L) 635 422 345 439 847 594 .550 637
M, (Cross) .659 .562 511 542 754 517 448 454
Mj; (8quare) 642 .248 215 296 512 .260 192 192
My (Asymmetric triangle) 628 520 4586 603 416 .321 257 277
Ms (Quadrilateral) 652 .380 .295 .526 761 377 338 .338
Me (Rectangle) 800 .548 .388 638 704 504 .356 356
M7 (T) 870 532 494 667 .543 327 270 .286
Mg (Narrow triangle) .665 .543 520 520 715 498 412 412
My (Inverted triangle) 769 474 .446 475 713 478 .430 430
Mio (Narrow diamond) 621 571 .566 606 797 .648 571 571
Mi; (Standard diamond) 583 .456 406 437 172 594 556 359
Mi2 (Broad triangle) 563 540 398 525 716 425 372 380
Mys (Tilted trapezoid) 635 .450 375 551 745 625 .590 .590
M4 (Tilted rectangle) 574 426 413 .439 702 .603 554 .561

Table 1: Matching scores — all models applied to T and L sequences.



