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ABSTRACT

Approximate descriptions of object shape, scene layout, and
object and observer motion are useful for many tasks. The
conventional approach to low level vision has been to recover
precise, detailed description of scene properties. In this
paper, we argue that in some circumstances image analysis is
simplified when approximate, qualitative information is
sought. This is especially true for motion analysis. Methods

for precisely determining surface shape and obiect motion-

have led to complex, numerically unstable estimation pro-
cedures. These procedures are often based on unrealistic
assumptions about the scene and unrealistic expectations
about the capabilities of motion estimation techniques.
Better results can often be obtained by approaches that
bypass precise analysis and directly determine general pro-
perties of structure and motion. We discuss the relationship
between quantitative and qualitative representations and
outline a range of measurement scales for describing scene
properties. Finally, we give three examples of methods for
inexact vision.

1. Introduction.

Research in visual motion understanding has been
devoted almost exclusively to the determination of the pre-
cise geometric properties of scenes. Numerous studies report
methods to obtain depth, surface orientation, and relative
velocity from the motion of object points on the image. This
approach is computationally intensive, prone to error, and in
many cases unnecessary. These methods often make strong
assumptions about the environment which rarely hold in real-
istic situations. Not surprisingly, demonstrations of this
work with real images are almost nonexistent. Focusing the
analysis on more qualitative effects and utilizing less precise
representations may lead to solutions which produce useful
information in an effective manner-without placing restrictive
constraints on the scene. :

We propose that motion analysis should follow the prin-
ciple of least effort. Informally, this principle says that sim-
ple, error tolerant computations should precede more compli-
cated, error sensitive processes. Very difficult tasks should be
done only where necessary and should build on the results of
the simple solutions. We do not dismiss the importance and
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usefulness of detailed, quantitative analysis. Rather, we
believe that general solutions will require a balance between
quantitative and more qualitative information.

Quantitative measures of object shape. scene structure,
and trajectories are represented as numerically valued,
geometric and temporal attributes. Such representations are
attractive because they can easily capture most of what is
potentially relevant about scene structure. Qualitative
representations use a fixed set of categories to describe
geometric properties. In a sense, qualitative descriptions con-
stitute a mapping from the continuous space of possible
geometric structures to a discrete space of possible descrip-
tions. Such a mapping may appear to limit the information
content of the description due to reduced precision. In fact,
the precision associated with quantitative measures is often
an illusion due to the limits on accuracy with which these
measures can be obtained. Quantitative descriptions can be
expressed using a variety of measurement scales. many of
which capture only partial information about a given pro-
perty. The existence of these different scales provides a
range of possible representational precisions from purely
qualitative to exact and complete quantitative descriptions.

The use of qualitative representations at high levels of
abstraction has long be accepted as natural means to
describe the important characteristics of a scene. In this
paper, we argue that less precise representations can be
beneficially employed even in the low level analysis of images.

2. Current approaches.

The study of visual motion has been typically broken
into 3 stages of processing. In the first stage the two-
dimensional motion of points or features on the image is
estimated. The second stage of processing, which we are exa-
mining in this paper, interprets the two-dimensional motion
to recover three-dimensional structure or motion. Later
stages may use the three-dimensional information to locate
and describe objects, to determine the position of the
observer in a known environment, or to understand events
such as object or observer trajectories or time to collisions.
Figure 1 outlines the approaches currently taken for the
analysis of visual motion. Three approaches for estimating
motion on the image are given in the first column. The
second column presents the most common goals for systems
which recover world information from image motion. The
last column shows tasks for which this information might be
relevant. Solid lines indicate an extensive body of work link-
ing elements from two columns. Dashed lines indicate limited
results. -
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Image motion may be estimated for all points in the
image, for a sparse set of feature points, or for complex
structural features. Optical flow is.the image plane velocity
of the projection of visible surface points. Optical flow is in
principle defined everywhere over the image plane. Point set
correspondences are sparse sets of corresponding points in
multiple images of the same object. Points in different
frames are in correspondence if they arise from the same sur-
face point on the object. Structural features are based on
image structures more complex than points. (For example,
[1] uses the time variation of image contours.) The correspon-
dence between structural features across frames must be
established. Visual motion is then characterized by changes
in these features.

We are not concerned in this paper with how image cues
are computed. We must, however, be aware of general pro-
perties of these computations. In particular, perfect esti-
mates of image cues are not possible. We will use the term
notse to refer to any deviation of an estimate cue from the
true value defined by the three-dimensional structure and
temporal characteristics of the scene. With few exceptions,
the literature on motion perception ignores issues of accuracy
and reliability. A small number of papers do point out the
difficulties associated- with noise {e.g. [2,3]). Even fewer
attempt to determine actual measures of accuracy (e.g. [4]).

Several recent papers describing methods for determin-
ing surface structure and object trajectories based on optical
flow have included empirical analyses of sensitivity to errors
in flow estimates {5,6]. Sensitivity is examined by observing
the answer obtained in the presence of random, multiplica-
tive distortions of idealized, synthetically derived input.
Noise values in the range of 5% to 20% have been con-
sidered. Our own experience suggests that the noise associ-
ated with estimations of optical flow has a complex depen-
dency on the magnitude of the flow. Noise in
correspondence-based methods is principally additive,
depending on positional inaccuracies of structures being
matched and on the likelihood of a mismatch. Positional
accuracy in each frame is not a function of displacement
between frames. While the {requency of mismatch may
depend on the magnitude of the true flow value, the

magnitude of the error induced typically does not. For
gradient-based methods, error analysis is more complex. In
general, absolute error can be large for both very small and
very large inter-frame displacements. While error analyses
have not been done for methods estimating optical flow at

contours (7] or for determining parameters of motion directly
from image changes [8], we expect similar effects.

3. Problems with the current approach.

Most of the structure-from-motion and motion-from-
structure techniques are based on systems of non-linear equa-
tions. These systems are numerically unstable. Small errors
in the input (e.g. image cues) result in large errors in the esti-
mates of geometric properties. Furthermore, many of the
proposed techniques require iterative solutions and appear to
depend on good starting guesses. Such methods may be good
for refining a geometric description obtained by other means,
but are not likely to be useful for an initial analysis.

Techniques based on optical flow usually depend on spa-
tial (and less often temporal) derivatives of flow. Similarly,
methods based on point correspondences ultimately depend
on the differences in two-dimensional disparity between sets
of points. Differentiating values characterized by additive
noise greatly increases the relative noise in the resulting
values. When combined with numerically unstable computa-
tions, the end result is not likely to be meaningful.

Problems associated with differential measures are
reduced as the magnitude of the difference increases. As a
result, it is desirable to measure such values over large areas
of the image. The larger the neighborhood used, however,
the more likely the presence of a discontinuity in the
geometric property being estimated. For example, (3] argue
that parameters of observer motion are best determined by
an optimization scheme which depends on flow values over
the full field of view. The problem with this approach is that
as the field of view is expanded, it is more and more likely
that moving objects will be visible. Basing a determination
of sensor motion on a combination of visual cues generated
by the background and by independently moving objects will
not give a correct estimation of either motion.

Various smoothing (regularization) techniques are
currently popular. One attraction of these techniques is that
they allow an analysis based on both local and global image
properties. Fitting smooth surfaces to intrinsically discon-
tinuous values seems to unnecessarily complicate the

problem, particularly as the immediately following step is
often to attempt to recover the discontinuities from the now
smoothed and therefore continuous data. The problem is
even worse when the discontinuities in geometric properties




also lead to incorrect estimation of image image properties.
For example, the Horn and Schunck method for estimating
optical flow [9] fails whenever there are discontinuities
present in optical flow [10]. The global enforcement of
smoothness causes this failure to be propagated over the
whole image.

4. Desirable properties.

The processes that interpret image motion estimates to
obtain a representation of some world property should have
the following attributes:

High signal-to-noise ratio.

The process should be applied only where there is sufficient
information to support the computation. Differential effects
should.only be measured across regions that contain a sub-
stantial variation in the attribute to be measured. Local
computations should only be made at boundaries where the
property being measured changes significantly.

Restricted interpretation.

The process should produce only the information required by
later stages of processing. Geometric properties often need
be determined with only limited precision. Frequensly, 2 or 3
values are sufficient: in front/behind, curved/flat,
convex/concave, approaching/receding. Reducing precision
increases reliability.

Minimal assumptions.

The process should not depend on restrictive assumptions
about the nature of the scene (e.g. planar surfaces) or the
accuracy of the input (e.g. exact optical flow values). Such
assumptions are almost certainly going to be wrong. Unreal-
istic assumptions are only justifiable when it can be shown
that useful answers can obtained in realistic situations
despite violations in the assumptions. In general, motion
analysis methods should assume general motion and general
surfaces.

5. Qualitative vs. quantitative representations.

The choice of a representation scheme has a great
impact on the generality, reliability, and efficiency of algo-
rithms that operate on images. In other areas of Artificial
Intelligence, qualitative descriptions of physical properties
and events have generated much interest. [11]. A well
defined qualitative representation may capture much or all of
the significant aspects of the situation. In this section we
examine inexact representations of information obtained
from images. R

Information about many different attributes of scenes
can be obtained from dynamic image sequences. A represen-
tation assigns values of an attribute for a set of entities in
the scene. Entities may range from visible surface points,
through structures such as surfaces and volumes, to whole
objects. Values may be assigned for all or only a small
number of the scene entities. Information about motion and
geometry can be represented with varying degrees of accu-
racy. If the attribute is measured with high precision we say

that the representation is quantitative. In passing, we note
that the resolution of the representation is highly dependent
on the accuracy of the measurements from which the values
are obtained. In vision, we are always limited by the spatial
resolution and dynamic range of the sensor. Typically, sen-
sors can distinguish between a few hundred brightness levels
at a few tens of thousands of image points. Hence, even a
quantitative brightness scale may contain only 100 or so
discrete values.

If an attribute can take only a small number of values
we say that the representation is qualitative. Qualitative
representations define a set of equivalence classes on the
quantitative scale. We will assume qualitative values
correspond to disjoint, continuous intervals on the quantita-
tive scale. Usually, the intervals of adjacent qualitative
values abut each other on the quantitative scale.

Typically, boundaries on a qualitative scale are chosen
such that they correspond to significant boundaries on the
corresponding quantitative scale. For example, curvature
could be represented with three values {+1,0-1) indicating
convex, flat, or concave in quantitative representation.
Because the precision required of qualitative descriptions is
less than for a corresponding quantitative description, quali-
tative information can often be more reliably and more
efficiently determined than the underlying quantitative infor-
mation. And for many tasks qualitative information is all
that’s necessary.

It is sometimes the case that quantitative properties are
needed to perform some task. When possible, precise deter-
mination of scene properties should follow the estimation of
more easily obtained qualitative properties. For example. the
location of surface boundaries significantly restricts likely
surface shape. The image of the boundary constrains the
possible locations of the corresponding extremal contour.
Even though this specification is not unique, presumptions
about compactness of objects and smoothness of surfaces can
be used to estimate likely shapes. In some situations, motion
information can actually be used to find the surface orienta-
tion at the boundary. Because the computational complexity
associated with estimating precise quantitative properties is
usually large, it is also desirable to make such determinations
only when necessary. By combining a focused analysis with
the principle of least effort, it may be possible to obtain reli-
able results.

6. Measurement scales.

An attribute can be represented in many different meas-
urement scales. For example, range to a surface point may
be described in terms of absolute distance {e.g. 23 feet) or in
terms of an ordinal relationship (e.g. point a is closer than
point b). A clear understanding is needed of the nature of
the representational scale corresponding to particular
analysis algorithms. In addition, an important open question
in low-level vision is the manner in which measurements of
the same or similar properties in different scales can be com-
bined.

A representation specifies the value of a scene property
to some degree of precision. The representation can be
viewed as constraining the value of the property, but except



in the case of an exact representation, the property is not
limited to a single value. The degree to which the properties
of objects are constrained by the representation is deter-
mined by the type of the underlying scale. The type of a
scale is determined by the allowable transforms on the meas-
urements [12}. The measurements in the transformed
representation must have the same properties as the original
representation. Although a large number of scale types are
possible, only five occur commonly.

Absolute Scales

No transformations are permissible on a absolute scale. Sur-
face orientation and depth are often measured on an absolute
scale. If an observer is translating with known velocity
through a stationary world, then the range to visible surface
points can be determined absolutely.

Ratio Scales

Ratio scales are unique up to a multiplicative scale constant.
If an observer is translating with unknown velocity through a
stationary world, then the range to visible surface points can
be determined to within a scale constant dependent on
observer speed. Such a range determination is an example of
a ratio scale. If ratio scale information about scene proper-
ties is sufficient, less information is required about the cir-
eumstances under which imagery is obtained. One potential
problem arises when multiple ratio scales are used. The ori-
gin of a ratio scale is unaffected by scaling and hence is
known exactly. In vision systems, ratio scales for a particu-
lar property determined by different methods often have
different origins, making comparisons difficult.

Interval Scales

Interval scales preserve information about the difference
between the physical entities. Any positive linear transfor-
mation can be applied to an interval scale. For example,
consider a moving sensor observing a collection of objects
close to one another, but distant from the sensor. If it is
known that the objects are moving in the same directions,
then image velocities provide an interval scale of three
dimensional velocity. In particular, the difference in magni-
tude of the image velocities of two points is proportional to
the diflerence the magnitudes of their three-dimensional velo-
cities. If the velocities of three points on the image have
magnitudes v(z), v(y), and v(z) then v(z)=v(y) = v(y)—(z)
implies that the respective 3-dimensional differences are
equal.

Ordinal Scales

Ordinal scales contain information only about the ordering of
objects. Any order preserving transform can be applied to an
ordinal scale. Ordinal depth scales can be derived from
interposition information. For example, consider two moving
surfaces moving in different directions that share a common
edge in the image. The accretion or deletion of surface
points at the boundary of the surfaces indicates which sur-
face is closest to the viewer. The appearing or disappearing
points must lie on the more distant, occluded surface. Note
that this depth information is locally defined. The ordinal
relations are not transitive across surfaces. For example,

consider the how four sides of a box can be folded over and
interlocked to close the top of the box {figure 2). The upper
left surface is in front of the lower left surface which is in
front of the lower right surface which is in front of the upper
right surface which is in front of the upper left surface....
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Figure 2.

Nominal Scales

In a nominal scale measurements are simply symbolic labels.
Any one-to-one transform can be applied to 2 nominal scale.
The segmentation of an image into regions that correspond
to object surfaces results in a nominal scale. Each point is
labeled according to the surface to which it belongs. The
labels, however, bear no relationship to one another. Any set
of unique labels is adequate. Motion information can often
provides a strong cue for segmentation. Nearby points on
the image with similar motion will usually lie on the same
surface. Even if we nothing about the three dimensional
shapes and motions of objects, we can often use image
motion as a cue for segmentation. :

It is important to recognize the scale underlying a meas-
urement system as it defines the meaningfulness of operations
on the resultant values. For example, the average of a group
of ordinal measurements is meaningless and only the sign of
the difference between two values on an ordinal scale has
meaning.

Work in motion analysis has been almost exclusively
focused at quantitative representations of three-dimensional
motion and geometry. The determination of absolution and
ratio scales of motion and shape has received the most atten-
tion. While this work is important, there is much qualitative
information that can also be exploited. Qualitative informa-
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tion can often be obtained more robustly and more efficiently
than quantitative information and requires fewer assump-
tions about the environment. [t is usually the case that the
greater the scale constrains the properties of objects, the
greater the world must be constrained to obtain the measure-
ments. It is likely that successful systems will employ
representations of many types.

7. Examples of inexact vision.

In this section, we briefly outline three examples of tech-
niques for analyzing visual motion which satisfy at least some

of the desirable properties listed above. The first example
deals with the discovery of surface boundaries, and the use of
this information to determine aspects of relative surface posi-
tion and surface shape. Thus, a purely qualitative analysis is
followed by the extraction of ‘geometric information. The
second example illustrates a method for the detection of
objects likely to collide with the observer. One simple solu-
tion to this problem depends on assumptions about object
and observer motion that do not hold in general. However,
these assumptions do hold when a collision is imminent. The
third example outlines a new method for determining the
direction of observer motion based solely on visual data.
While the analysis is quantitative, it is structured in such a
way that irrelevant information required by other
approaches drops out of the formulation, and thus only
relevant information is actually computed.

7.1. Boundary determination.

Most of the work examining the recovery of three
dimensional structure for motion information has been
directed toward the description of surface shape. The less
ambitious goal of determining surface boundaries is easier to
achieve. The importance of finding the location in an image
of the extremal contours of surfaces is well recognized. An
extensive literature in edge detection is motivated in large
part by the presumed correspondence between discontinuities
in some image property and discontinuities in a related scene
property. Edge detection is in fact the most common form of
qualitative image analysis -- an edge is either there or it’s
not. Motion-based segmentation can not only find boundaries
that are difficult to locate in a single view, but it can also
provide much more information about the structure of the
scene. We have previously reported on two different tech-
niques for finding dynamic occlusion boundaries [13,14]. In
both cases, the methods not only signal the presence of a
boundary, but provide information about the location of the
occluding and occluded surfaces at the boundary. Such a
determination is important to any process which analyzes the
shape of the boundary. While the shape of the edge provides
significant information on the structure of the occluding sur-
face, it says little or nothing about the structure of the sur-
face being occluded. This approach can also determine the
ordinal depth relationships at a boundary.

Reasonable boundary detection and analysis results are
obtained even when the optical flow fields on which the detec-
tion is based contain substantial amounts of noise. We feel
that this success comes from two features of the techniques.
Only simple classification operations are required. First, a
yes/no determination is made as to the existence of the
boundary. Then, the two sides of the boundary are classified

as occluding or occluded. In addition, the qualitative nature
of the analysis makes it possible to integrate information
over relatively large neighborhoods of the flow field without
undue distortions in the final result. The estimation of quan-
titative point properties of scene structure is complicated by
variations in the property over neighborhoods used to per-
form the calculation. Analysis using limited precision quali-
tative descriptions is often quite tolerant of these neighbor-
hood variations.

More generally, we argue that visual motion analysis
should depend principally on significant variations in proper-
ties such as optical flow. Human perception of structure-
from-motion seems to depend more on spatial differences in
optical flow than on the flow values themselves. Simultane-
ous and successive contrast effects and Craik-O’Brien-
Cornsweet illusions appear in depth-perception due to motion
parallax [15,16]. Human vision reconstructs the shape of sur-
face ffom motion based on spatial differences in optical flow,
not the actual magnitude of flow. (This is in clear contrast
to surface interpolation methods such as (17].) By determin-
ing surface structure using a computational model such as
(18, it might be possible to combine the analysis of boun-
daries and important surface features, while reducing the
sensitivity to noise and to systematic distortions due to
effects such as observer motion.

7.2. Collision detection.

A method of detecting collisions is well known to navi-
gators: “If the bearing becomes constant and the distance is
decreasing, the two vessels are on collision courses.... f19)”
This allows a simple qualitative test for collision based on
optical flow. The approach of the object is signaled by a
positive divergence in the optical flow field while the “con-
stant bearing” is marked by a zero average flow in the same
region of the image [20]. The test is simple and effective
because it does not depend in any way on actually determin-
ing the relative motion of the object and observer. As a
result, it can be implemented in an efficient and accurate
manner.

One significant complication arises, however. The result
quoted from {19] is actually true only when there is no rela-
tive acceleration between the object and observer. Neither
object nor observer can be changing speed or direction, and
the observer camnot be rotating. Such assumptions are of
course not generally valid. It is the case, though, that the
assumptions dealing with changing speed and/or direction
are less important as collision is imminent and detection
becomes more important.

If accelerations are bounded, changes in trajectory have
less effect on the likelihood of a collision as an object and
observer approach one another. For an object and observer
on a collision course, the range of paths the object and
observer can take to avoid a collision becomes increasingly
limited as the object nears the observer. A nearby object
approaching the observer at high velocity is likely to collide
with the observer.



7.3. Four-eyed vision.

Considerable attention has been paid in both the per-
ceptual psychology and computer vision communities to the
problem of estimating sensor trajectories based on visual
motion. Vision can in principle be used to estimate five
parameters of instantaneous sensor motion -- three rotational
velocities and the direction of translation. (Translational
speed cannot be estimated unless there is some independent
range cue in the imagery.) In practice the problem is ill-
conditioned, making it difficult to determine five distinct
parameters.

Often, it is sufficient to know only the direction of
translation. The most straightforward way to do this is to
first solve for the rotational parameters. Once rotation is
known, it is easy to convert the optical flow field into a field
that would result if only translation were occurring. The
direction of translation is indicated by the focus of expansion
in this translational flow field. A better approach is to esti-
mate translation directly, without computing additional
information not necessarily needed. (Rotation, if required,
can be estimated using inertial mechanisms or by examining
optical flow in the direction of translation.) [21] shows how
the effects of rotation on optical flow can be minimized by
applying a local spatial difference operator to the flow field.
The use of a very wide field of view can lead to the same
effect without the problems associated with local spatial
differencing.

Four-eyed vision is a simplification of the more general
case of vision using a 180° field of view and a coordinate sys-
tem based on spherical projection. Four distinet regions at

the periphery of the field of view are used in the analysis.
Each region can be thought of as the image associated with a
separate camera pointing in the appropriate direction. Each
camera points directly away from a common center, with
pairs of cameras pointing in exactly opposite directions. The
imagery from each camera is used to estimate optical flow at
the center of each image. The imagery from a single camera
is thus used only to determine two parameters specifying the
direction and speed of flow. The rotational component of
flow for two images making up a pair is the same. The
translational components will point in opposite directions,
with a magnitude dependent of the range to the surface gen-
erating the flow for each camera. Subtracting the two flow
from opposing images values.canceis the rotational com-
ponent. leaving .only an average translational component.
The translational components for the two pair can then be
used to solve for the focus of expansion. In situations where
four-eyed vision is practical, it provides a simple solution to
an otherwise difficult problem. Even when four-eyed vision is
not used, it is important to note that the accurate determi-
nation of sensor translation in all but noise-free situatjons
tequires a wide angle of view [22].

i

8. Needed research.

The interpretation of image motion can not be studied
in isolation. Both competence-based and task-based analysis is
crucial to the development of effective motion analysis tech-
niques. Competence-based analysis involves the determina-
tion of what is possible to compute and, equally important,
the accuracy of such computations. Task-based analysis

20

focuses on what information actually needs to be computed
at each stage of processing. To determine the potential
three-dimensional information that can be recovered from
image motion, we must understand the characteristics and
limitations of the motion estimation techniques. The charac-
teristics of the motion estimates determine in large part the
success of later stages of processing. Methods of motion

. analysis must not rely of estimates that are impossible to

obtain. We also need a better understanding of the sensi-
tivity of algorithms utilizing these values to errors in the
estimates.

To determine what three-dimensional information is
valuable we must study the tasks that will use the recovered
geometric information. What information is needed to per-
form specific tasks such as position determination and colli-
sion avoidance? The ability to recover qualitative
information and the usefulness of qualitative information
must be studied. The implications of determining scene pro-
perties in different measurement scales must be better under-
stood, and methods developed for integrating information in
different scales.

It is not surprising that so few motion analysis tech-
niques have been demonstrated on real imagery. The heavy
focus on the determination of precise geometry and trajec-
tory information leads to methods intolerant of the variabil-
ity and imprecision in actual images. By reducing the preci-
sion required of the analysis, substantial improvements in
robustness may be obtained. We are not suggesting that pre-
cise estimation methods should be abandoned for more quali-
tative techniques. We do advocate, however, a more hetero-
geneous approach in which information is determined to the
minimal precision necessary.
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