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Dynamic Occlusion Analysis in Optical Flow Fields
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Abstract -Optical flow can be used to locate dynamic occlusion bound-
aries in an image sequence. We derive an edge detection algorithm sensi-
tive to changes in flow fields likely to be associated with occlusion. The
algorithm is patterned after the Marr-Hildreth zero-crossing detectors
currently used to locate boundaries in scalar fields. Zero-crossing de-
tectors are extended to identify changes in direction and/or magnitude
in a vector-valued flow field. As a result, the detector works for flow
boundaries generated due to the relative motion of two overlapping
surfaces, as well as the simpler case of motion parallax due to a sensor
moving through an otherwise stationary environment. We then show
how the approach can be extended to identify which side of a dynamic
occlusion boundary corresponds to the occluding surface. The funda-
mental principal involved is that at an occlusion boundary, the image
of the surface boundary moves with the image of the occluding surface.
Such information is important in interpreting dynamic scenes. Results
are demonstrated on optical flow fields automatically computed from
real image sequences.

Index Terms—Dynamic occlusion, dynamic scene analysis, edge de-
tection, optical flow, visual motion.

I. INTRODUCTION

N optical flow field specifies the velocity of the image

of points on a sensor plane due to the motion of the sen-
sor and/or visible objects. Optical flow can be used to estimate
aspects of sensor and object motion, the position and orienta-
tion of visible surfaces relative to the sensor, and the relative
position of different objects in the field of view. As a result,
the determination and analysis of optical flow is an important
part of dynamic image analysis. In this paper, we develop an
operator for finding occlusion boundaries in optical flow fields.
We deal exclusively with dynamic occlusions in which flow
properties differ on either side of the boundary. The operator
is effective for both motion parallax, when a sensor is moving
through an otherwise stationary environment, and for more
general motion in which multiple moving objects can be in the
field of view. The multiple moving object situation is more dif-
ficult because boundaries are marked by almost arbitrary com-
binations of changes in magnitude and/or direction of flow.
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The technique is extended so that a determination may be
made about which side of a dynamic occlusion boundary corre-
sponds to the occluding surface. Such a determination is of
great importance for interpreting the shape and spatial organi-
zation of visible surfaces. Results are demonstrated on real
image sequences with flow fields computed using the token
matching technique described in [1]. Reliability is obtained
by dealing only with methods able to integrate flow field in-
formation over relatively large neighborhoods so as to reduce
the intrinsic noise in fields determined from real image
sequences.

II. BOUNDARY DETECTION

Conventional edge operators detect discontinuities in image
luminence. These discontinuities are difficult to interpret,
however, because of the large number of factors that can pro-
duce luminence changes, Boundaries in optical flow can arise
from many fewer causes and, hence, are often more informa-
tive. If a sensor is moving through an otherwise static scene, a
discontinuity in optical flow occurs only if there is a discon-
tinuity in the distance from the sensor to the visible surfaces
on either side of the flow boundary [2]. Discontinuities in
flow will occur for all visible discontinuities in depth, except
for viewing angles directly toward or away from the direction
of sensor motion. If objects are moving with respect to one
another in the scene, then all discontinuities in optical flow
correspond either to depth discontinuities or surface bound-
aries, and most depth discontinuities correspond to flow
discontinuities.

The use of local operators to detect discontinuities in optical
flow has been suggested by others. Nakayama and Loomis [3]
propose a ‘“‘convexity function” to detect discontinuities in
image plane velocities generated by a moving observer. Their
function is a local operator with a center-surround form. That
is, the velocity integrated over a band surrounding the center
of the region is subtracted from the velocity integrated over
the center. The specifics of the operator are not precisely
stated, but a claim is made [3, Fig. 3] that the operator returns
a positive value at flow discontinuities. (In fact, most reason-
able formulations of their operator would yield a value of 0 at
the boundary, with a positive value to one side or the other.)
Clocksin [2] develops an analysis of optical flow fields gen-
erated when an observer translates in a static environment. He
shows that, in such circumstances, discontinuities in the mag-
nitude of flow can be detected with a Laplacian operator. In
particular, singularities in the Laplacian occur at discontinuities
in the flow. He also showed that, in this restricted environ-
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ment, the magnitude of optical flow at a particular image point
is inversely proportional to distance, and the distances can be
recovered to within a scale factor of observer speed. It is thus
trivial to determine which of two surfaces at an edge is occlud-
ing, for example, by simply comparing magnitudes of the two
surface velocities, even when observer speed is unknown.

For this restricted situation in which a sensor moves through
an otherwise static world

4 2> ft()?)
ﬂOW(X) "fr(x) + r(fc’)
where at an image point X, flow(x) is the optical flow (a two-
dimensional vector), f, is the component of the flow due to
the rotation of the scene with respect to the sensor, f; is de-
pendent on the translational motion of the sensor and the
viewing angle relative to the direction of translation, and r is
the distance between the sensor and the surface visible at X
[4]. For a fixed ¥, flow varies inversely with distance. Both
f, and f; vary slowly (and continuously) with ¥. Discontinu-
ities in flow thus correspond to discontinuities in r. Further-
more, it is sufficient to look only for discontinuities in the
magnitude of flow. This relationship holds only for relative
motion between the sensor and a single, rigid structure. When
multiple moving objects are present, (1) must be modified so
that there is a separate £ ) and f ¢ specifying the relative mo-
tion between the sensor and each rigid object. Discontinuities
associated with object boundaries may now be manifested in
the magnitude and/or direction of flow.

Boundary detectors for optical flow fields should satisfy two
criteria: 1) sensitivity to rapid spatial change in one or both of
the magnitude and direction of flow, and 2) operation over a
sufficiently large neighborhood to reduce sensitivity to noise
in computed flow fields. It is desirable to achieve the second
criterion without an unnecessary loss of spatial resolution in
locating the boundary or a need for postprocessing to reduce
the width of detected boundaries. The zero-crossing detectors
of Marr and Hildreth [5] may be extended to optical flow
fields in a manner that achieves both objectives [6]. Forscalar
fields (e.g., intensity images), zero-crossing edge detection pro-
ceeds as follows. 1) Smooth the field using a symmetrical Gauss-
ian kernel. 2) Compute the Laplacian of the smoothed func-
tion. 3) Look for directional zero crossings of the resulting
function (e.g., look for points at which, along some direction,
the function changes sign). Under a set of relatively weak as-
sumptions, these zero crossings can be shown to correspond to
points of most rapid change in some direction in the original
function. The convolution with a Gaussian provides substan-
tial noise reduction and, in addition, allows tuning of the
method for edges of a particular scale. Steps 1) and 2) involve
evaluating the function V2G * I, where G is a Gaussian kernel,
* is the convolution operation, and 7 is the original image. The
effect of the V2G operator can be approximated by blurring
the original function with two different Gaussian kernels of
appropriate standard deviation, and then taking the difference
of the result. This formulation results in computational simpli-
fications [7], [8] and also corresponds nicely to several phys-
iological models that have been proposed for early visual
processing.

(1
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The effect of this approach is to identify edge points where
the intensity of the blurred image is locally steepest. More
precisely, an edge can be defined as a peak in the first direc-
tional derivative, or as a zero crossing in the second directional
derivative, At an edge, the second directional derivative has
zero crossings in almost all directions, but the preferred direc-
tion is normal to the locus of the zero crossings, which is the
same as the direction where the zero crossing is steepest for
linearly varying fields [S]. For vector images such as optical
flow fields, the directional derivatives are vector valued, and
we want the magnitude of the first directional derivative to
have a peak.

This extension to two-dimensional flow fields is relatively
straightforward. The optical flow field is first split into sepa-
rate scalar components corresponding to motion in the x and
» directions. The V2G operator is applied to each of these
component images, and the results combined into a component-
wise Laplacian of the original flow field. (The Laplacian is a
vector operator which can be expressed in arbitrary coordinate
systems, For convenience, we choose a Cartesian coordinate
system.) This componentwise Laplacian operation is imple-
mented by subtracting two componentwise blurred versions of
the original. With the proper set of weak assumptions, discon-
tinuities in optical flow correspond to zeros in both of these
component Laplacian fields. At least one of the components
will have an actual zero crossing. The other will have either a
zero crossing or will have a constant zero value in a neighbor-
hood of the discontinuity. If the componentwise Laplacians
are treated as a two-dimensional vector field, discontinuities
are indicated by directional reversals in the combined field.
Because of the discrete spatial sampling and a variety of noise
sources, the zeros or zero crossings in the two components of
the field may not actually be exactly spatially coincident. Thus,
exact reversal is not expected, and a range of direction changes
of about 180° is accepted. A threshold on the sum of the vec-
tor magnitudes at the location of the flip is used to ensure that
the zero crossing is of significant slope. This is analogous to
the threshold on zero-crossing slope which is often used in prac-
tice when zero-crossing techniques are used on intensity im-
ages, and serves to filter out small discontinuities.

The approximations made by the computations described
above will be good if the variation of the field parallel to the
edge is much more uniform than the variation normal to the
edge. For scalar images, exact results will be obtained if the
intensity varies at most linearly along the edge contour [5].
For vector images, the field must vary at most linearly in some
neighborhood of the edge contour, so that the assumptions re-
quired are slightly stronger than for scalar images. Appendix [
contains the analysis for the case of vector images.

Two examples of this technique applied to real images are
shown below. In both examples, the objects are toy animals
with flat surfaces, shown moving in front of a textured back-
ground. In Fig. 1(a), the tiger translates parallel to the image
plane from right to left between frames 1 and 2. The elephant
rises off its front legs between frames 1 and 2, effectively ro-
tating about an axis at its hind feet oriented perpendicularly to
the image plane. The elephant also translates slightly to the
left parallel to the image plane. The optical flow vectors, shown
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continuity in magnitude. Two Gaussian filtered versions of
the flow fields were obtained with standard deviations of 3.16
and 5.16—a ratio of 1:1.6. The locations of vector reversals
resulting from differencing the two filtered fields are shown
in Fig. 2(c) and (d).

The width of the Gaussian kernel used in the VG operator,
the density of the computed optical flow field, and the spatial
variability of flow all interact to affect the performance of the
boundary detection. As with the use of zero-crossing detectors
for scalar fields, it may be desirable to use a range of kernel
sizes and then combine the results to obtain a more robust in-
dicator for the presence of a boundary. While zero-crossing
contours are, in principle, connected, the use of a threshold
on the slope at the zero crossing results in some portions of
the boundary being missed. In practice, zero-crossing bound-
ary detection for both scalar and vector fields often requires
such thresholds to avoid significant problems with false bound-
ary indications in slowly varying regions of the fields. Work
still needs to be done on better techniques for selecting zero
crossings that correspond to true boundaries.

III. IDENTIFYING OCCLUDING SURFACES

When analyzing edges between dissimilar image regions that
arise due to occlusion boundaries, it is important to determine
which side of the edge corresponds to the occluding surface.
Occlusion boundaries arise due to geometric properties of the
occluding surface, not the occluded surface. Thus, while the
shape of the edge provides significant information on the struc-
ture of the occluding surface, it says little or nothing about the
structure of the surface being occluded. In situations where a
sensor is translating through an otherwise static scene, any sig-
nificant local decrease in r in (1) increases the magnitude of
flow. Thus, at a flow boundary, the side having the larger mag-
nitude of flow will be closer, and thus will be occluding the
farther surface. Sensor rotation complicates the analysis, while
if objects in the field of view move with respect to each other,
there is no direct relationship between magnitude of flow and
r. Surfaces corresponding to regions on opposite sides of a
boundary may move in arbitrary and unrelated ways. However,
by considering the flow values on either side of the boundary
and the manner in which the boundary itself changes over time,
it is usually possible to find which side of the boundary corre-
sponds to the occluding surface, although the depth to the sur-
faces on either side cannot be determined.

The principle underlying the approach is that the image of the
occluding contour moves with the image of the occluding sur-
face. Fig. 3 illustrates the effect for simple translational mo-
tion. Shown on the figure are the optical flow of points on
each surface and the flow of points on the image of the bound-
ary. In Fig. 3(a), the left surface is in front and occluding the
surface to the right. In Fig. 3(b), although the flow values asso-
ciated with each surface are the same, the left surface is now
behind and being occluded by the surface to the right. The
occluding surface cannot be determined using only the flow
in the immediate vicinity of the boundary. The two cases can
be distinguished because, in Fig. 3(a), the flow boundary deter-
mined by the next pair of images will be displaced to the left,
while in Fig. 3(b) it will be displaced to the right.

- — - —
time to - —» - —
(a)

. > -— .
time ty =-— — - -
(b)

Fig. 3. Optical flow at a boundary at two instants in time. (a) Surface
to the left is in front. (b) Surface to the right is in front.

To formalize the analysis, we need to distinguish the optical
flow of the boundary itself from the optical flow of surface
points. The flow of the boundary is the image plane motion
of the boundary, which need not have any direct relationship
to the optical flow of regions adjacent to the boundary. The
magnitude of the optical flow of boundary points parallel to
the direction of the boundary typically cannot be determined,
particularly for linear sections of boundary. Thus, we will limit
the analysis in this section to the component of optical flow
perpendicular to the direction of the image of occlusion bound-
aries. As a result, if the flow on both sides of the boundary is
parallel to the boundary, the boundary will still be detectable,
but the method given here will provide no useful information
about which surface is occluding.

We can now state the basic principle more precisely. Choose
a coordinate system in the image plane with the origin at a par-
ticular boundary point and the x axis oriented normal to the
boundary contour, with x > 0 for the occluding surface. The
camera points in the z direction, and the image plane is at
z=0. Let fi(x, y) be the x component of optical flow at the
point (x, y). Let f;, be the x component of the flow of the
boundary itself at the origin (i.e., f; is the image plane veloc-
ity of the boundary in a direction perpendicular to the bound-
ary). Then, for rigid objects,

fo= 1m_ fx(x,0)=£(0,0) @

We will show that this relationship is true for arbitrary rigid
body motion under an orthographic projection. For a single
smooth surface, perspective projections are locally essentially
equivalent to a rotation plus a scale change, although the anal-
ysis is more complex. Equation (2) specifies a purely local con-
straint and, as the limit is taken from only one side of the
boundary, is dependent on flow values on a single surface.
Thus, the limit result will hold as well for perspective projec-
tions. Algorithms which utilize the result in (2) may suffer,
however, if properties of more than a truly local area of the
field are utilized. The instantaneous motion of a rigid object
relative to a fixed coordinate system can be described with re-
spect to a six-dimensional, orthogonal basis set. Three values
specify translational velocity, the other three specify angular
velocity. These six coordinates of motion can be conveniently
classified into four types: translation at constant depth, transla-
tion in depth, rotation at constant depth, and rotation in depth.
Translation at constant depth is translation in a direction par-
allel to the image plane. Translation in depth is translation per-
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pendicular to the image plane. Rotation at constant depth is
rotation around an axis perpendicular to the image plane. Ro-
tation in depth is rotation around an axis parallel to the image
plane. Any instantaneous motion can be described as a com-
bination of these four types. For orthographic projections,
translation in depth has no effect on the image. Thus, we need
to show that the above relationship relating boundary and sur-
face flow holds for the three remaining motion types.

A point on the surface of an object in the scene that projects
into a boundary point in the image will be referred to as a gen-
erating point of the occlusion boundary. The family of gen-
erating points defines a generating contour, which lies along
the extremal boundary of the object with respect to the sen-
sor. For both translation and rotation at constant depth, the
generating contour remains fixed to the occluding surface over
time, Thus, the boundary and adjacent points move with ex-
actly the same motion. As a result, the projection of the sur-
face flow in the direction normal to a particular boundary point
is identical to the projection of the boundary flow in the same
direction. (The result is strictly true only for instantaneous
flow. Over discrete time steps, boundary curvature will affect
the projected displacement of the boundary.)

The analysis of rotation in depth is complicated by a need to
distinguish between sharp and smooth occlusion boundaries,
based on the curvature of the occluding surface. The intersec-
tion of the surface of the object and a plane passing through
the line of sight to the generating point and the surface normal
at the generating point defines a cross section contour. The
cross section contour and the generating contour cross at right
angles at the generating point. Sharp boundaries occur when
the curvature of the cross section contour at a generating point
is infinite. Smooth boundaries occur when the curvature is
finite.

Sharp generating contours will usually remain fixed on the
object surface over time. (Exceptions occur only in the infre-
quent situations in which, due to changes in the line of sight
with respect to the object, either sharp boundary becomes
smooth or a flat face on one side of the generating point lines
up with the line of sight.) Smooth generating contours will
move along the surface of the object any time the surface ori-
entation at a point fixed to the surface near the extremal bound-
ary is changing with respect to the line of sight. Fig. 4 shows
examples of both possibilities. The figure shows a view from
above, with the sensor looking in the plane of the page and the
objects rotating around an axis perpendicular to the line of
sight. In Fig. 4(a), an object with a square cross section is being
rotated. Fig. 4(b) shows an object with a circular cross section.

For sharp boundaries, a surface point close to a generating
point in three-space projects onto the image at a location close
to the image of the generating point. The surface point and
the generating point move as a rigid body. For rigid body mo-
tion, differences in flow between the image of two points go
to zero as the points become coincident in three-space. As a
result, surface points arbitrarily close to the generating point
project to the same flow values as the generating point itself.

For smooth boundaries, the situation is more complex. The
surface points corresponding to the boundary may change over
time, so that points on the surface near the generating point
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line of sight

Fig. 4. (a) Generating contour at a sharp boundary remains fixed to the
object surface. (b) Generating contour at a smooth boundary moves
relative to the object surface.

and the generating point itself may not maintain a fixed rela-
tionship in three-space. The property described in (2) still
holds for rotation in depth, however, The formal proof of
this assertion is relatively complex and is given in Appendix B.
(The Appendix actually shows that the limit of surface flow is
equal to boundary flow for rotation of smooth objects around
an arbitrarily oriented axis.) Informally, the result holds be-
cause the surface is tangent to the line of sight at the generating
point, so that any motion of the generating point with respect
to a point fixed to the surface is along the line of sight. The
difference between the motion of the surface near the generat-
ing point and the motion of the generating point itself is a vec-
tor parallel to the line of sight and, hence, does not appear in
the projected flow. This means that the motion of the bound-
ary in the x direction will be the same as that of a point fixed
to the surface at the instantaneous location of the generating
point, The limit property holds because the surface flow varies
continuously with x in the vicinity of the generating point, as
long as we restrict our attention to points that are part of the
same object.

To develop an algorithm for actually identifying the occlud-
ing surface at a detected boundary, we will start by assuming
only translational motion is occurring. (Violations of this
assumption are discussed below.) According to (2), we need
only look at the flow at the edge point and immediately to
either side to determine which side corresponds to the occlud-
ing surface. In practice, however, this in inadequate. Edges
will be located imprecisely in each frame due to a variety of
effects. This imprecision is compounded when the location of
edge points is compared across frames to determine the flow
of the edge. By considering the pattern of change in the
Laplacian of the optical flow field, however, a simple binary
decision test can be constructed to determine which surface
velocity most closely matches that of the edge. As before, we
will use a coordinate system with its origin at the location of
some particular boundary point at a time ¢, , the x axis oriented
normal to the orientation of the boundary, and consider only
flow,, the projection of flow onto the x axis. In this new co-
ordinate system, positive velocity values will correspond to
motion to the right. We will assume that the flow field in the
vicinity of the edge can be approximated by a step function.
The algorithm developed here is unaffected by constantsadded
to the flow field or by applying positive multiples to the mag-
nitude of flow. Therefore, to simplify analysis, normalize the
flow field by subtracting a constant value f, such that the pro-
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jected velocities of the two surfaces have equal magnitudes and
opposite signs, and then multiply by a positive scale factor f;
such that the magnitudes will be normalized to 1 and -1 [i.e.,
flow, = f(flow,, - f,)}. The resulting step edges can have one
of two possible shapes, depending upon whether the surface to
the left is, after scaling and normalizing, moving to the left or
to the right (see Fig. 5).

When the two possible velocity functions are convolved with
a Gaussian blurring kernel, the resulting functions are shown
in Fig. 5(a) and (b). The Laplacian of these functions in the
direction perpendicular to the edge is equal to the second deriva-
tive, and is shown in Fig. 5(c) and (d). These two cases may
be described analytically as follows.

Case 1: Given the step function

1, x<0
)= {—1, x>0 ®)
convolve s(x) with a Gaussian blurring function g(x).
h(x)=g *s. C))
Let s(x) =-2u(x) + 1 where
0, x<0
u(x)={ I, x>0.
Then
h(x)=1- ¥ I -AZ/202
x)=1 2»[00 PVers e dX )
W)= e 207 ©)
Therefore,

K'(x)<0 when x<0

h"(x)>0 when x>0. @)

Case 2: The step function for case 2 is - s(x),where s(x) and
u(x) are defined above

-2x

0¥ 27

K'(x) = ex120% ©)

Therefore,
K'(x)>0 when x<0

K'(x)<0 when x>0. (10)

At some later time ¢;, the entire second derivative curve
h"(x) will have shifted right or left, depending upon whether
the edge moves with the surface moving to the right or left.
Based upon the analysis above, in case 1, if the left surface
is occluding, the second derivative curve will be moving to the
right and the sign at the origin will become negative, while if
the right surface is occluding, the curve will be moving left and
the sign at the origin will be positive. In case 2, if the left sur-
face is occluding, the curve will be moving to the left and the
sign at the origin will be negative; while if the right surface is
occluding, the curve will be moving to the right and the sign
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Fig. 5. Smoothed magnitude of flow for (a) case 1 and (b) case 2. (¢)
and {d) Laplacian of the functions in (a) and (b). (e) and (f) Two
possible locations of the Laplacian curves after an interval of time.
The dashed curve indicates the location of the curve if the edge moves
with the surface to the right. The solid curve indicates the location of
the curve if the edge moves with the surface to the left.

at the origin will be positive. Note that in both cases, when
the left surface is the occluding surface, the sign at the origin
will become negative, and when the right surface is occluding,
the sign at the origin will become positive. This is illustrated
in Fig. 5(e) and (f). In the original, unrotated coordinate sys-
tem, this is equivalent to stating that at time ¢, the direction
normal to the edge for which the second directional derivative
of optical flow is positive, evaluated at the location of the edge
at ty, points toward the occluding surface. (The approach is
similar to that used in [9] to determine the direction of mo-
tion of an intensity contour.) This analysis may be extended
to the general case where the original step function has not been
normalized. The direction of the second derivative at 7, must
now, however, be evaluated at the point (xq, vo) + (¢; ~ #)f;-
(As £, is the average flow of the surfaces on either side of the
boundary, this point may be thought of as lying half-way be-
tween the two possible image locations of the boundary at
time #.)

In practice, difficulties may arise for very large differential
flows between the two surfaces. The second derivative function
h"(x) approaches zero away from the zero crossing. Noise sen-
sitivity of the classification technique is likely to increase when
the value is small. It is useful to determine a guideline for the
size of the Gaussian blurring kernel to ensure that the curve
will be observed near its extrema, where the sign is more likely
to be correct. The form of the function #2"(x) may be simplified
by substitution for analysis purposes. Let

b=—2— and ¢= 12)
oy A= Dy~
Then, in case 1,
) =)= cbe™?’ 13)
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is not rotating around an axis of symmetry, then (2) will, in
principle, correctly identify the occluding surface. Difficulties
arise in practice, however, because the algorithm given above
depends on surface flow in the neighborhood of the boundary,
not just at the edge. In the presence of rotation in depth, mis-
classifications are possible, particularly if no translation relative
to the background is occurring and/or the rotating object is
small, leading to rapidly changing flow values near the extremal
boundary.

Rotation also complicates inferences about relative depth
based on the analysis of occlusion boundaries. For translational
motion, the occluding surface on one side of a boundary is nec-
essarily in front of the occluded surface. Forrotationin depth,
the occluded and occluding surfaces are on the same side of
the boundary, and no definitive information is available about
the surface on the other side of the boundary. (Reference
[10] shows an example in which a nonrotating surface on
one side of a boundary is in front of a rotating surface on the
other side of the boundary.) One approach to determining the
actual relative depth involves first determining whether or not
rotation in depth is actually occurring. Such as analysis is be-
yond the scope of this paper (see [11]). Asan alternative, an
analysis of surface regions that are appearing or disappearing
due to dynamic occlusion gives information about the occluded
surfaces at a boundary [10]. The method described here gives
information about the occluding surface. By combining the
two approaches, self-occlusion is recognized by noting a bound-
ary where one side is marked as both occluding and occluded.

V. CONCLUSION

Motion-based boundary detection is sensitive only to depth
discontinuities and/or object boundaries. Thus, unlike inten-
sity-based edge detection, all detected edge points are of direct
significance to the interpretation of object shape. Onthe other
hand, significant edges will not be detected unless there is per-
ceived motion between the surfaces on either side. Motion-
based analysis offers another significant advantage. In most
cases, the side of a boundary corresponding to the occluding
surface can be identified. As we have shown, this is possible
for general motion, not just for a sensor moving through an
otherwise static environment. This determination is quite dif-
ficult using only static information, and has received only little
attention (e.g., [12]).

APPENDIX A

The following is an analysis of the appropriateness of using
zero crossings in the componentwise Laplacian of a flow field
to detect contours of maximal rate of change in the flow field.

Theorem: Let V be a twice continuously differentiable vec-
tor field, let NV be an open neighborhood containing the origin
such that 8V/dy is constant on N, let L be the intersection of
N and the y axis, and let u be a unit vector. Then |7V - u/|?
has an extremum in the x direction on L if and only if u,
(u-VV)- V2V has a zero crossing on L.

Justification: The magnitude of the directional derivative in
the u direction is

[VV - ul? = (V¥ u)® +(VVy - u)? (16)
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+2Uxuy [ X X + bd )’J
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The partial derivative of this quantity can be simplified as
follows:
] foV  o%V oV 9*V
_— V 2 :2 20 2. ] [__ . ]
ox |7V -ul x | dx  ox? 2ty oy ox?2
(20)
14 oV 9%V
=2uy | Uy o tuy, ?y"_J o 23]
oV
= 2ux(u . VV) —a—z (22)

since dV/9y is constant on N, For the same reason,3?V/dy? =
0 and 32V/dx? = V2V. Therefore, 8/dx ]VV . u]2 has a zero
crossing whenever u,(u - VV) - V*¥ does. But [VV -u[* has
an extremum in the x direction whenever 8/0x ]VV ‘ u[2 has
a Zero crossing. n

Whenever the Laplacian V2V has a zero crossing, so must
u {u - VV) - V2V, except when u,(u - VV)=0, which is un-
likely because real edges are places with steep gradients. Zero
crossings in the Laplacian will therefore almost always corre-
spond to extrema in the magnitude of the directional deriva-
tive, with respect to almost all directions. It is possible for the
magnitude of the directional derivative to have an extremum
without a zero in the Laplacian because the component at right
angles to the preferred direction defined by u - V¥ need not
be small. If there is no variation of the field parallel to the
edge, then the steepest directional derivative occurs in the direc-
tion normal to the edge; and if the variation parallel to the edge
is much less than that normal to the edge, as we expect for
most images, then the steepest directional derivative occurs in
a direction nearly normal to the edge. If we choose u in the x
direction, then u - VV will be parallel to 8V/dx, so that the
above theorem states the component of the Laplacian in the
direction parallel to the difference in the flow on both sides
of the boundary will have a zero crossing. The Laplacian can
fail to have a direction reversal at an edge only if the compo-
nent of the Laplacian at right angles to the flow difference is
not small, which occurs when the normal component of the
flow gradient at an edge is changing in direction more rapidly
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than it is changing in magnitude. Such situations do not appear
to be common in real optical flows, and can occur only when
the unfiltered flow is changing appreciably in a neighborhood
of the edge for at least one of the two surfaces. For the case
of a boundary between two surfaces with distinct uniform
flows on each surface, the smoothed Laplacian has a directional
zero crossing in all directions except along the boundary. In
that direction, the value of the smoothed Laplacian is zero.

The extremum can be either a maximum or a minimum. A
maximum is of course desired, and minima are discarded in
practice by requiring the slope of the zero crossing to be suffi-
ciently steep. While this is not a guaranteed test, it works in
almost all cases because of the Gaussian filtering applied to
the images before the Laplacian is calculated. Minima in the
gradient usually correspond to areas where the field is uniform,
and due to the tails on a Gaussian curve, gradients near the
minima tend to be small, with small values for derivatives of
all orders.

APPENDIX B

This Appendix contains the analysis showing that the limit
of surface flow is equal to boundary flow for the rotation of
smooth objects for orthographic projections. Any motion of a
rigid body can be described by giving the trajectory of an arbi-
trary point attached to the body and the instantaneous rotation
about some axis passing through that point. Define a set of
Cartesian axes (X, Y, Z) with the origin at the distinguished
point on the body and with the Z axis along the axis of rota-
tion, and let (7, 8, ¢) be spherical coordinates with respect to
these axes. Let the orientations of the axes (X, ¥, Z) be fixed
with respect to the axes (x, y,z) of the image plane coordinates,
so that the angular velocity of an arbitrary rotation is the same
in both coordinate systems. Let the surface of the body be
described by

r=R(0-¥(),¢) (23)

where ¥(0) =0, so that r =R(0, ¢) at time = 0. The param-
eter a =6 - Y(r) is the longitudinal angle of a point fixed to
the surface at =0, and points with constant values of o and
¢ rotate along with the surface. Since § =a+ Y(z), w=dy/dr
gives the angular velocity of the object about the Z axis.

At some particular instant of time, let G be a generating point
(rg, Og, ¢g) and n be the unit surface normal at G. Since G is a
generating point and orthographic projection is involved, n will
be paralle]l to the image plane. The normal component of the
flow for an arbitrary point p = (r, 8, ¢) fixed to the surface is
as follows:

x(P)=(QXp)-n
=WR@ - ¢, ¢)sind[-ny sinf +ny cos ¢} 24)

where §) is the vector angular velocity of magnitude «w and
oriented along the Z axis. The orientation of €2 and n may be
changing, but the analysis below is based on the instantaneous
values of both quantities at some particular point in time.

The x axis in the image plane is oriented parallel to the con-
stant unit vector #. Since we are working with an orthographic
projection, the x coordinate of the point p is as follows:

x=p -n=R6-V,¢)[p0,¢) n] (25)
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[p(8,¢) -nl =nysin ¢gcosh +ny sinpsin 6 +nz cos ¢
(26)

where p is the unit vector parallel to p. Since the generating
point is on the extremal boundary of the object, x must have
an extremum at the generating point for variations in both 8
and ¢. This leads to

ax  ORO-V,9) _
2 0= 22 150, ) n)

“RO-4,6) = [p(0,0) 1] e7)
ax AR -V,0) .
a—¢-0-—————a¢ [p(6,9) -n]

+RO - 0,0) 5 [p0,0) 7] (8)

for 8 =0,, ¢ = ¢,. Let x, denote the x coordinate of the gen-
erating point. From (25), the flow of the boundary is as

follows:
6= eg, ¢= ¢g}

T,
fo= e [;ld;R(e “0.0) [p(0.9) n)

dt
(29)
_3R(E-.0) [ 2]
L T
3 dog
RS [p(8,¢)n] =
OR( - ¥,9) - deg
s CUDRO B
3 dog
+R 56 [p(©,¢) nl] it (30)
evaluated at § = 0,, ¢ = ¢g. From (27),(28), and (26) we get
__dy BR@-¥,9) _
fo=m T ((0,6) )
L :
= SR 5 [p0,9) 1] 6D
=WR(Og ~ ¥, ¢g) sin p[-ny sin 0y + ny cos 0] 32)
= 1x(0,0) (33)

using (24) and dy/dt = w. This establishes (2) for arbitrary
orientations of the axis of rotation with respect to the image
plane, assuming an orthographic projection.
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