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Combining Motion and Contrast for Segmentation

WILLIAM B. THOMPSON, MEMBER, IEEE

Abstract—A method is presented for partitioning 2 scene into regions
corresponding to surfaces with distinct velocities. Both motion and
contrast information are incorporated into the segmentation process.
Velocity estimates for each point in a scene are obtained using a local,
nonmatching technique not dependent on any prior boundary determi-
nation. The actual segmentation is accomplished using a region merging
procedure which combines regions based on similarities in both bright-
ness and motion. The method is effective in determining object bound-
aries not easily found using analysis applied only to a single image
frame.

Index Terms—Motion, region merger, scene analysis, segmentation,
velocity estimation.

I. INTRODUCTION

OTION is a crucial property of many visual environ-
ments. Knowledge of object velocities and trajectories
is clearly important for scene interpretation. Motion is also
useful as a cue for scene segmentation. Velocity information
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may be used to link adjacent but visually dissimilar surfaces or
to divide surfaces not easily separable by static criteria alone.
Often, ambiguous object boundaries in a single image frame
are easily resolved when dynamic effects are evaluated based
on a sequence of frames. This paper describes a technique for
combining both motion and brightness information into a sin-
gle segmentation procedure which determines the boundaries
of moving objects.

The most straightforward approach to locating moving sur-
faces is to compare a sequence of accurately registered image
frames searching for areas of change. If velocity estimation is
not required, simple pixel-at-a-time subtractive techniques ap-
plied to two frames may be appropriate [1]. In order to de-
termine speed and direction of moving objects, differences
must be evaluated over longer sequences [2]. By using both
difference measures and gray scale information, segmentation
of some scenes is possible using much shorter image sequences
{31. .

A second approach involves tracking identifiable image struc-
tures from frame to frame [4]-[6]. These systems are capable
of accurately estimating surface translation, but usually only
for a relatively sparse sampling of points. Potter has described
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a similar system designed to estimate velocity at every point in
a scene and thus allow for segmentation based on motion [7].
At each point in one frame, a skeletal template is defined. This
template is then searched for in a second frame. The size of
the template is adaptive, depending on the nearest prominent
gray scale discontinuity in each of four directions. This adapt-
ability allows for effective velocity estimates even in the center
of large, smooth surfaces. A potential limitation of the ap-
proach is that no use is made of the gray scale structure of an
image except for the definition of a discontinuity threshold.
Thus, difficulties may arise when templates cannot be accu-
rately determined using a simple thresholding criteria. The
technique has not yet been demonstrated on complex, realistic
scenes.

Much of the work in dynamic scene analysis depends on the
availability of segmented image frames. If accurate information
on the location of visible boundary elements is available, so-
phisticated techniques may be used to track objects and resolve
ambiguities due to occlusion [8], [9]. If a static interpreta-
tion is available, higher order cognitive analysis can actually
yield English-like descriptions of the motion [10]. Because
these techniques depend on extensive analysis of each frame,
they cannot be used to assist in the original segmentation task.
(They may, however, provide information useful for the pro-
cessing of subsequent frames.)

The next sections describe a method for using information
about translational surface motion to aid in the determination
of moving object boundaries. Velocity estimates are made for
each point in a scene using a local, nonsearch technique re-
quiring no prior boundary detection. These estimates are then
combined with information about contrast boundaries to pro-
duce a partitioning of the scene into regions with distinct ve-
locities. By combining contrast and velocity effects, object
boundaries may be found using only two frames of an image
sequence. Results demonstrate that dynamic analysis may aid
significantly in the segmentation of relatively compleX scenes.

II. LocAL AREA VELOCITY ESTIMATION

To use motion as a basis for segmentation, velocities must be
determined in a manner not dependent on extensive static anal-
ysis of connected boundaries. In this section, an efficient pro-
cedure is described for implementing the nonmatching velocity
estimation technique proposed in [11] and based on the earlier
work of Limb and Murphy [12] and Cafforio and Rocca [13].
The technique is shown to be effective for translational mo-
tion of rigid objects (no significant rotations, scale changes, or
deformations). Both the dominant velocities in the scene and
the velocity of the underlying surface at each point are com-
puted. The method operates on local properties rather than
by identifying a feature in one frame and then searching for
the corresponding feature in another frame. Velocity informa-
tion is developed by relating the time variation of image inten-
sity at a point due to motion and the spatial variation of in-
tensity over object surfaces. This relation does not uniquely
determine velocity, but it does constrain the possible speeds
and directions that a moving surface may have. If, however,
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a sufficient number of image points correspond to a surface
with uniform velocity, the true velocity vector can be deter-
mined using clustering techniques.

Spatial variability is commonly represented by a gradient
field G. An incremental change in intensity, di, due to a spa-
tial shift, ds, of the underlying surfaces giving rise to the inten-
sity distribution satisfies the relationship

di=-G - ds.

(The minus sign is introduced because it is the surface and not
the observation point that is moving.) By relating translational
differences to velocity and time, at a single image point we
have

vglt—=—G 0=-(Gyv, +Guy)

where G, and v, are the x-axis components of the gradient
and velocity vectors and Gy, and v, are the y-axis components.
difdt and the gradient values may be estimated directly from
an image sequence. Thus, v, and vy, are constrained by a lin-
ear relationship: at each point, knowing the values of di/dt and
G allows the specification of a family of possible values of .
A clustering approach [11] may be used to determine the
dominant velocities in the scene and to classify each image
point based on estimated speed and direction.

Significant efficiencies are possible with this technique. Un-
like search and matching approaches, complexity for a single
moving surface increases linearly with maximum possible
speed, rather than as the square of the maximum speed. Even
when multiple moving objects require several passes through
the image pairs, the process is more efficient than search and
matching. The use of a linear constraint relationship for pos-
sible velocities allows implementation of the clustering with a
small number of purely fixed-point arithmetic operations. In
addition, the algorithm may be easily decomposed into pipe-
lined and/or parallel steps. The primary limitation of the tech-
nique is that it cannot directly analyze gradually varying dis-
parity due to rotation or motion along the optical axis.

III. MOTION AND SEGMENTATION

Moving object segmentation procedures should, as much as
possible, incorporate information about both static and dy-
namic features of a scene. Because the local area velocity esti-
mation technique requires no prior image partitioning, the re-
sulting velocity map may be used as a primary source of data
for motion-based segmentation. Discontinuities in image bright-
ness are obviously also important. Not only do they give static
cues to the existence of surface boundaries, but they provide
contextual information important to the interpretation of the
velocity maps. Velocity maps obtained from local analysis will
have large areas where no effective determination of velocity
can be made. Neither matching nor local area estimation tech-
niques can measure the motion of surfaces with near uniform
intensity. Local velocity information is most readily available
near surface edges where significant variations in intensity are
present. Thus, a relationship exists between the location of
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surface boundaries {determined by static analysis) and the re-
liability and availability of motion map information (a product
of dynamic scene analysis).

We suggest a region merger approach to integrating these two
sources of segmentation information [14]. Region analysis
guarantees closed boundaries while at the same time minimiz-
ing the effects of local noise. In most region-based systems,
an image is first partitioned into a large number of primitive
segments. An iterative process is then applied which merges
smaller segments into larger and larger regions. A pair of adja-
cent regions is merged if selected image properties along the
boundaries of the two candidate regions satisfy certain simi-
larity constraints. Eventually, region boundaries approximate
the outlines of surfaces of near uniform intensity.

This process easily extends to dynamic scenes. Region
boundaries correspond to portions of the velocity map for
which values are likely to be available and accurate. We can
classify a region based on the nature and distribution of local
velocity values along its perimeter. This classification may sug-
gest merging visually dissimilar regions if they are adjacent and
have the same overall velocity. At the same time, merges of
similar regions may be prevented if those regions correspond
to surfaces with distinctly different velocities. (See [15] for
another example of using region classification for purposes of
segmentation.)

A moving surface should show a single, dominant velocity
around its border, except perhaps where the border is parallel
to the direction of motion. A region in which more than one
dominant velocity is present, or where a velocity is associated
with a portion of its boundary but is not present in other parts
of the boundary with a similar orientation, cannot be confi-
dently labeled with a single velocity. These properties may be
used to classify regions based on motion. First, the velocity
map values along the region perimeter are tabulated, counting
only those points at which the direction of estimated motion
differs significantly from the direction of the region boundary
at the point. In most cases, the region is assigned the most fre-
quently occurring velocity along its perimeter. Some regions,
however, cannot be accurately classified. Such regions com-
monly are either too small to be effectively analyzed, stationary,
near occlusion boundaries, or at the center of large uniform
moving surfaces. These regions are assigned an “undefined”
velocity labeling if at least one of three acceptance criteria
is not met. 1) The total count of dominant velocity values
should exceed a specified standard to ensure that there is a
sufficient basis for classification. 2) Larger regions require
more velocity points to correctly evaluate motion. Conse-
quently, the count of dominant velocity points should repre-
sent a significant portion of the total boundary points not par-
allel to the dominant velocity. 3) If two or more different
velocities all have relatively large counts for a particular region,
no single velocity assignment is possible.

Region merging is carried out in a manner similar to the sys-
tem described by Brice and Fennema [14]. Two consecutive
frames of an image sequence are used to compute velocity map
values while one frame of the sequence is chosen to provide
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static contrast information. The single frame is partitioned
into elementary 4-connected regions having identical gray
scale and velocity map values. Pairs of adjacent regions likely
to correspond to the same surface are then combined. Adja-
cent regions with the same (nonzero) velocities are always
merged. Visually similar adjacent regions are combined only
if there is little likelihood of them having different velocities.
Often, the motion of regions in the interior of larger surfaces
cannot be accurately estimated. Such regions are consolidated
until velocity labeling is possible.

Region merging takes place in two phases. The first phase is
designed to deal with the smaller regions resulting from the ini-
tial partition while the second takes advantage of the increased
accuracy of velocity labeling possible with larger regions.
Merger decisions are based both on measures of local contrast
along the boundary separating two regions and on velocity
iabelings dependent on velocity map values along the complete
perimeter of each region. In the first phase, visual similarity
between a pair of adjacent regions is measured in a manner
comparable to the “phagocyte heuristic” used by Brice and
Fennema: similarity is proportional to the ratio of the length
of the low contrast portion of the common boundary to the
length of the perimeter of the smaller of the two regions. If a
region has a nonzero velocity labeling, then it is merged with
its most similar neighbor having the same label. If the region is
unlabeled or has no neighbors with the same label, it is merged
with its most similar neighbor if the degree of similarity ex-
ceeds a specified threshold. Any regions resulting from a
merger operation are classified and assigned the appropriate
velocity label. Regions are considered as candidates for merger
in order of increasing perimeter until no further mergers are
possible.

In the second phase, regions are again considered in order of
increasing perimeter and are merged based ona contrast criteria
modified by velocity labeling. To determine the boundaries of
only those objects which are moving, the termination criteria
are designed to depend purely on velocity classification. (Iden-
tifying boundaries of stationary objects is considerably more
difficult.) Regions may only be merged if they have the same
velocity label, if they are both unlabeled, or if at least one of
the regions is very small. If more than one neighbor of a
merger candidate satisfies one of these conditions, then the
neighbor having the lowest average contrast along the common
boundary is chosen. The process continues until no further
mergers are possible.

This process effectively combines gray scale and motion in-
formation into the region merger process. Using both intensity
and velocity for the initial partition aids in identifying low
contrast portions of boundaries not visibie in the input image
but strong enough to indicate a moving surface. In the first
phase, adjacent regions with the same (nonzero) velocity label
are always merged. Unlabeled regions and regions with differ-
ent labels can be merged, but only if they satisfy the similarity
condition. This is reasonable, particularty for small regions, as
the initial velocity assignments may not always be accurate.
By the second phase, velocity estimates are sufficiently well
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determined that mergers between regions with differing labels
are prohibited. A real strength of the approach comes from its
ability to consolidate unlabeled regions until they include a
sufficient number of velocity map values to allow for accurate
classification.

The process is relatively insensitive to the settings of the var-
ious parameters with the exception of the minimum number of
velocity map values needed for region labeling. This threshold
must be balanced to the accuracy of the local area velocity es-
timate. If chosen too low, early merges will be based primarily
on velocity; if too large, early merges will ignore velocity. A
second problem arises from the use of 4-connected regions. If
diagonal motion is possible, boundary orientation must be esti-
mated using more than just the direction of the boundary ele-
ment at the point in question. Finally, the process is obviously
incapable of producing an effective segmentation if surface
boundaries are of such low contrast that they are not detect-
able using either static or dynamic analysis.

IV. REsuLts

The scene segmentation technique described above has been
successfully applied to a variety of image sequences. Three ex-
amples are presented in this paper involving the motion of
from one to three distinct objects. The examples are chosen
to demonstrate the effectiveness of the procedure in commonly
occurring scene types not easily partitioned with a purely static
analysis. Both textured and nearly uniform brightness surfaces
are present. Many object boundaries are relatively indistinct.
Prominent, high contrast edges sometimes divide surfaces of a
single object. Despite these potential difficulties, the method
produces a reasonable estimate of moving object boundaries in
all the examples.

Figs. 1, 2, and 3 show the initial image pairs, the individual
pixel velocity estimates determined from local analysis, and the
final region boundaries produced by the segmentation process.
Because the local area velocity analysis depends on intensity
differences between frames, photometric accuracy (or at least
repeatability) is important. As a result, all original image pairs
were normalized to have the same mean and variance in order
to minimize photographic distortions of intensity. Electronic
sensing of an image (vidicon, image dissector, etc.) would re-
move the need for this step (see [11]). The original scenes
were digitized as 8-bit monochrome images of varying size,
averaging about 100X 100 pixels. Local velocity estimates
were calculated for each point in the original pair. The result-
ing velocity map and the first frame of the original were both
subsampled at every other point of every other line to provide
a reduced resolution input for the region merger process. Note
that using only the first frame for contrast information intro-
duces a bias into the system. If the frame rate is sufficiently
rapid, a better approach might be to employ a three frame se-
quence with the first and last used to compute local motion
and the middle frame used for determining contrast. Finally,
the subsampled original was requantized to 4 bits to limit the
regions resulting from the initial partitien to a manageable
number.

Fig. 1(a) shows a real outdoor scene in which a single object
is moving to the left with a displacement of 3 pixels between
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frames. Local area analysis correctly determined the velocity
and produced the velocity map shown in Fig. 1(b). (Light areas
indicate points with a velocity of 3 to the left. No other non-
zero velocities were found.) Note that the velocity map itself
is not sufficient for segmentation purposes as no velocity as-
signment is made at the center of uniform brightness, moving
surfaces. Fig. 1(c) shows the results of the region merging
process overlayed back onto the first frame of the original se-
quence. While not perfect, the outline is a reasonable approxi-
mation of the boundary of the truck. The protuberance at the
front of the truck is a spare tire. Although indistinct in the
original image, it is correctly identified as part of the moving
object.

Fig. 2(a) shows two objects moving toward one another,
each at about 3 pixels per frame. The example was chosen
because it characterized a situation in which objects are not
clearly separated from their backgrounds and the objects them-
selves are composed of a number of visually dissimilar surfaces.
Object velocities were again correctly determined. Fig. 2(b)
and (c) show the local area velocity estimation and the final
segmentation. (In Figs. 2(b) and 3(b), each velocity is assigned
a different gray scale value.) A number of errors occur, par-
ticularly in the left object. The boundaries which are missed,
however, are those which are neither apparent as contrast edges
in the original nor as motion discontinuities in the velocity
map. A more accurate analysis would require either higher
level knowledge, observations over more frames, or a presump-
tion that nonadjacent regions with the same velocity should be
linked.

Fig. 3 shows three objects moving in different directions to-
wards the center of the scene. The upper left object moves 1.5
pixels between frames, the upper right object moves 3 pixels,
and the lower object moves 2 pixels. Direction was correctly
determined with speeds estimated at 2, 3, and 3 pixels per
frame, respectively. In this example, the objects are somewhat
better differentiated from their background. On the other
hand, each of the objects is made up of several visually distinct
surfaces. Fig. 3(b) and (c) show the local velocity estimates
and segmentation. As can be seen, all moving objects are lo-
cated with reasonable accuracy. In particular, the method is
effective in linking adjacent regions with the same velocity but
separated by very high contrast gray scale edges. To demon-
strate the difficulty of segmenting this image pair using just dif-
ferencing techniques, Fig. 4(a) shows those points in Fig. 3(a)
which differ by at least the AT threshold used for local area
velocity estimation. Fig. 4(b) shows a similar difference pic-
ture except that both input frames were first smoothed by the
same blurring function as used for velocity mapping. While
these difference pictures localize portions of the moving sur-
faces, they are not sufficient by themselves as the basis for
segmentation.

V. CONCLUSIONS

The estimation of boundaries of moving objects in a scene
sequence is an important part of the analysis of time-varying
imagery. Often, these boundaries are difficult to locate in a
single frame. Thus, boundary detection should not depend on
extensive static analysis. The examples above demonstrate an
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Fig. 1. (a) Single moving object. (b) Velocity map. (c) Segmentation.

Fig. 2. (a) Two moving objects (toy problem). (b) Velocity map. (c) Segméritation.

effective technique for developing an initial segmentation of a by a technique which relates spatial gradient to intensity change
dynamic scene by incorporating both static and dynamic infor- over time. The procedure is computationally efficient and
mation into the segmentation process. provides an accurate estimation of the translational motion in

Velocity information is extracted prior to any segmentation a scene, evenl When several moving objects with different ve-
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©
Fig. 3. (a) Three moving objects. (b) Velocity map. (c) Segmentation.

(b)

Fig. 4. (a) Above threshold differences in Fig. 3(a). (b) Differences in
Fig. 3(a) with preblurring.

locities are present. In addition, a velocity estimate for each  for segmentation. Such analysis cannot effectively deal with
local area in the scene is produced. Because these estimates do  the motion of uniform brightness surfaces or the translation of
not depend on any boundary analysis, they may be used asan  surface boundaries oriented parallel to the direction of motion.
independent source of information for scene segmentation. However, by combining velocity information with more tradi-

Local area velocity estimation alone is not a sufficient basis  tional contrast based boundary cues, effective segmentation of
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moving objects is possible. In the system described above, mo-
tion analysis is incorporated into a region merging procedure.
A region-based approach is particularly appropriate because
local velocity information is in general most reliably available
at the perimeter of regions corresponding to surface bound-
aries. First, both local velocity estimates and brightness are
used to establish an initial partition. The simultaneous use of
velocity and gray scale decreases the possibilities of a low con-
trast boundary being missed. Next, regions are merged based
on a combined brightness and motion criteria. The final result
is a set of regions corresponding to connected areas of the
scene with common velocities.

Limitations of the approach include the computational inef-
ficiencies of region merging and the restriction to translational
motion, although rotations may be handled by a more sophis-
ticated (but likely less efficient) local area velocity estimator.
Advantages include: straightforward incorporation of motion
information into an existing, well understood segmentation
procedure; need for only two consecutive frames of an image
sequence; no need for prior segmentation; and ability to deal
with images which are difficult to segment by traditional, static
analysis. Most importantly, the technique described in this
paper demonstrates that motion and contrast information may
be effectively combined at the lowest levels of scene analysis.
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