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Abstract 

For an autonomous robot navigating in an unstruc- 
tured outdoor environment, staying close to  a path is 
crucial t o  successfully reaching i ts  goal. Although the 
degree of accuracy with which it estimates its own loca- 
tion affects i t s  ability to  s lay on the path, accuracy in 
estimate of lateral distance f rom the path is f a r  more 
important f o r  successful navigation than accuracy in 
estimate of position along the path. Utilizing methods 
based only on relative angular measurements between 
landmarks in the environment, we draw f rom tech- 
niques used in statistical pattern recognition to  show 
how landmarks can be chosen f o r  localization which 
will not only give good estimate of location in spite 
of the measurement error, but will also keep the robot 
on the path. W e  demonstrate how identical landmark 
configurations can produce very different results in lo- 
calizing to  a path and show how simple heuristics can 
be used to  choose the best configuration f o r  path local- 
izaiion. 

1 Introduction 
A robot navigating with the aid of a map must be 

able to  estimate its own position as accurately as pos- 
sible. We have previously shown [lo, 111 how heuris- 
tics can be used to  choose landmarks for localization 
which will reduce the error in location estimate. How- 
ever, it is just as important, if not more so, to localize 
to  a path. An autonomous robot following a path 
could err in estimating where it is on the path and 
still successfully reach its goal, but a poor estimate 
of lateral distance from that path might have severe 
consequences. This is particularly true in an outdoor, 
unstructured environment where straying from a path 
could easily lead to  vehicle destruction. 

Dependable localization methods in this type of en- 
vironment are few. Actual distances to landmarks are 
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often impossible to estimate. Absolute bearings, accu- 
rately registered to a map, are frequently unavailable. 
For these reasons, we are addressing this “path” local- 
ization problem using methods based only on relative 
angular measurements between landmarks. 

It is known [5, 6, 8, 91 that, when landmarks have 
been identified and matched to  a map and landmark 
order in the view is known, accurate measurement of 
visual angle (i.e., the angle formed by the rays from 
the viewpoint to a pair of point landmarks) using three 
point landmarks in the environment is sufficient to  de- 
termine the viewpoint unless all landmarks plus the 
viewpoint lie on a single circle. When an error in 
measurement is introduced, the estimated viewpoint 
is constrained to an area on the terrain surrounding 
the true viewpoint. We call this area the area of un- 
certainty. In this case, [lo, 111 the error in estimate 
of location is significantly affected by the landmarks 
chosen for localization. 

We now draw from techniques used in statistical 
pattern recognition to show how heuristics can be used 
to choose landmark configurations which will produce 
good path localization. 
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2 Statistical Projection Pursuit 
A popular method of analyzing multivariate data is 

to find a low-dimensional projection which will reveal 
characteristics which are not apparent in the higher 
dimension. This process is aptly termed “projection 
pursuit” because the direction in which the projection 
is to be made must be determined [l, 2, 3, 41. For 
many high dimensional data clouds, the majority of 
the lower dimensional projections are approximately 
Gaussian. In this case, the interesting information in 
a pattern recognition problem is obtained by project- 
ing the data onto an axis so that a single Gaussian 
distribution is not produced. However, the opposite 
can also be true. Diaconis and Freedman [l] showed 
that there are classes of data sets where the interesting 
projections are the ones which are close to  Gaussian. 
It is this type of projection which we will pursue. 
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Figure 1: The dashed lines show computed paths. 
The solid lines show actual paths. The resulting lo- 
cations are shown by empty circles. If the goal is to 
stay as close to the path as possible, Estimate 2 is 
preferable to  Estimate 1. 

The error in location estimate can be divided into 
two components: error in lateral distance from the 
path and error in distance along the path. As shown in 
Figure 1, one estimate of location can be closer to the 
true location than another but have greater error in 
lateral distance from the path. Distance and direction 
of movement are based on that estimate. The naviga- 
tor will remain closer to the path when the error in es- 
timate of lateral distance from the path is minimal. To 
find good configurations for path localization, the two- 
dimensional area of uncertainty can be projected into 
one-dimensional space. Knowledge of one-dimensional 
distribution is then used to chose a triple of landmarks 
which will provide good path localization. Whereas in 
classical projection pursuit, the two-dimensional data 
cloud is given and an appropriate one-dimensional pro- 
jection must be found, this “inverse” problem can be 
described as finding a configuration so that the result- 
ing two-dimensional data cloud produces the desired 
projection onto a given axis. 

Figure 2: A two-dimensional area of uncertainty. 
The actual viewpoint is at the large black point. 

3 Pursuing Projections 
Consider the area of uncertainty shown in Figure 2. 

Assuming a uniform distribution of error in the vi- 
sual angle measure, each small point represents 1 of 
10,000 iterations. The true viewpoint is at the large 
black point. Although there is no central tendency 
in two-dimensional distribution, the distribution of 
points along the x-axis as shown in the graph on the 
left of Figure 3 shows a definite central tendency. 

However, if the robot is heading at a 45’ angle 
counter-clockwise from the positive x-axis, the distri- 
bution of its location, as shown in the graph on the 
right of Figure 3, is close to uniform across the path. 
Thus, whether or not there is any central tendency in 
a one-dimensional sense depends on the direction of 
the one-dimensional slice. 
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Figure 3: Distribution of points along x-axis and 
along an axis rotated 45’ counterclockwise from the 
x-axis. 
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Figure 4: A navigator located a t  the white dot and 
moving to the black square will have better path lo- 
calization to path P1 than to path P2. 

A second example in Figure 4 shows an elongated 
area of uncertainty. The landmarks used for local- 
ization are a t  A, B, and C. Error bound was &lo% 
of visual angle measure. The actual viewpoint is at 
the white dot surrounded by the area of uncertainty. 
When the area is projected onto an axis perpendicular 
to path P1, a much smaller variance results than when 
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it is projected onto an axis perpendicular to path P2. 
Although the actual error distribution is the same, a 
navigator would have better localization to path P1 
than to  path P2. 

Our goal: to find an area of uncertainty which 
has a Gaussian distribution with small variance when 
projected onto an axis perpendicular to path direction. 

There are two geometric properties which must be 
considered when pursuing projections: 

The smaller angle between the path and the axis 
of the orientation region, “axis” being the line 
passing through landmark B and the midpoint 
of line segment AC. This angle can be measured 
exactly with knowledge of landmark configuration 
and path location. 

The ratio W/L where L = the diameter’ of the 
area of uncertainty in direction of landmark B 
and W = the diameter of the area of uncertainty 
perpendicular to direction of landmark B. This 
ratio gives a measure of the “fatness” of the area 
of uncertainty. An area such as that in Figure 4 is 
“thin”. In most cases, the ratio W/L can be esti- 
mated with knowledge of landmark configuration, 
path location and orientation region in which the 
viewpoint lies. 

The properties are not independent. The goodness of 
a particular configuration in terms of localization to 
path depends on both. 

B 
e 

c f l  e 

Figure 5: Configurations used to show how orienta- 
tion to path affects path localization. Landmarks are 
at A, B and C. Viewpoint is at the white dot. Orien- 
tations for the left configuration are shown in Figure 6 
and for the right configuration in Figure 7. 

3.1 Effect of path-axis angle 
To show how the angle between the path and axis 

of the orientation region affects path localization, two 
sets of simulations were run, the first using the config- 
uration on the left and the second using the configura- 
tion on the right of Figure 5. In each set of simulations, 

“Diameter” is defined as length of the longest line segment 
joining two points on the boundary of the area of uncertainty 
in a specified direction. 

trials of 1000 runs each were done. Visual angles to all 
configurations were the same. Location was estimated 
and a move made toward the goal. 

COUfLJ. 1 
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Figure 6: Center landmark was 225 linear units and 
line joining outer landmarks was 250 linear units from 
the actual viewpoint for all three configurations. An- 
gle from the viewpoint to all outer landmark pairs was 
43.6’. As shown in Table 1, path localization is best 
for Configuration 1. 

I Config. I Path/Axis I Error I MeanDist. I MeanDist. I 

Table 1: Results of simulated trials using the three 
configurations shown in Figure 6. Distances are given 
in linear units. 

The only parameter which varied was the angular 
relationship of the configuration to path direction. A 
uniform error of lo%, 20% and 30% of visual angle 
measure was introduced using an implementation of 
the Wichmann-Hill Algorithm [12]. Throughout this 
analysis, we have assumed a uniform error distribu- 
tion in visual angle measure. By assuming a large er- 
ror, uniformly distributed, whatever error does occur 
is likely to be a subset of that which was assumed. The 
decision to use a multiplicative rather than an addi- 
tive error bound was based on the fact that, although 
errors due to factors such as quantization are additive, 
those due to lens distortion and camera movement are 
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multiplicative. The latter will in most cases dominate, 
particularly for large visual angles. The results for the 
first set of simulations are shown in Table 1. The posi- 
tions of the configurations are shown in Figure 6. Al- 
though, as expected, mean distance to goal does not 
differ as the configuration is rotated, Configuration 1 
provides better path localization than Configuration 
3. Results for the second set of simulations are shown 
in Table 2. Configuration positions are shown in Fig- 
ure 7. In this case, Configuration 3 provides better 
path localization than does Configuration 1. 

Figure 7: Center landmark was 200 linear units and 
line joining outer landmarks was 300 linear units from 
the actual viewpoint for all three configurations. An- 
gle from the viewpoint to all outer landmark pairs was 
36.6’. As shown in Table 2, path localization is best 
for Configuration 3. 

Confix. I Path/Axis I Error I Mean Dist. I Mean Dist. I - I Angle I in Angle I to Goal 1 to Path 
1 I oo I 10% I 13.62 I 10.89 

Table 2: Results of simulated trials using the three 
configurations shown in Figure 7. Distances are given 
in linear units. 

3.2 Effect of W/L ratio 
Changing the angle between path and axis of the 

orientation region changes path localization but how it 
is changed depends on the shape of the area of uncer- 
tainty, which can be estimated by the ratio W/L. In 
most cases, an estimate of this ratio can be obtained 
in the following way: for any landmark triple A, B and 
C,  the circle through A, B and the viewpoint V inter- 
sects the circle through B, C and V a t  points B and 
V. It is well known [7] that when two circles intersect, 
there is only one angle of intersection, the same at 
both intersection points. Thus, the angle at V equals 
the angle at B. Levitt and Lawton [6] called the lines 
joining pairs of landmarks landmark pair boundaries 
or LPB’s. We will use the LPB’s joining AB and BC 
(and intersecting at B) to put a bound on the angle of 
intersection of the circles passing through A, B and V 
and B, C and V. 

If landmark B lies closer to the viewpoint than 
does the line segment joining landmarks A and C,  as 
shown in Figure 8a, the angle of intersection of the cir- 
cles, equal to the angle of intersection of the tangents 
(dashed lines) at that point, cannot be larger than 
the angle of intersection of the LPB’s. This is due to 
the fact that the limits of the slopes of the chords AB 
and BC as A and C approach B equal the slopes of 
the tangents at B. In this case, which can easily be 
determined when orientation region is known, an up- 
per bound is placed on that angle. Thus, the angle 
of intersection of the circles at V, which is unknown, 
is bounded above by the angle of intersection of the 
LPB’s, which is known. 

a .  b. \ 

Figure 8: In a., the angle Q of intersection of the 
circles cannot be greater than the angle of intersection 
of the LPB’s. In b., the angle @ of intersection of the 
circles cannot be less than the angle of intersection of 
the LPB’s. 

If landmark B lies further from the viewpoint than 
does the line segment joining landmarks A and C,  A 
and C can lie on the inner circular arcs as shown in 
Figure 8b, but they could also lie on the outer circular 
arcs, as do A‘ and C’ in Figure 8b. When they lie on 
the inner circular arcs, the angle of intersection of the 
circles cannot be less than the angle of intersection 
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of the LPB’s. In this case, a lower bound is placed 
on that angle. If they lie on the outer circular arcs, 
the angle of intersection of the LPB’s cannot be used 
as a bound on the angle of intersection of the circles. 
The tangents are not limits of the chords because the 
chords are on one circle and the tangents are on the 
other. 

To determine if A and C lie on the inner circular 
arcs, resulting in a lower bound for the angle of inter- 
section of the circles, consider a circle passing through 
the three landmark points, as shown in Figure 9. The 
measure of the inscribed angle y can be easily com- 
puted from landmark positions. For any viewpoint 
inside the circle, such as VI in the figure, the visual 
angle to landmarks A and C is greater than y. For 
any viewpoint outside the circle, such as V2 in the fig- 
ure, the visual angle to A and C is less than 7 .  If the 
viewpoint was on the circle, the configuration would 
be single circle (i.e., all landmarks and viewpoint on 
one circle). We are assuming, as will be shown in 
Section 4, that anything close to a single circle config- 
uration has been eliminated as too error prone to use. 
It follows that the estimate of the visual angle to A 
and C will either be significantly less than or signif- 
icantly greater than y. Once the viewpoint location 
in relation to the circle is determined, the inner-outer 
circular arc question is also answered. As shown in 
Figure 9, a circle through A, B and VI is smaller than 
the circle through A, B and C, with the result that C 
is then on the outer circular arc. A circle through A, 
B and V2 is larger than the circle through A, B and 
C, with the result that C is then on the inner circular 
arc. The same argument holds for the circle through 
B, C and either vi. 

v2 

Figure 9: Visual angle to A and C is larger than y 
at VI and smaller than y at V2. 

The angle of intersection of the circles at V af- 
fects the ratio W/L because the area of uncertainty 
is formed by intersecting thickened rings surrounding 
the circles, the thickness of the rings determined by 

the amount of the error [9]. As shown in Figure 10, 
the ratio W/L is proportional to the angle of intersec- 
tion of the circles. Landmarks are a t  A, B and C. The 
area of uncertainty surrounds the actual viewpoint V. 
If the angle of intersection of the circles is small, the 
area of uncertainty will be “thin”. If the angle is large, 
the area will be “fat”. Thus, the limits imposed by the 
LPB’s provide a heuristic for estimating the shape of 
the area of uncertainty. A small upper bound pro- 
duces a small angle of intersection of the circles which, 
in turn, produces a “thin” area of uncertainty. 

Figure 10: The angle of intersection of the circles 
affects the shape of the area of uncertainty. 

To summarize, we can determine, using landmark 
configuration alone, whether or not the LPB’s provide 
a bound for the angle of intersection of the circles. 
When they provide an upper bound, the more acute 
the angle of intersection of the LPB’s, the smaller the 
ratio W/L will be, providing good path localization 
for a path heading toward landmark B. When they 
provide a lower bound, the more obtuse the angle of 
intersection of the LPB’s, the larger the ratio W/L 
will be, providing good path localization for a path 
heading perpendicular to landmark B. This informa- 
tion will be used to choose landmark configurations 
which will give good path localization. 

4 Choosing good configurations 
The function given below (and described in detail in 

[ll]) was first used to rank configurations for general 
goodness, based on the size of the area of uncertainty. 
This function approaches zero as the configuration ap- 
proaches single circle, the one case when the view- 
point cannot be uniquely determined. The smaller the 
area of uncertainty, the larger the function value. In 
Figure 11, let A = ( A z , A y , A z ) ,  B = ( B z , B y , B z ) ,  
C = (Cz, Cy, Cr) ,  V = ( V z ,  Vy, V z )  be the projec- 
tions of the landmark points and Vo on a horizontal 
plane. Let I be point of intersection of the line through 
V and B with the circle through A,  C ,  and V ;  L be 
point of intersection of the line through A and C with 
the line through V and B;  and d ( p ,  q )  be distance be- 
tween any two points p and q .  
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If an upper bound exists: 

1 1 1 p =  k * ( -  - - 
1 - *  f+ 

If a lower bound exists: 

2.0 * Q * p 
n2 

p = k *  

where Q is the angle between landmarks A and C with 
vertex B and p is the computed angle between the 
axis of the orientation region and the path. This fac- 
tor ranges from 0 to 1, with 0 being poor for path 
localization and 1 being good. The constant k should 
be set to a weighting factor based on how important 
path localization is. If path localization is not desired, 
k = 0. 

Figure 11: Simple geometric relations can be used to 
rank landmark configurations. 

Then: 

where 

.- * if d(V, B) z w, 4 
i f d ( V , L )  5 d(V,B) < d(V,Z) 
if d(  V, B) < d( V, L) f =  { q.&p * w 

This function consists of two parts. The h function 
weighs the elevation of the landmarks compared to the 
elevation at point Vo. I t  is non-negative and attains 
its maximum of 1 when the average elevation of the 
landmarks is equal to the elevation at VO. The f func- 
tion, also non-negative and defined piecewise, has the 
major effect on the goodness measure. It is based on 
the size of the area of uncertainty for the projected 
points. Note in Figure 11 that as B approaches the 
circle, the measure approaches zero. If B lies on line 
AC, the measure is the ratio dw. The function in- 
creases in value as B is pulled away from the circle 
and the estimated viewpoint. The factor of 9 in the 
first piece o f f  causes this increase to occur at a rate 
such that when B is pulled back to the point that the 
area of uncertainty is the same size as for a straight 
line configuration, the function value is the same. The 
function increases in value as B moves nearer the view- 
point. 

We then augmented the original function with an 
additive factor p to  weight path goodness. This fac- 
tor was added only if the goodness measure for point 
localization was above a given threshold. In this way, 
the path goodness was not able to add weight to a 
configuration which was generally poor for localiza- 
tion. This factor is determined in the following way. 

5 Experimental results 

A sequence of simulations were run, using U. S. 
Geological Survey 30 meter Digital Elevation Map 
(DEM) data with a goal of keeping the robot navigator 
as close to the path as possible. The contour map in 
Figure 12 shows the location of one set of runs. The 
area is approximately 21 kilometers in the east-west 
direction by 14 kilometers in the north-south direction 
just northeast of Salt Lake City, Utah. UTM coordi- 
nates of the southwest corner are 4261803,4511040N. 
The path, shown on the map, runs along the banks 

Figure 12: Contour map of area in which simulations 
were run. The path is shown by a heavy black line. 
Start position is at left. Goal is at star. 

of the creek through City Creek Canyon. Start posi- 
tion and each point a t  which a new image was taken 
are shown by squares. The goal is marked by a star. 
Landmarks are marked by filled black circles. The 
assumption was made that the point landmarks (in 
this case, mountain peaks) had been identified and 
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matched to the map. The landmarks used for localiza- 
tion were chosen only from those visible at any given 
location. The rugged terrain coupled with the prox- 
imity of path to creek makes this a classic example of 
the type of situation where path localization is impor- 
tant. The total length traveled is about 8000 meters 
or 5 miles. In each run, the navigator takes a new 
reading at approximately 1 mile intervals. Uniform 
error bounds of f 5 % ,  &lo% and f20% in visual angle 
measure were introduced. Due to the spread between 
most landmarks, these limits produced errors in angle 
measure which were quite large in angular value. For 
this particular set of experiments, 60% of the possible 
configurations were bounded either above or below. 
Only those configurations which had a goodness mea- 
sure greater than l were considered for the additional 
path weighting. Although this threshold worked well 
in our simulations, it would also be possible to choose, 
for example, the configurations which were in the top 
30% of the rankings for point localization, eliminat- 
ing the need for a numeric threshold. The constant k 
was set to 5. Again, although this worked well in all 
our simulations, its value could also be chosen based 
on the range of goodness measures for point localiza- 
tion. The results are shown in Table 3. Adding the 
heuristic for path localization did not change the total 
distance traveled. Final distance from goal averaged 
10% better when the heuristic was used. 

Error in 
Annle 

Heuristic for Choosing Landmark Triple 
None used I Point onlv I Point and Path 

5%- 
10% 
20% 

Table 3: Results of runs through City Creek Canyon. 
Mean distance to path (in meters) is given for three 
different bounds in angular measure error. Fifty trips 
were recorded with each error bound. 

160 m. 90 m. 70 m. 
270 m. 205 m. 162 m. 
426 m. 408m. 393m. 

6 Conclusions 

We have inverted the classic statistical projection 
pursuit problem to  show that simple heuristics can be 
used to keep a robot which is navigating using only rel- 
ative angle measure closer to its path. Such heuristics 
are easy to  implement and need only be applied if the 
configuration of landmarks has already been judged 
good for point localization, keeping the added compu- 
tation to  a minimum. Our experiments using USGS 
30 meter DEM data have shown that, even with only 
a few landmarks from which to choose configurations, 
path localization can be improved by pursuing good 
projections. 
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