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Computer Diagnosis of Pneumoconiosis

RICHARD P. KRUGER, MEMBER, IEEE, WILLIAM B. THOMPSON, MEMBER, IEEg, AND A. FRANKLIN TURNER

Abstract—The advent of increased government involvement in
occupational health maintenance with compensation for affected in-
dividuals is requiring new approaches to medical decision making. One
aspect of this involvement will perhaps include the automatic mass
diagnostic screening of medical films for the detection of a specific
abnormality with an occupational etiology. The results of two comple-
mentary approaches for performing diagnostic screening for presence and
profusion of coal worker’s pneumoconiosis from the routine posterior—
anterior chest radiograph are presented. The first is a digital approach
utilizing the measurement of image texture, while the second uses hybrid
optical-digital methods involving the optical Fourier transform. Both
approaches yielded classification results comparable to experienced
radiologists.

INTRODUCTION

UBLIC LAW 91173 has specified that each coal worker
Phas the right to obtain his chest roentgenogram at
regular intervals not to exceed 5 years to detect the possible
presence and progression of coal worker’s pneumoconiosis
(CWP). There are approximately 130000 active miners
who are covered by this act. The Social Security Adminis-
tration has also been reviewing approximately 200 000
claims for disability due to CWP from active or retired
coal workers or their survivors. Each roentgenogram is
read by at least two certified readers according to the
ILO U/C 1971 international classification of radiographs
of the pneumoconioses [1]-[3]. This semiquantitative
description of the radiographic changes due to the pneumo-
conioses is designed to provide both clinical and epidemi-
ological information. From a clinical and occupational
health viewpoint, the classification of radiopacities as to
profusion category is of primary importance. Profusion of
small regular and irregular opacities is judged on 12 minor
and 4 major categories based on the number of opacities
per unit of lung area. A fifth major profusion category
consists of still larger regularly and irregularly shaped
lesions associated with progressive massive fibrosis (PMF).
This fifth category often occurs when smaller lesions
coalesce. These five categories are shown in Table 1. Pre-
dominant small lesion fype is also indicated with regular
(rounded) opacities indicated by the letters p, g, and r and
irregular opacities by the letters s, £, and » with respect to
increasing size. However, this latter information is of more
epidemiological than clinical or compensative value.
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TABLE I
PROFUSION CATEGORIES AND PROBABILITY OF OCCURRENCE

Major profusion Corresponding minor Number of A priori class
category profusion categories cases probabilities
0 (Simple o/- 0/0 0/1 51,491 . 878
1 disease) 1/0  1/1 1/2 4,630 . 079
2 2/1  2/2 2/3 1,772 . 030
3 3/2  3/3 3/4 138 OEO
" 4 (Complicated PMF | 688 011

disease)

Category 0 Normal or doubtful

1 Opacities definitely present but few in number
2 Opacities numerous but normal lung vascularity
still visible
3  Opacities very numerous with lung vascularity obscured

4 Evidence of coalescence (PMF)}

To determine overall film profusion category, a decision
as to the extent of the opacities in the lung field must first
be ascertained. Each lung field is divided into apical,
medial, and basal zones by horizontal lines drawn at
one-third and two-thirds of the vertical distance between the
apex of the lung and the dome of the diaphragm. Overall
film profusion category is established by visually averaging
the profusion in the most affected zones. The result is a
visually arrived at indication of zonal extent, opacity type,
and profusion category for each film. Fig. 1 yields a visual
comparison of a normal right apical zone with three
other diseased apical zones. Recent investigations [4], [5]
seem to support the contention that, for simple pneumo-
coniosis, the 12-point ILO U/C profusion categories from
0/-3/4 exhibit an approximate linear relationship to the
amount of dust deposition in the lungs.

Current manual screening utilizing the aforementioned
international standards consists of a hierarchy of readers
with increasing diagnostic skills relative to this disease.
The initial reader, designated an A reader, is either a
radiologist or a general practitioner who is located in the
region where the radiograph was obtained. The second or
B reader is often geographically remote and is a board
certified radiologist at one of a small number of pneumo-
coniosis screening centers established nationwide. If there
is more than one minor profusion category difference
between the A and B readings, a significant disagreement
exists, and one of the C readers decides a final category.
In rare instances a panel of C readers constitute a D reader.
There are approximately 150 A readers, 30 B readers, and
5 C readers actively screening for this disease. It should
also be noted that the 5 C readers are largely responsible
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Fig. 1.

for the aforementioned ILO U/C standards. Recently
published NIOSH epidemiological data [6] from this reader
hierarchy is shown in Table I. It indicates that approx-
imately 13 percent of active miners are diseased. It was
also reported that perhaps 28 percent of retired miners
are diseased. The reported significant difference in radio-
logical category between A and B readers which necessitated
a C reading was 27 percent. This interreader variation in
pneumoconiosis screening is not surprising when viewed
within the context of earlier studies of intra- and interreader
variation in chest radiographic diagnosis of similar-
appearing tuberculosis lesions conducted by Garland [7]
and Yerushalmy [8].

(b)

(@

Normal and several abnormal lung zones. (a) Normal. (b) ¥ 2/2 B. (c) t 1/2. (d) p 2/2.

Reger and Morgan [9], [ 10] also conducted studies con-
cerning the effects of interreader variation and film quality
on assignment of profusion category. In only 56.7 percent
of the cases was there agreement on a four diagnostic class
assignment based on increasing profusion category among
four experienced readers of pneumoconiosis films. The per-
centage was surprisingly low since approximately one-half
of the films selected showed no evidence of pneumoconiosis,
although many were suffering from other respiratory ail-
ments such as tuberculosis or showed evidence of other
radiographic abnormalities. It was also found that film
quality had an appreciable and significant effect on diag-
nostic categorization. A marked tendency to place over-



Fig. 2. Chest radiograph with superimposed computer-calculated
cardiac outline and lung zones.

exposed films in a lower profusion category than the
same films properly exposed was noted. It was concluded
that standardized exposure, suggested by Jacobson [11],
and refusal to interpret over- or under-exposed films
would be advantageous. Finally, intrareader variations on
several examinations of the same films with experienced
readers was less significant than the other previously
mentioned effects.

Based on present projections of future reading loads, it is
likely that present manual reading procedures will resuit in
a progressive overburdening of the radiographic diagnostic
system as it currently exists. Thus some automated pro-
cedure for diagnostic mass screening of such films will be
desirable and most probably necessary. Since it has been
demonstrated that a high percentage of all films read are
diagnosed as not showing radiographic evidence of pneumo-
coniosis, a cost effective and rapid automatic film reader
to consistently screen out all definite normals would
significantly relieve the projected overburdening previously
referred to. In addition, it is also conceivable that this
automatic system could produce quantitative indexes
pertinent to the extent of losses of normal pulmonary
vascular patterns by irregular s, ¢, and u type and rounded
P, g, and r type radiopacities. These quantitative measure-
ments would be quite consistent in time. There would
therefore be little intrareader variation since fixed quan-
titative measurements are minimally subject to variations
between serial examinations of the same individual.

It is fortunate that there presently exists the semi-
quantitative grading procedure for radiographic diagnosis
of the pneumoconioses. This type of descriptive procedure
for diagnosis is usually not available. It has provided a
framework within which the physicians and technologists
can communicate in undertaking a study of possible means
by which this diagnosis can be automated.

Previous research has indicated that automatic anatomical
feature location, measurement, and diagnostic classification
of the superior mediastinal and cardiac projections in large
numbers of standard posterior-anterior chest radiographs
is feasible with accuracy rates comparabie to manual
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diagnosis [12], [13]. A modified version of that algorithm
will also divide the right and left lung fields into six rectan-
gular zones as stipulated in the ILO U/C grading procedure.
It would therefore seem possible to automatically locate
each lung zone for subsequent machine diagnosis. It is also
expected that existing cardiac diagnosis capabilities will be
useful in detecting suspect cor pulmonale, abnormal cardiac
size and shape, and possibly ill-defined cardiac outline as
stipulated in the existing physician grading procedure. An
example of a computer-detected cardiac boundary and lung
zone determination is shown in Fig. 2.

IMAGE TEXTURAL DISCRIMINATION

The problem of manually detecting and grading simple
pneumoconioses opacities from radiographs appears to be
largely one of discrimination between normal pulmonary
vascularity (lung marking) patierns and partial or complete
obliteration of this normal tree-like structure by opacities
of various sizes and profusions which themselves exhibit
a more or less textural nature. Complicated disease, involv-
ing progressive massive fibrosis is characterized by larger
radiopacities which perhaps are not characterized nearly
so well by a textural description. Rosenfeld and Troy [14]
described image texture ideally as the *“‘repetitive arrange-
ment of a unit pattern over a given area.” It was also
stated that, in natural imagery, it is often difficult to identify
such unit patterns or determine their repetitive arrangement.
Therefore, the previous description should be used only
as a guide in the analysis of natural imagery.

Pickett [15] referred to two kinds of human subjective
textural analyses. These might be described as deliberate
and impressionistic. In the latter, for example, an immediate
impression of the coarseness or fineness of a visual texture
is received. In a sense, the observer gets an immediate
answer to a set of questions not consciously asked. Delib-
erate analysis, on the other hand, implies that the observer
is looking more closely at a pattern or texture, as would
perhaps be the case in trained observation. It was also
concluded that many textures are discriminated by assess-
ments of size, shape, orientation, and repetition rate. In
empirical studies Gibson [16] has shown that regular
textures seem to convey stronger impressions than irregular
ones, and he also concluded that his observers relied on
impressionistic analysis. Therefore, psychovisually, a sen-
sation described as texture is perceived by the human.
However, this sensation is less well understood than visual
contour identification. It can also be stated that corre-
sponding compuier analysis of image textures is not as well
advanced as contour or boundary analysis. It may well be
that the two will not be mutually exclusive concepts from
either a visual or computer analysis viewpoint.

In computer analysis of natural image texture, Hawkins
[17] made several observations. First, the notion that
natural texture is strictly locally repetitive is only approx-
imately true. That is, what is replicated is a pattern class
within which all examples are regarded as equivalent.
Furthermore, replication may be subject to spatial non-
linear phase shifts and, therefore. only be approximate.
Second, nonrandom arrangements of pattern parts appear
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to be associated with meaningful textures. He concluded
with the observation that texture classification may be one
of the more difficult tasks in the field of image processing.

Since the approach to textural feature extraction of
pneumoconiosis opacities were necessarily experimental,
some probable statistical indexes were explored. With
statistical analysis it was hoped that useful measures of the
organization and arrangement of the textures in question
would be derived without having to focus attention on the
specific structural properties. For instance, the chosen
statistical measurements did not attempt to recognize or
trace the normal vascular tree or the pneumoconiotic lesions
per se, but merely to compute quantitative impressions which
characterize them.

Textural discrimination of images was attempted in both
the spatial and spatial frequency domains. Therefore, the
specific approach was to consider pneumoconiotic opacities
or normal lung markings as distinct image textures. The
task was to experimentally compute several textural features
and subsequently apply a feature selection and supervised
statistical pattern recognition technique to obtain a diagnos-
tic classification for discrimination between normal and
abnormal lung zones.

THE FiLM DATA BASE

It was decided to create a data base consisting of 4- by
5-in zonal reproductions. There were several reasons for
this choice, not the least of which was the fact that neither
the digital nor the optical device was capable of processing
the complete 14- by 17-in film for input to the computer.
There was also a conscious effort to accurately establish
the profusion category and lesion type for purposes of
computer training. It was felt that zone selection would
be an aid toward this goal. The following specifications
were followed on each zonal reproduction. Each reproduced
lung zone was to be one to one in size with the equivalent
region on the full film. The zonal selections were to provide
an ample mix of all 6 zones to minimize zonal bias during
computer training. An effort was made to select an equal
number of zonal films from the 12 minor profusion cate-
gories, 2 lesion types, and 6 lesion sizes characteristic of
simple pneumoconiosis. These criteria were an effort to
create a data base with minimal zonal bias and a uniform
distribution of lesion profusion categories, types, and sizes.

The problem under consideration was as follows: having
demonstrated the computer detectability of lung zones,
could a machine render a diagnosis within those zones
competitive with manual diagnosis?

The film base for the feasibility study was selected by
Drs. G. Jacobson and A. F. Turner of the Los Angeles
County-University of Southern California Medical Center
Department of Radiology. Of the 102 abnormal zonal films,
approximately 40 percent were extracted from standard
films used by the American College of Radiology (ACR)
to train physicians to detect and grade pneumoconiotic
lesions. The remaining abnormal zonal films were selected
and graded by Drs. Jacobson and Turner as a committee.
Thirty-three of the normal zonal films were selected from
chest radiographs of LA County-USC employees with no
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known work history in a dusty environment and no clinical
or radiographic evidence of lung dysfunction. Six zonal
films from ACR standard films from profusion category
0/1 were also included. All films were judged of acceptable
quality according to the ILO U/C classification criteria.
A representative sample which consisted of 95 zonal
reproductions was digitized by a flatbed scanning micro-
densitometer at a resolution of 9.8 pixels/mm. The optical
studies used all 141 reproductions by comparison.

DatA MANAGEMENT AND TEXTURAL FEATURE
EXTRACTION FROM THE DIGITAL IMAGES

It was decided the visual diagnosis of simple pneumo-
coniosis lesions is often arrived at by inspecting the lung
regions between the more visually prominent posterior
ribs. This seemed logical since it is in these interrib spaces
that normal vascularity is least obstructed by visual inter-
ference from more dense radiographic structures. Therefore,
posterior interrib spaces were manualiy extracted in the
following manner. First a computer-generated grid was
superimposed upon each of the digitized images. This grid
allowed visual extraction of from 4 to 10 squares from each
interrib space. These squares are delineated for the zonal
film shown in Fig. 3. When extracting squares, an effort
was made to avoid the least radiographically dense portion
of the hilar regions. However, no effort was made to avoid
the less prominent anterior ribs or interrib spaces not
involved with disease. Since there were 3 to 4 such interrib
spaces per zonal film, the complete digital data base con-
sisted of over 1800 such squares from 298 interrib spaces.

It was decided to consider each posterior interrib space
as a separate input to the diagnostic classifier in order to
create an automated classification technique not sensitive
to any interrib space or any specific lung zone. This would
constitute a Jocal region for textural analysis. Thus the
digital input data base consisted of 298 samples.

The data from all the squares in an individual interrib
space were combined to form a gray-level histogram for that
complete interrib space. A transformation of gray levels
was performed which produced an interrib space with eight
equally likely gray levels [18]. This preprocessing step was
designed to negate the effect of monotonic distortions
introduced due to inconsistency in photography and/or
digitization  of the original images by constraining all
inputs to the feature extractor to be identical with respect
to first-order probability of gray-level occurrence. The
spatial textural measures were all based on spatial gray-level
dependence matrices [19]-[21] under the assumption that
visual texture-context information in an interrib space is
contained in the spatial relationship between image picture
elements at several fixed distances and angular orientations.
More specifically, it was assumed that this texture-context
information is adequately specified by the symmetric
matrix of relative frequencies p(i,j) with which two neigh-

“boring pixels are separated by a distance (d) and an angle

(@) for each (i, ) gray-level pair in the space. For this applica-
tion, d is the number of image lines separating the two
pixels of interest. An 8 x 8 symmetric count matrix was
formed within each square with all count matrices summed
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Fig. 3.

Zonal film with extracted interrib space squares.

and normalized to create a matrix of relative frequencies
for each interrib space as a function of @ and 4

pl.j.a,d) 0y
where
i=01,---,7,

0°,45°,90°,135°, d=

j: 0513".775

a 1,3,7,11.

Il

For each of the 298 spaces there were 16 such 8 x 8
matrices per space. The following 5 textural measurements
T (ad), k = 1,---,5 were computed for each matrix

77
Tl(aad) = ';0 _;0 l]p(lajaasd) (2)
77
Ted) = ¥, ¥ (= )Ppijad) @)
Ty(a,d) = i o _pij.ad) (4)

i=o j=o 1 + (i — j)?

7 7

T4(aad) = 'Z:O _;0 p(i,j,a,d) lOg p(ini’a’d) (5)
7 7

TS(aid) = ';O _;0 Il - le(l:.]:aad) (6)

for a = 0°, 45°, 90°, 135°, and d = 1,3,7,11. T, is an auto-
correlation measure designed to measure image coarseness.
T, is a dissimilarity measure often called the moment of
inertia. T; measures the extent to which the same or similar
gray levels tend to be neighbors. T, is a conditional entropy
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measure and measures image homogeneity. Ts is another
dissimilarity measure which is similar to T,. A total of 80
textural measures were extracted from each interrib space
with each textural feature a function of angle @ and distance
d. The number of textural features was reduced from 80 to
60 by calculating the mean M, variance ¥, and range R
at a given distance 4 for each of 4 angles a

4
M) =+ ¥ Tad) ™
R (d) = max T(a,d) — min T(a,d) (8)
4
W) = ; 3 (Tad) — M) )

for k =1,---,5, d = 1,3,7,11, and a = 0°,45°,90°,135°.
The final M, R, and V measures did not possess a strict
directional bias and were therefore explicitly a function of
d and only implicitly a function of a.

FouriER TRANSFORM DOMAIN FEATURE EXTRACTION
UsSING A COHERENT OPTICAL APPROACH

The textural features extracted in the previous section
were derived from digital spatial domain data localized to
individual posterior interrib spaces. The Fourier domain
measures treated each of the 141 lung region films as an
entity and as such measured more global aspects of visual
texture which included the influence of both posterior and
anterior rib projections.

Fig. 4 describes in simplest form the Recognition Systems,
Inc., ROSA-3 device used to extract the spatial frequency
measures of visual texture. A helium-neon laser emitted a
light which passed through a collimating lens and then
through the input film image. The transmitted light from the
film was next passed through a positive thin lens which
performed the Fourier transformation. The transformed
mmage was then projected onto a detector and appropriate
energy measurements were obtained. For the images in this
experiment, a circular 2.5-in-diameter aperture illuminated
a circular area in the center of the appropriate lung zone
film. Fig. 5 is an example of an illuminated circular area
within a typical zonal film.

The Fourier transform equation is

o) = [ |7 snexpliontu + ol dxay (10

where f(x,y) is the illuminated film region and F(u,) is
the transform of that region. The chosen transform textural
measures were insensitive to phase and as such measured
aspects of the magnitude of the transform denoted as
(F (u,0)].

It is well known that high-frequency information pertains
to the amount of edge information in an image. It can be
hypothesized that lung regions with pneumoconiosis
opacities will also generate more of this higher frequency
edge information than a normal film. Several investigators
[22]-[24] have previously used this transform property for
terrain, cell, and lung vascularity classification studies with
some degree of success. Therefore, a detector in the trans-
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Fig. 4. Basic configuration of Recognition Systems, Inc., Rosa-3
optical spectrum analyzer.

Fig. 5.

Zonal film with 2.5-in aperture superimposed.
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form plane consisting of 32 annular rings was used to obtain
the total contribution of 32 radial frequencies to accurately
reflect the amount of edge by the relative strength of the
annulli. The maximum spatial frequency measurable in this
experiment corresponded to 8.8 line pairs/mm. This exceeds
observable resolution for this class of films as measured by
Morgan [25] and Rossmann [26].

A vertically oriented 20° wedge-shaped band-rejection
filter in the detector served both as a read-out path for the
detected energy in the 32 annulli and also as a means to
reduce the effect of the posterior ribs in the energy measure-
ments. The spectral measurements were normalized to unit
energy by dividing each measurement by the total energy
in the transform, which in this case was the sum of the
energy in all the annular rings. This normalization com-
pensated for linear interfilm differences in dynamic range
and average density. The normalized energies in the rings
were then logarithmically transformed to create distributions
which were more nearly Gaussian.

TEXTURAL FEATURE SELECTION AND CLASSIFICATION
APPROACH

Quite often a group of feature measurements contains
both redundant features and those which are of little value
in separating the classes. For a classifier to work success-
fully, these features must be removed. In addition, the larger
the set of measurements the classifier must deal with, the
greater the numerical inaccuracy in computing the needed
discriminant functions. Thus it is advantageous to reduce
the dimensionality of the feature space by determining which
of the original measurements contain the most useful in-
formation for the classifier.

In order to select this subset, a measure of the value of a
feature must be defined. For a two-class problem where the
classifier assumes a Gaussian distribution of features, the
“divergence” [27] measure is often used. The divergence
of a set of features X is defined as

e PEISD] 4o
J(S1sSZ) _ f_w [p(x) l Sl) P(x l SZ)] In [p(x- | Sl)] dx

(1

where X is an R-dimensional vector, S, denotes class 1,
and S, denotes class 2. It can be shown that maximizing
the divergence measure minimizes the bound on the prob-
ability of error P, such that

P, < (P(S)P(S,) [ ;

when the classifier is a maximum-likelihood estimator and
the underlying distributions are multivariate Gaussian.

If classes S, and S, are assumed to be multivariate
Gaussian distributed, the R-dimensional X vector is dis-
tributed

= _ &Xp [—3(x — ﬁk)t[q)k]‘l(x ~ )]
p(x/S,) = (27!)R/2[[(Dk]|1/2

p(x/Si) ~ N (i D)),

(13)

k=12
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where i, is a mean vector and [®,] is a covariance matrix
for each class. The divergence distance is optimized over
all linear transforms [7] of dimension N x R, which
implies Gaussian distributions in the transformed space as
well. Thus

P(k—/sk[T]) ~ N(ﬁkTﬁ[q)kT])’ k=12
ﬁkT = [T]ﬁlw [(DkT] = [T]'[(I)k}[T]' (14)

Therefore, the divergence measure becomes a function of
the linear transformation and will be denoted J(S,,S,,7).
The divergence is therefore expressed as [27]

J(SI:SZsT)
=3 tr (@, ]7'[@,"] + [@®,"]7'[®,"] -~ 2[1 ]
+ e (@717 + [@,7]7)
x ((E" = BT — 50
where tr is the trace of the matrix.

It would be desirable to find which combination of N
features, taken together, would be optimal. However, in
practice this is often not feasible. A compromise is to cal-
culate the divergence of R features one at a time and then
to choose N of those with the highest divergence value. If
Gaussian statistics are assumed and if features are analyzed

one at a time, the divergence measure of the ith feature
becomes

(15)

(0,9 = 0,9 + (0, + 0, — 1,V
20,'c,

>

J(SlasZ’i) =

i=1,-R (16)

where o,' and ' are the variance and mean of feature i
and class k, and [7] is a 1 x R matrix with one nonzero
unity term at location (1,7).

The divergence measure is defined for only a two-class
situation. In order to use this measure in a k > 2 class
problem, the sum of the paired divergences is often used
as an optimization criteria [27]. Therefore, the divergence
in this case is expressed

k-1 &k
Ji=Y Y J(S.Sp), k>2 i=1,---,R (17)
I=1 j=I+1
and the features are ranked one at a time by the total sum-
med divergence.

If two features are highly correlated, they not only con-
tain redundant information, but they make it extremely
difficult to carry out statistical classification. This is partic-
ularly true of classifiers which must invert a covariance
matrix. To identify the degree of correlation between
features, a normalized correlation matrix C of dimension
R x R was defined

C=[e;] = [

ij=1-"R (18

0y ]
Jo ii \/Ujf
The o terms are the (i,j)th elements of a covariance matrix.
This matrix was computed for all R features.
The final N features were chosen by first ordering the R
original features by the divergence measure and accepting
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TABLE II
SELECTED SPATIAL AND FREQUENCY DOMAIN FEATURES

Selected 2 Class

_ R, (3), My (1), V,(3) M, (3), v (3) M, (1)
Spatial

&
Measures 4 Class R4(3) MS(I) R5(7), V4(3),M5(3)V5(3) _I\-/Il(})

50, 4.75, .78, 2.50
.95, 4.75, 2.50, 3.12, 7,60

2 Class
4 Class . 50,

Selected
annular ring
measures in
line pairs fnm
{1p/mum) .

only features whose absolute value of c¢;;, i # j, with all
previously accepted features did not exceed 0.8, Features
were added to the final set in this manner until the classifica-
tion accuracy during training no longer improved.

The & = 2 class situation consisted of a normal-abnormal
determination, where any film above major profusion
category 0 was deemed abnormal. The £ = 4 class problem
consisted of separation of the four major small opacity
profusion categories with the exception that large opacities
were grouped with small opacities of major category 3.
The latter compromise was necessary because of a lack of
large-lesion cases in the chosen film set. In this manner, an
R-dimensional feature space was reduced to an N-dimen-
sional feature space. The selected features for the two- and
four-class diagnostic classification using the digital or optical
measures is shown in Table II.

It was discovered that the selected textural feature
measures for normal zonal films had a variance that was
small relative to the variance of the feature measures by
abnormal films. This fact and the high correlation between
features seemed to preclude distribution-free classifiers and
led to a statistical approach. Statistical classifiers make
assumptions about the underlying distributions of features.
The most common assumption made about feature statistics
is that they are multivariate Gaussian. The Gaussian as-
sumption was validated via a posteriori classification results.
Thus the discriminant function which maximizes the likeli-
hood of a correct decision is

g = =3F[¢ ] '8 + X[d] i — 37T
+ In P(Sy) — 4 In (det [¢,]),
k=12 or k=1,---4 (19)

where i, is an N-dimensional column vector, ¢, is the
N x N covariance matrix, and P(S,) is the a priori prob-
ability of a sample belonging to diagnostic class k. In a
biomedical application, it is usually desired that there be
a very low probability of assigning a normal classification
to an abnormal subject. The discriminant function may
easily be adjusted to take this into consideration by modifi-
cation of P(S,).

CoMPUTER CLASSIFICATION RESULTS

The computer or physician diagnostic results are all
discussed in terms of confusion matrices [28], the general
form of which are shown in Figs. 6 and 7. Within this

context, a frue delineation indicates that true class and
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Fig. 6. Two-class confusion matrix.
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Fig. 7. Four-class confusion matrix.

assigned class were identical, whereas a false delineation
indicates a disagreement between true and assigned classifi-
cation. Within this context a true negative implies a normal
that was correctly classified as such. Similarly, a false
positive denotes a normal which was incorrectly classified
as abnormal. A false negative implies an abnormal which
was incorrectly assigned to the normal category.

The computer diagnostic testing procedure consisted of
removing one sample from the data base, training on the
remaining samples, and resubmitting the withdrawn sample
for reclassification. This was a fair test since the classifier
did not “see” the withdrawn sample until it was asked to
diagnostically assign it to a class. A second more severe
test was also performed in the two-class case. This test
consisted of removing one-half of the data from each class
and training on the remaining data. The removed half
was then submitted to the classifier for diagnosis. This was
repeated twice so that all data were classified in a test
situation. The second test was not performed in the four-
class diagnosis because such a procedure would be under-
trained. In many respects these two testing procedures were
logical extremes.

When discussing digital accuracy rates on a per-zonal-film
rather than a per-interrib-space basis, the following rules of
correspondence were applied. If a film contained 2 interrib
spaces, the assigned diagnostic class for the film was chosen
as the highest numbered of the two classes present on the
film. If a film contained 3 interrib spaces, and 2 were spaces
assigned to the same class, then the film was placed in that
class. If all 3 spaces were classed differently, the highest
numbered diagnostic class present was chosen for the film.
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If a film contained 4 interrib spaces, a majority of 3 in any
class would assign the film to that class. If this majority did
not exist, the film was assigned to the abnormal class.
Therefore, an effort was made to overdiagnose the film
when a consensus was not possible. There were 7 films with
2 interrib spaces, 75 with 3 spaces, and 18 with 4 spaces.
The one-at-a-time removal test procedure on digitally
derived features yielded the following confusion matrix:

true class
1 2
1] 92,6 3.6
assigned class
74 96.4

The computed normal-abnormal diagnostic rate was 95.2
percent. On a per-film basis, 3 films were missed for a
corresponding diagnostic rate of 96.9 percent. When the
more severe second test was performed, the following con-
fusion matrix was found:

true class
1 2
11 900 5.2
assigned class
10.0 94.8

The normal-abnormal rate was 92.9 percent. On a per-film
basis this was 96.8 percent. The 1 missed abnormal was of
profusion category 1/1.

One quite obvious conclusion is that the normal-abnormal
diagnostic rates were quite stable, using digitally derived
textural features. The two-class classification results using
transform domain features will now be presented. A
corresponding classification rate will be given for the 95
films common between the two film bases. For the first

optical test the results were
true class

1 2

1 74.4 29
assigned class

25.6 97.1

The normal-abnormal rate was 90.8 percent. Of the 10
missed normal films 6 were from profusion category 0/1.
The 3 missed abnormals were from profusion category 1/1.
When a common film base with digitally derived features
was compared, 5 out of 95 films were missed for a diagnostic
normal-abnormal rate of 94.8 percent. The more severe
test procedure of the second optical text yielded the follow-
ing matrix:

true class
i 2
1| 69.7 4.0
assigned class
30.3 96.0

The normal-abnormal diagrostic rate was 88.7 percent.
Of the 12 missed normals 6 were again from profusion
category 0/1. The 4 missed abnormals were all of profusion
category 1/1. A common film base with the digital film
base once again indicated 5 misses out of 95 for a normal-
abnormal rate of 94.8 percent.
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Four-class digital testing results on a per-film basis
yielded the following confusion matrix:

1 2 3 4
1 97.0 7.1 0 3.2
2 3.0 35.7 15.0 9.7
assigned class
3 0 42.9 80.0 45.2
4 0 14.3 5.0 41.9

The overall four-class correct rate was 65.5 percent. The
false positive rate was 3.0 percent, and the false negative
rate was 3.2 percent. The normal-abnormal diagnostic
rate was 96.8 percent. There was significant overdiagnosis
of class 2 and underdiagnosis of class 4.

The four-class optical diagnostic testing results based on
one-at-a-time removal were

1 2 3 4
1 74.4 15.2 3.6 2.4
2 20.5 42.4 21.4 26.8
assigned class
3 0.0 9.1 32.1 26.8
4 5.1 33.3 429 44.0

The overall four-class correct classification was 49.6 percent.
The false positive rate was 25.6 percent and the false negative
rate was 6.8 percent. The normal-abnormal rate was 88
percent. When only the 95-film digital subset was considered,
the overall four-class diagnostic rate was 61.0 percent with
a false positive rate of 9.3 percent and a false negative rate
of 1.6 percent. The normal-abnormal rate was 96.0 percent.

PHYSICIAN DIAGNOSIS

Six radiologists were requested to diagnose the identical
141 lung regions submitted for automatic analysis. Two
of the six readers originally selected the films in this study.
One of these two initial readers also participated in the
selection of ACR standard films and is a C reader. The other
initial reader is an experienced B reader who has published
extensively in various aspects of chest radiographic inter-
preiation and screens approximately 100 chest films per
day for the County of Los Angeles. The other four readers
consisted of one C reader and three experienced B readers.
As a group these six radiologists represent over 130 man-
years of radiological reading experience.

The physicians viewed entire radiographs with the 141
lung zones within which they were to make their diagnosis
labeled and numbered. They were asked to disregard any
information not included in the delincated zone. This
procedure allowed the readers to grade individual zones
within an anatomical context.

The performance of the best manual grader was

true class
1 2

1| 949 1.0
assigned class

5.1 99.0

The normal-abnormal diagnostic rate was 97.9 percent.
It should be noted that this individual was one of the original
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film selectors. By contrast, the lowest performance of any

reader was
true class

1 2

11 410 1.0
59.0 99.0

assigned class

In this instance the normal-abnormal diagnostic rate was

83.0 percent.
When all the 6 x 141 = 846 physician observations
were averaged, the following confusion matrix was formed:

true class
1 2
1 82.5 2.6
assigned class
17.5 97.4

In this instance the normal-abnormal rate was 93.4 percent.
The corresponding confusion matrix in the four-class
physician diagnosis was

1 2 3 4
1 82.5 7.1 0.6 0.4
2 17.1 57.1 11.9 4.5
assigned class
3 0.4 24.7 53.0 22.0
4 0 11.1 34.5 73.2

The overall correct classification was 68.0 percent. When
the two original film selectors were excluded, this rate
dropped to 67.0 percent. The false positive rate also rose to
24.5 percent with no significant change in false negative
rate. It was also discovered that the two original readers
were in agreement with themselves 96 percent of time in a
normal-abnormal sense and 77 percent of the time in a
four-class sense. This was a useful measure of intrareader
variation.

In summary, the false positive rates for the six readers
ranged from 59.0 to 2.9 percent with an average of 17.5
percent. Correspondingly, the false negative rate ranged
from 1.0 to 6.9 percent with an average of 2.6 percent. The
averaged physician rates showed no significant changes
when computed on the basis of the 95 films submitted for
digital analysis.

CONCLUSIONS

This study was undertaken as a short-term project to
determine the feasibility of the possible automated mass
diagnostic screening of pneumoconiosis radiographs. Two
distinct textural feature extraction methods involving digital
and coherent optical approaches were undertaken. The
performance of the two automated diagnostic systems was
described in detail and tables presented. Analogous results
were presented for diagnoses obtained from experienced
radiologists asked to analyze the same films given to the
automated systems.

As this was a feasibility study, the available data base
was necessarily limited. As the data base is expanded and
statistics of the measured features become better known, it
may be conjectured that performance will tend to improve.
Nevertheless, performance was most encouraging.
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Automated normal-abnormal classification accuracy on
a testing basis was no lower than 88.0 percent. The com-
parable percentages for the physicians ranged from 83.0
percent to 97.9 percent. Likewise, the false normal computer
testing rate never exceeded 4 percent, with a physician
range of 1 to 7 percent. The false positive rate never ex-
ceeded 30 percent, as compared to a physician range of
5.2 to 59.0 percent. While these initial results are encourag-
ing, much further research and development needs to be
accomplished before an automated film reader for this
application will become a reality. It is felt that if a device is
to perform this task it must be certified to read in a manner
and with a set of films identical to a set used to certify
future B readers. Such an acceptance test does not exist at
present but there is reason to suspect that one will soon be
devised.

Each of the automated approaches discussed had its own
special advantages. The hybrid optical-digital system is
particularly fast. As a result, the per-film expense of
diagnostic screening should be relatively low. The purely
digital system, while considerably slower, is more flexible
and able to compute and analyze data in addition to
textural measures over the lung field. In particular, such
features as anatomical structure may be dealt with in a
unified manner. There is also evidence that digital measures
may yield a better severity diagnosis.

This suggests a two-stage approach. Initial screening
could be done optically. A second step would analyze the
initially selected abnormal zones digitally in greater detail.
Final determination of mnormal-abnormal classification
would then be made, and an estimate of the severity of the
disease given in abnormal cases.
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