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A method is deseribed which quantifies the speed and direction of several moving
objects in a sequence of digital images. A relationship between the time variation of
intensity, the spatial gradient, and velocity has been developed which allows the determi-
nation of motion using clustering techniques. This paper describes these relationships,
the clustering technique, and provides examples of the technique on real images contain-
ing several moving objects.

1. INTRODUCTION

Information about the velocity of regions in an image can be important to the
scene analysis process. This information can contribute significantly to scene
interpretation : Object trajectories may be caleulated, structural ambiguities may
be resolved, important events noted, and future situations predicted. At lower
levels, information about motion of small structures in an image sequence can
be used as an important cue for image segmentation. A discontinuity in the
velocity of small image areas strongly implies the existence of an object boundary.
Visually dissimilar image regions with the same velocity may either be part of
the same objcct or semantically linked in the overall scene interpretation. If
an obscrver is moving, perceived motion represents an important depth cue.

Because of the value of motion information, increasing attention is being paid
to methods analyzing time-varying visual environments. However, many of the
methods for motion analysis developed to date are computationally expensive,
require already segmented pictures, or are ineffective when object boundaries are
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Fra. 1. Intensity wedge represented by the diagonal line at ¢ moves dx along the 2 axis to £,
causing a change in intensity of ds.

hidden by occlusions or picture borders. In this paper we describe an efficient
method for computing the speed and direction of one or more moving objects in
a scene. Our method requires neither previously segmented images nor access to
complete boundaries within the images. In following sections, we briefly survey
the relevant literature, describe our new method, and demonstrate the technique
on a number of examples.

2. BACKGROUND

Several approaches have been used to determine velocities from image se-
quences. Most methods are based on a matching procedure. A pattern in one
image frame is searched for in a succeeding image frame. If the pattern is found,
the velocity is calculated from the positional shift. An alternate approach is to
directly calculate the velocity information from the spatial gradient of the images
and the local intensity changes over time due to motion. Matching techniques
have been performed at a variety of picture interpretation levels. Badler [17]
has deseribed a method which matches objects in a series of images in which the
objects have been located and identified. Here the matching task is relatively
modest and the major computational effort is in the motion interpretation.
Aggarwal and Duda [2] develop a technique for matching vertices in a domain
of highly occluded objects. Their approach requires accurate boundary determina-
tion in each frame but does not presuppose any static interpretation. Potter [3]
suggests matching certain low-level properties of regions. Other rescarchers have
performed the matching on the unprocessed image using cross correlation [4, 5.
A recent approach differences successive frames and then tracks the arcas of large
differences to determine wvelocities [6,7]. A more complete survey of motion
analysis is found in [87].
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Fach of these methods has limitations. Obviously, procedures which require
an accurate segmentation cannot be used to assist in the segmentation process
itself. Methods dependent on cross correlation are computationally expensive.
While some efficiencies are possible [9, 107, much effort is still required to perform
the matching at a dense enough sampling of points to be useful for tasks such
as segmentation. Techniques using frame-to-frame differences provide efficiency,
but require sophisticated higher-level processing to deal effectively with occlu-
sions and situations in which object boundaries are not completely within the
image frame [7].

A nonmatching approach to motion analysis of simple scenes has been developed
by Limb and Murphy [11]. They relate intensity changes over time at a point to
the spatial intensity gradient in the neighborhood of the point. The frame rate
is assumed to be sufficiently rapid such that the value of the gradient at a point
does not change significantly between frames. Motions along the z and y axes
are treated independently. If Al is the intensity change at a point due to z axis
motion Az, then it is claimed that

Az AT

AT G
where (, is the spatial gradient of the intensity along the z axis. (The minus sign
is necessary because the surface, rather than the observation point, is moving.)
A similar relationship holds for motion only along the y axis. Figure 1 illustrates
the effect. Unfortunately, Al is affected by motion along both axes and so z-axis
motion contributes to the Ay estimate while y-axis motion contributes to the Ax
term. Thus the values of the Az and Ay may be inaccurate for any single image
point. However, if the direction of the gradient is randomly distributed, the
average values of Az and Ay give an accurate estimate of the true velocity. The
dependency on average value limits the method to the analysis of a single motion.

f—ev—

- <L_—l

Fra. 2. Values of Ve = (di/dt)/ |G| plotted against 8¢ form a cosine curve with amplitude |v|
and phase —6,.
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Fra. 3a. Toy problem.

Fia. 3b. Blurred pair.

In the next section, we describe a significant extension to the Limb and Murphy
approach: Our method allows the analysis of several moving objects, does not
require randomly distributed gradients, and can identify individual pixels be-

longing to a moving object with a particular velocity. Moreover, there is no
need for any image segmentation prior to application of the method.

3. THE GRADIENT-INTENSITY TRANSFORM METHOD

Our technique, which we call the Gradient Intensity Transform Method
(GITM), is a nonmatching approach which develops velocity information from
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Fia. 3d. Pixel classification for Object 1.

the time variation of intensity at a pixel due to the motion and from the spatial
variation of the intensity function. It is applicable for rigid body translation not
involving rotation. In the following paragraphs, we will show that the time
variation of intensity and the spatial gradient at each point place constraints
on the possible speed and direction of the surface or object at that point. These
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Fra. 3f. Filtered classification for Object 1.

constraints do not, however, uniquely determine the velocity vector; but, if a
sufficient number of image points correspond to a surface with a common velocity,
the velocity vector can be determined using clustering techniques. We describe
a modified Hough transform clustering approach which is used to determine this
velocity.
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T6. 3g. Filtered classification for Object 2.
i
Motion can be represented by a velocity vector

From the definition of the gradient, an ineremental change in intensity due to a
spatial shift of the evaluation point, dp, satisfies the relationship

di = G-dp.

Fi16. 4a. The race.
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¥rc. 4b. Blurred pair.

¥16. 4c. Unfiltered pixel classification for Object 1.

In our case, however, it is the underlying surface that is moving, not the sampling
point. Thus, if ds is the incremental translation of the surface

di = —G-ds. )

Tt will be useful to represent both velocities and gradients in a magnitude-phase
(polar coordinate) notation

G = (1GI7BG): v = (1V176v>’
We can relate translational differences to velecity and time by

ds = vdi. (2)
Combining (1) and (2)

di = —G-vdl = — |G| |v]| cos (B — 8,)dt. 3)
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Fia. 4d. Unfiltered pixel classification for Object 2.
)

Let vg be the magnitude of the velocity vector projec‘ted onto the gradient vector.
Then from (3) we have

di/dt
vg = —|v|cos (B¢ — 8,) = —— .

|G|
If velocity is constant over the image, then values of vg plotted against 8¢ will
lie along a cosine curve with amplitude |v| and phase —6,. If sufficient variability
in f¢ exists, the relationship between ve and 65 will uniquely define v (see Fig. 2).

(4)

F16. 5a. Moving tools,
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Fia. 5b. Blurred pair.

Fia. 5c. Unfiltered pixel classification for Object L.

For digital imagery, we must adapt the above resulf fo a situation in which the
image functions are known only at discrete sample points. Gradients are estimated
using a Sobel operator [12] extended to provide gradient direction as well as
magnitude. Sampling over time is also diserete. Since the above analysis is
only valid if the gradient at a point remains constant over the time between
samples, we only consider points where the gradients at time ¢; and 1, satisfy
the restrictions

llew] - 6@ <a
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Fia. 5d Unfiltered pixel classification for Object 2.

and

or]

[6g(t) — Og(ls)| < as

;27{’ - jH(; (il) e 00@2}; < 3.

Turthermore, we only process points for which the intensity change between
sampled frames, A7, is sufficiently large:

[AI] > as

This serves to eliminate points where the intensity change is due primarily to
scanner noise,

The number of image points satisfying these constraints is greatly increased if
the image function is first low-pass filtered. A smoothing operation reduces noise
and increases the extent over which gradients remain approximately constant
while suppressing those areas where textural variations have a short enough
period to cause confusion. In addition, smoothing allows use of the technique
on edges which would otherwise be discontinuous points in the image function.
"The desirable amount of blurring relates to the velocities expected in the imagery.
The extent of the blurring function (i.e., the effective width of the point spread
function of the blur) should be at least as great as the maximum expected velocity.
The value is not critical. Blurring can be easily implemented by defocusing, as
we have done here, and thus involves no extra computation.

To determine actual velocity (|v], 8,), we use a modification of the Hough
transform [13, 147]. At each point, AT is used as an cstimate of di/df. From (4),
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F16c. 5e. Unfiltered pixel classification for Object 3.

the possible values of v that could give rise to Al at-that point are constrained
to lie along the curve

lv] = ——— E— = (5)
cos (B¢ — 6,) |Gleos (g — 6,)

If the direction of the gradient varies at different points of the moving abject,
then values at those points will map into different curves in (|v|, 8,) space. The
intersection of these curves will uniquely specify v.

Solving for this intersection analytically is a complex task, but the Hough
transform approach allows a significant computational simplification. (|v], 8,)
space is treated as a discrete array of accumulators. For each image point, Al
and G are used in Eq. (5) to trace a curve through (]v], 8,) space corresponding
to possible velocities. This curve is digitized onto an accumulator grid and then

TABLI 1
Toy Problem

Object Computed Computed Measured Measured
direction speed direction speed
Charlie 0 2 0 2

Snoopy 3.141 2 3.141 2
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TABLE 2

The Race

Object Computed Computed Measured Measured
direction speed direction speed
Snoopy 0 1.33 0 1-2
Charlie 0 3.33 0 4

cach accumulator corresponding to a point on the eurve is incremented. An
arbitrary upper bound for |v| is chosen to deal with situations where
cos (8g — 8,) = 0. When the curves corresponding to all the points in the picture
have been entered, a peak in the accumulator array corresponds to a velocity.

In situations involving more than one moving object, different moving surfaces
will usually be manifested as distinet peaks in the (v}, 8,) accumulators. The
single most prominent peak in the accumulator arra?y is found. The corresponding
velocity is labeled vy, and all points satisfying the relationship

; V‘» l CO8 (HG - 61:1) + T < [
|G

for some appropriate threshold ¢ are assigned velocity v1. The analysis is repeated
using the original image data minus those points already assigned a velocity.
This procedure continues until no sufficiently well-defined peaks are found in the
accumulator array. The assignment of velocities by this technique is subject to
error dependent on the order in which peaks are found and the magnitude of the
threshold ¢. This error may be reduced by a final pass in which each image point
is assigned to the closest of the candidate velocity vectors.

4. RESULTS

The GITM approach has been applied to a variety of scene sequences with good
results. Figures 3 to 5 are typical of the kind of scenes which have been successfully
analyzed. All images were digitized from real 3D scencs to a 128 X 128 array of
8-bit monochrome pixels. From this data GITM was able to determine the velocity
magnitude to within 1 pixel/frame (Tables 1, 2, and 3) and was able to classify
pixels belonging to each velocity fairly aceurately. Moreover, the technique
works well with scenes containing several moving objects. The scene in Fig. 3

TABLE 3
Moving Tools

Object Computed Computed Measured Measured
direction speed direction speed
Wrench 0 2.67 0 \ 3
Hammer 1.178 1.33 1.571 2
Lens 3.141 2 3.141 3
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contains two objects moving in opposite dircetions : Snoopy to the left and Charlie
to the right. Table 1 shows how the compuler output of GITM compares with
the specd and angle measurements obtained from the blurred images on a CRT
using a track ball (to nearcst pixel/frame). These two results correspond to the
two clearly evident cosine curves in (vg, 8g) space shown in Fig. 3c. Using the
velocity measurements from GI'TM the original picture points were then classified
according to velocity in the manner explained in the last paragraph of the previous
section. Figure 3d shows those points associated with velocity (2, 0) and Fig. 3e
those which correspond to velocity (2, r). Figures 3f and g result from Figs. 3d
and e through the use of a filter which assigns to each pixel the value which most
often occurs among the neighboring pixels. This classification of pixels based on
their velocity is good enough to suggest a segmentation procedure based on
motion.

Figure 4 demonstrates that GITM can distinguish between two velocities
which have the same direction. As shown in Table 2, Snoopy and Charlie move
in the same direction, but at about 1 pixel/frame and 4 pixels/frame, respectively.
The GITM computed results arc in close agreement. Figures 4¢ and d show how
well the pixels are classified.

The performance of GITM on three moving objects is shown in Fig. 5 and
Table 3. Note that in the figure the lens partially occludes the hammer. The
local nature of the method makes it relatively insensitive to changes along the
occlusion boundary. GITM classifies the pixels fairly well, and the velocity
calculations are reasonably close to those measured with the exception of the
hammer velocity angle. This error is due to blurring of peaks in (v, 8,) space and
suggests a possible weakness of the procedure as a measurement method for a
large number of moving objects. However, for scene analysis purposes the
accuracy is sufficient, and the classification capability will prove quite useful.

5. CONCLUSIONS

This paper has described a nonmatching procedure (GITM) which can detect
and quantify the velocities present in a sequence of digital images containing
several moving objects. Results have shown that this procedure can handie
acclusion, works on blurred images, can determine the velocity angle within
/8, and can determine the velocity magnitude within about 1 pixel/frame.
Furthermore, a method was described which uses the velocities obtained from
GITM to classify the pixels in the image according to velocity. This classification
i1s good enough to suggest a possible motion-based segmentation of the scene
into objects.
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