Pattern Recognition Letters 5 (1987) 349-356
North-Holland

May 1987

3-D model building for computer vision

B. BHANU*, C.C. HO and T. HENDERSON
Department of Computer Science, University of Utah, Salt Lake City, UT 84112, USA

Received 30 March 1986
Revised 14 October 1986

Abstract: This paper presents a Computer-Aided Geometric Design (CAGD) based approach for building 3-D models. A new
method is given which allows the points on the surface of the designed object to be sampled at the desired resolution. The
resulting data structure includes 3-D coordinates of the points, surface normals and neighborhood information.

Key words: 3-D models, B-splines, CAD, CAGD, multiresolution 3-D data, surface filling.

1. Introduction

There has been an absence of a systematic ap-
proach for building 3-D models in computer vision.
The emergence of CIM (Computer Integrated
Manufacturing) technology has provided oppor-
tunities and challenges to use geometric and func-
tional models of real-world 3-D objects for the
" task of visual recognition and manipulation [2].
CIM technology provides the database of objects
as a byproduct of the design process. It allows the
model-based recognition of 3-D objects to be simu-
lated even before these objects are physically
created. In this paper we present our ongoing work
in defining how these designs could be used or
modified in novel ways so as to be suitable for the
task of recognition and manipulation. For ap-
proaches in computer vision on 3-D model building
from multiple views refer to [1,2,9].

The B-splines based CAGD (Computer Aided
Geometric Design) model provided by the Alpha_1

* Corresponding author; present address: Department of
Computer Science, 3160 Merrill Engg. Building, University of
Utah, Salt Lake City, UT 84112, USA.

This work was supported in part by NSF Grants DCR-
8506393, DMC-8502115, ECS-8307483 and MCS-8221750.

system [2,4,5,6,10] contains either B-spline sur-
face patches or subdivided polygons or both. A
surface is represented by its control mesh and
related parameters and a polygon is represented by
its contour which is stored as a sequence of ver-
texes. Both surface patches and polygons may
result in the design process because of the subdivi-
sion process used in finding the intersection of two
B-spline surfaces [10]. There are several approaches
used to generate vision models from the CAGD
model. These allow multiple representations of ob-
jects from different classes and even multiple re-
presentations for the same object [3]. The
important point to note is that these representa-
tions can be obtained by doing some additional
work during the design process. A number of ap-
proaches we are working on currently for building
3-D models are: (a) universal representation of ob-
jects by surface points, (b) surface characterization
by intrinsic properties such as the points of high
curvature, (c) surface representation by
edges/arcs, (d) higher level surface representation
in terms of local properties such as holes, corners,
surface type, etc.

In this paper we present approach (a). A new
method is given which uses the computer aided
geometric design and allows the points on the sur-
face of an object to be sampled at the desired reso-

0167-8655/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 349

Volume 5, Number 5

£ \ line
a AE(L-1) b

contour

Figure 1. Intersection of a polygon by a line segment ab. The
direction of edge going from region II to region I is 1, from
region I to region Il is —1 and for the edge lying on the line it
is 0. At the intersection point, there are two directions: in direc-
tion and out direction. 4, B, C, D and E are intersection points
and they are labeled by the (in, out) directions. The arrows in-
dicate the direction of the contour. The line @b need not be
horizontal.

3.1. Algorithm for contour filling

The main element of the new contour filling
algorithm in two dimensions is to find the intersec-
tion segments of a line and the polygon. They can
be obtained in two steps. The first step is to find
all intersection points and the next step is to decide
which segments are inside the polygon using topo-

logical information associated with intersection

points.

The intersection points of a line with a polygon
can be divided into three classes: start point, end
point and middle point. Suppose we trace a line ab
(see Figure 1) from left to right inside a polygon.
The start point can be defined as the point whose
left neighbor is outside the polygon. The end point

\ \

AN :

Figure 2. Four kinds of intersection points. By using the in/out

direction at each intersection point, there are 9 different com-

binations of 4 kinds: (a) flat; (b) tangent; (c) cut; and (d)
flat-cut.

PATTERN RECOGNITION LETTERS

May 1987

is the one whose right neighbor is outside the poly-
gon and a middle point is the one for which both
left and right neighbors are inside the polygon. In
Figure 1, point A is a start point, points B and C
are middle points and point D is an end point.
Note that point E is both a start and an end point
since its left and right neighbors are outside the
polygon. Now what we have to do is to divide all
the intersection points into these three classes and
skip” all middle points and finally label the start
points and end points alternately.

In order to determine the kind of an intersection
point, we need its topological information. It can
be explained easily in the two-dimensional case. In
Figure 1, the plane is divided by the line ab into
two regions, I and II. Note that the line ab need
not be horizontal in the general case. The arrows
show the direction of the contour and the dotted
region is the interior of the polygon. There are five
intersection points (A4, B, C,D and E) as shown in
the figure. We find the directions, ‘in’ and ‘out’, of
an edge (along the contour) when it passes through
an intersection point. The ‘in’ and ‘out’ directions
of an intersection point are defined as the incom-
ing and outgoing directions at this point of the
contour, respectively. For the edge going from
region II to region I, we mark its direction as 1 and
if it goes from region I to region II we mark its
direction as — 1. And if the edge is lying on the line
itself, we mark its direction as 0. For example,
point 4 will be marked as (1,1), point C as (0,1)
and point E as (1,—1). This information can be
found easily at the time when we find the intersec-
tion points. There are nine different combinations
of (in, out) directions. But they can be classified
into four kinds only: flat, tangent, cut and flat-cut
points as shown in Figure 2. For a flat point both
of its in and out directions are characterized by 0.
There is only one flat point: (0,0). For a tangent
point, in= —out<>0. There are two possibilities:
(1, 1) and (-1, 1). For a cut point, in=out<>0.
Again there are two possibilities: (1,1) and
(—1,—1). For a flat-cut point only one of the
in/out directions is 0. There are four flat-cut
points: (0,1), (0,—1), (1,0) and (- 1,0). Now the
problem is to map these four kinds of intersection
points into three classes - start, middle and end
points. For contour filling then we just skip all

351

Volume 5, Number 5

Step 2. For each intersection point do:
If the point is the first one or
the previous one is an end point,
then
do Step 3.
else
do Step 4.
Step 3. Output this point. {start point}
If it is a tangent point, {in=—out}
then
output it again. {end point}
else
begin
if the in direction is 0,
then exchange the in and out direction
of this point. {the in direction of a
start point should not be 0}
Save the in direction of this start point.

end
Step 4. 1f it is either a flat point or a tangent point,
then
skip it. {middle point}
else
do Step 5.

Step 5. If there is a conflict regarding the restric-
tion as discussed in the above,
then exchange the in and out direction of
this point.
If the out direction of the point is opposite
to the in direction of the previous start
point after the adjustment,
then
output this point. {end point}

PATTERN RECOGNITION LETTERS

May 1987

else
skip it. {middle point}

Figure 4 shows a two-dimensional example.
Figure 4(a) is the input contour. Each cross repre-
sents a vertex of the contour in the output of the
combiner of Alpha_1. Some of these vertexes
which appear to be redundant are also parts of
other polygons of the same object. When consider-
ing a polygon they can be removed easily by find-
ing the angle between two line segments joining the
two neighboring vertexes. The direction of this
contour is not significant for the use of the above
algorithm. Figure 4(b) is the result of the above
algorithm applied to Figure 4(a). Finally, in Figure
4(c), we extract all the surface points from the line
segments by a user-defined resolution. The algo-
rithm as outlined above is quite general for 2-D
case. It can be implemented very efficiently.

The complexity of this algorithm is

Ol(n+ mxlog(m)],

where 7 is the number of vertexes in the input con-
tour and m is the number of intersection points of
one cutting line. Usually the number of intersec-
tion points is much smaller than the number of
vertexes, and therefore, the complexity of the algo-
rithm is linear. In the worst case, m is equal to
(n—1) and the complexity becomes O[m *log(im)].
This is due to the sorting of the intersection points.

¥
U'rﬂr

Figure 4. A two-dimensional example. (a) Input contour. The points marked as x’s are the vertexes of this contour. (b) Interior line
segments. The required points are the start and end points of these segments. (c) Surface points on the polygon. Points are extracted
from the line segments in Figure 4(b).

353

Volume 5, Number 5 PATTERN RECOGNITION LETTERS May 1987

Figure 6. Subparts for designing the work piece. (a) Plate; (b) Outline cutter; (c) Outer dent part and the corner scratches; (d) Head
hole and corner holes; (¢) Four arc scratches; (f) Inner dent part and the center hole; (g) Five small holes; (h) Center thread; (i) The
position of the subparts in the model of the work piece.

354

Volume 5, Number 5

surface is different from other scratches. This is
because they are actually different in the object
(see Figure 5). Figure 8 shows a shaded image of
the designed work piece. Next we use the contour
filling algorithm described in Section 3 to find the
surface points and their normals. First we convert
parts of the representation which are still surfaces,
in our CAGD model after the set operations, into
polygons by subdivision [6]. Now we have three-
dimensional polygons only. In extending the algo-
rithm as described in the last section to 3-D planar
polygons, several modifications are needed. The
cutting line becomes a plane and according to our

conventions, the direction of the contour is clock-

wise if the normal to the surface is directed towards
the viewer. It is important to choose the appro-
priate cutting plane and to choose points which are
within the desired resolution. Note that we cannot
always cut in the x — y plane because we will not get
any point on the surface which is parallel to the z
axis. The approach used here is to first find the
bounding box for the polygon. A bounding box of
a polygon is specified by the minimum and max-
imum x, y, z coordinates of all its vertexes. Next we
choose the two directions in which the bounding
box has large spreads. These two directions specify
the cutting plane and are taken to be the directions
along which the lines and points are found respec-
tively. Assuming uniform spacing d in X, y, and z
spatial coordinates, for a given resolution r such
that there is at least one point in the sphere of
radius r, we find the spacing d by dividing r by
312 Figure 9 shows the surface points with 0.2
inch resolution. In Figure 10, we show the surface
point normals with 0.4 inch resolution. The output
polygons of the combiner contain normals of every
vertex which are computed from the surface. We
interpolate vertexes to find intersection points. The
normals at intersection points are found by linear
interpolation of normals at adjacent vertexes.
Linear interpolation procedure is again used to
find normals at surface points along a line segment
of the polygon. Points and their normals are com-
puted at the same time.

356

PATTERN RECOGNITION LETTERS

May 1987
5. Conclusions

In this paper we have presented a technique for
the representation of 3-D objects by surface points.
The resulting data structure of points including
coordinates of the points in 3-D space, surface
normals and information about the neighboring
points. This representation is the lowest-level one.
However, many higher-level features to be used in
matching can be extracted from it by using the
same procedures as used on the sensed range data
[1,7].

References

[1] Bhanu, B. Representation and shape matching of 3-D ob-
jects. IEEE Trans. Patt. Anal. Mach. Intell. 6(3) (1984)
340-351. R

[2] Bhanu B. and T. Henderson. CAGD-Based 3-D vision. In:
IEEE International Conference on Robotics and Automa-
tion, 1985, pp. 411-417.

[3]1 Bhanu, B., C.C. Ho and T. Henderson. 3-D model build-
ing for computer vision. Technical Report UUCS85-112,
Department of Computer Science, University of Utah,
September, 1985.

[4] Cobb, E.S., Design of sculptured surfaces using the B-
spline representation. Ph.D. thesis, University of Utah,
June, 1984.

[5] Cohen, E. Some mathematical tools for a modeler’s work-
bench. IEEE Comput. Graphics Appl. October (1983)
63-66.

[6] Cohen, E., T. Lyche and R.F. Riesenfeld. Discrete B-
splines and subdivision techniques in computer-aided geo-
metric design and computer graphics. Computer Graphics
and Image Processing 14(2) (1980) 87-111.

[7] Henderson, T.C., Efficient 3-D object representations for
industrial vision systems. IEEE Trans. Patt. Anal. Mach.
Intell. 5(6) (1983) 609-618.

[8] Pavlidis, T. Algorithms for Graphics & Image Processing.
Computer Science Press, 1982.

[9] Potmesil, M. Generating models of solid objects by match-
ing 3-D surface segments. In: Proc. 8th IJCAI. Karlsruhe,
August, 1983, pp. 1089-1093.

[10] Thomas, S.W. Modelling volumes bounded by B-spline
surfaces. Ph.D. thesis, University of Utah, June, 1984.

