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Abstract—Discrete relaxation techniques have proven useful in solv-
ing a wide range of problems in digital signal and digital image pro-
cessing, artificial intelligence, operations research, and machine vi-
sion. Much work has been devoted to finding efficient hardware
architectures. This paper shows that a conventional hardware design
for a Discrete Relaxation Algorithm (DRA) suffers from O (n*m?) time
complexity and O (n’m?) space complexity. By reformulating DRA into
a parallel computational tree and using a multiple tree-root pipelining
scheme, time complexity is reduced to O(nm), while the space com-
plexity is reduced by a factor of 2. For certain relaxation processing,
the space complexity can even be decreased to O(nm). Furthermore,
a technique for dynamic configuring an architectural wavefront is used
which leads to an O (n) time highly concurrent DRA3 architecture.

Index Terms—Algorithm-configured dynamic architectural wave-
front system, associative circular pipelining, Discrete Relaxation Al-
gorithm (DRA), interleaved processing, multiprocessor architecture,
recursive systolic computation, VLSI.

I. INTRODUCTION

DISCRETE relaxation is a very general computational
technique for a wide range of theoretical and engi-
neering problems. Since its invention it has demonstrated
powerful and extensive applications in many areas. Some
of them are listed below:

1) Digital Signal Processing: for digital signal and
digital image processing, particularly in the restoration
and identification of moving objects from ambiguous en-
vironment; '

2) Artificial Intelligence: propagating numeric con-
straints, doing heuristic optimal search, finding N-ary re-
lations, determining satisfiability of propositional logic
statements, and theorem proving, etc.;

3) Computer Vision: dealing with the problems such
as graph and subgraph homomorphisms, graph coloring
problems, for line finding, stereopsis, line-labeling, and
semantics-based region growing;

4) Robotics: for solving vision problems, packing
problem, and space planning problem, etc.;

5) Database Operation: for the relational homo-
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morphism problem, database consistency-maintenance,
query-answering, and redundancy-checking, etc.;

6) VLSI Engineering: for developing various hardware
accelerators for design automation, such as for building a
relaxation-based simulator and tester for logic simulation,
fault checking, and testing.

For a review of the numerous applications of relaxation
processes see [1]-[3], [5], [7]. A relatively comprehen-
sive bibliography can be found in [10].

Since the introduction of the discrete relaxation tech-
nique in the mid-1970’s, many DRA applications have
been found, and much work has been done to develop
optimal DRA algorithms [5], [6]. On the other hand, peo-
ple have also tried to build efficient hardware architec-
tures to support real-time DRA processing. Unfortu-
nately, due to high computational cost including space
complexity, time complexity, and data communication
cost, a conventional hardware architecture implementa-
tion is not feasible [8]. Current research in this aspect is
blocked, and has appeared only in a virtual software sim-
ulator format [4].

The research described in this paper concerns the hard-
ware implementation of discrete relaxation architecture.
In Section II we briefly describe the Discrete Relaxation
Algorithm, and give an example for solving the region
coloring problem. Then we define the DRA hardware im-
plementation problem in Section III. Complexity analyses
and our first design of the DRAI chip are presented in
Section IV. In Section V, we concentrate on the design
of the parallel DRA computational tree and a tree-root
pipelining scheme, and its corresponding O (nm) time
SIMD multiprocessor architecture DRA?2. Finally, it is
shown that we have adopted a dynamically configurable,
highly parallel routing scheme on the DRA3 switch lat-
tice, so that an O(n) time algorithm-configured architec-
tural wavefront system, DRA3, is found.

These three architectures are designed for the same 8-
object 8-label DRA problems. The first two systems are
implemented using PPL (Path Programmable Logic) [13],
[14] at the University of Utah. The DRA1 chip requires
two 4K memory blocks and maximum execution time of
over an hour in a 3 u NMOS process, which makes such
a hardware implementation infeasible [8]. The DRA2 de-
sign eliminates excessive memory requirements and per-
forms the DRA computation in microseconds, at the worst
case in milliseconds. This chip was fabricated using a 3
# NMOS process by MOSIS [9]. DRA3 will be fabricated
using a 1.0 p GaAs technology. The clock speed of
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DRAZ3 is expected to be over 500 MHz [23]. In this paper,
we try to describe our research ideas and the architectural
concepts for these DRA architectures as concisely as pos-
sible. For detailed references see [8]-[12], [23].

II. THE DiSCRETE RELAXATION ALGORITHM (DRA)

A. Boolean Formulation of Discrete Relaxation
Algorithm

Instead of seeking a real number solution in a numerical
relaxation situation [1], the solution to be found in the
discrete relaxation case involves the assignment of set of
labels at each unknown such that some constraint relation

among the labels is satisfied by neighboring unknowns [5],

[6]. Whereas the unknowns in numerical relaxation take
on real number values, the unknowns in a labeling prob-
lem take on a Boolean vector value with each element in
the vector corresponding to a possible label.

The generalized problem involves a set of unknowns
which usually represents a set of objects to be given
names, a set of labels which are the possible names for
the unknown, and a compatibility model containing or-
dered groups of units which mutually constrain one an-
other and ordered groups of unit-label pairs which are
compatible. The compatibility model is sometimes called
a world model. This model tells us which objects mu-
tually constrain one another and which labelings are per-
mitted or legal for those objects which do constrain one
another. The problem is to find a label for each object
such that the resulting set of object-label pairs is consis-
tent with the constraints of the world model.

Boolean vector operations are denoted by ', X, 7, *, +
and - which represent complementation, vector multipli-
cation, transpose, Boolean ‘‘and,’”” Boolean ‘‘or,” and
Boolean vector dot product, respectively. Our basic defi-
nitions which are used in formulating DRA are given in
the following.

Definition 1: Let U = {u,, -+ , u,} be the set of
unknowns, and A = { \,, - - - , \,, } be the set of possible
labels. Then

1) Cis an m by m compatibility matrix for label pairs,
where C(i, j) = 1 if \; is compatible with N;; O other-
wise.

2) A, = (L, - -+, 1,) is the column vector describing
the set of labels (i.e., zero or one) possible for u;, where
I, = 1if \; is compatible with u;; 0 otherwise.

3) Ay = (A; X A))*((Nei(i, j)'E) + C) is an m by
m compatibility matrix for u; and u;, where E is the m by
m matrix for all 1’s, and Nei(i, j) = 1 if u; neighbors u;;
0 otherwise. We use A, to denote the kth row of A;.

Definition 2: A labeling is a vector L = (Ly, * -,
L,)", where L; = (ljy, * = =, l;y) in A; is a Boolean vector
with I; = 1 if label A; is a possible label for object u;; 0
otherwise. )

Definition 3: A labeling is consistent if for every i and
k9

Iy = jIZI] L’é (lae * Ly * Ay(k, P))}- (1)

Once a formal definition of local consistency such as (1)
has been given, it is easy to see that a situation very sim-
ilar to classical relaxation now holds. However, instead
of having to manipulate (1) into a form amenable to iter-
ative solution, we merely note that (1) can be rewritten

L’:Zl (1, * Ay(k, p))}

for every i and k. Since the [; on the right-hand side is
independent of j and p, it is clear that if (2) does not hold
it can be made to hold by setting [;; equal to the value on
the right-hand side. This is, in fact, equivalent to discard-
ing label k for u; if at some neighbor u; there does not
exist a compatible label. If the l;’s, k = 1, m are now
gathered together in vector form:

lix l;
l; li»

n

I < Iy » 11
j=1

(2)

IA

lim li

. —_

2 (> Aa(1.p))

* pgl (llp * Ay(2, P))

Lpgl (llp * Ayy(m, P))_

™~ m 1
,,Z:l (L * Aw(1, p))
K e s % 2] (l,,p * Ain(za P))
p= (3)
L”‘j“, (Ly * Au(m, p))
or ]
liy liy L * Ail(l)[
I, I L, * Ail(z)t
. = . .
lim lim L‘ * A“(m)l
Ln * Aln(l)t
Ln * Aln(z)t
* . .
Ln * Aln(m)l
(4)
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or
Los Lox I ({11 < [4(1)" - ag(m)]}). (5)

Let

(6)

where the column vector:

n

P, =11

i=1

({11 x (1) -+ a,m)])). (1)

Gathering together the L;’s, i = 1, n, we have

L<L=*P. (8)

This formulation emphasizes the relation to classical re-
laxation. The relaxation is achieved by repeating

LeL*P (9)

until L does not change value.

B. An Example of Region Coloring Problem

Suppose that we are analyzing a picture of a scene, with
the aim of describing it, and that we have detected a set
of objects u;, - - -, u, in the scene, but have not identified
them unambiguously. The relationships that exist among
the objects are used to eliminate the ambiguity.

An example for eliminating the ambiguity in a region
coloring problem is given here to demonstrate these ideas
and computation procedures. For simplicity, consider the
case of three regions to be colored red, green or blue with
the constraints:

1) Region 1 must be red,

2) Region 3 must be blue, and

3) No two regions may be colored the same color.

Thus, u; = Region i (fori = 1, 2, 3) and:

U= {u], Uy, u3}
A= {)\1, )\2, )\3}

where A, is red, X, is green, and \; is blue. Since Region
1 must be red, we have:

A =[100]
and since Region 3 must be blue:
Ay =100 1].

Finally, since there is no restriction on Region 2’s color,
we have all possibilities:

A =[111].

Since only similar colors are incompatible, we have:

011
C=1101 (10)
| 1 1 0]
for different objects, and
"1 0 0]
C= (11)
L 0 1._

for the same object.

We see then that C actually depends on the objects un-
der consideration; i.e., technically, we should write G
which is identified as:

Nei(i,j)" Nei(i,j) Nei(i,[)
Cj = | Nei(i,j) Nei(i,j) Nei(i, ;) (12)
Nei(i,j) Nei(i,j) Nei(i,j)'
where
) 0 if Region i does not neighbor Region j,
Nei(i,j) =4
1 if Region i does neighbor Region j.

Now we can calculate Ajj as:

A =([100]" x[100])*((0E) + C)

100] [100 100
=000 (f+x{010[l=]|000]| (13)
000 [0O01 (000

Ap=([100]"x[111])*((E) + C)

11 1 [0 1 1] [0 1 17
=l 000f*{101|=|000]| (14)
000 [110] |00 o]

Az =([100]"x[001])*((I'E) + C)
0017 [0 1 17 [‘001‘
=l 000f*/101|=]|000]| (15
000 [110] [00 0]

Ay = ([1 111" x [100])*((I'E) + C)
(100 [o 11 [0 0 0]
=11 00f*x|101]|=|100]| (16)
(100 [110 1 0 0]

Ap = ([111] x[111])*((0E) + C)

1 1 1 1 00 100
=1 1 1|[*x|{010|=|010]| (17
_111 00 1 00 1
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Ay =([111] x[001])*((I'E) + C)

001 011 001
={0o0 1|*[101|=]00 1] (18)
001 110 000

Ay = ([0 0 1] x [1 00]) % ((V'E) + C)
0 00] [0O117] [0 0 0]
=l000|*|101]|=[000]| (19
Lt o0 |1 10 [100]

Ay =([001] x[111])*((I'E) + C)

000] [o1 1] [oo0o0]
={l0oo0o0|*x|101]|={000] (20
11 1) |1 10] [110_

Ay = ([00 1] x [0 0 1]) * ((0'E) + C)
000 100 000

=looo0|*x{010|=]|00 0] (21
00 1 00 1 00 1

The (p, g) entry of A; tells if N, at object i is compatible
with A, at object j. For example, A, reveals that only A,
is compatible with A, at object 1; i.e., that Region 1 must
be colored red.

Finally we continue the iteration process. According to
),

fori =1land k = 1:

B = 1570 [0 A1, 1) + 1577 A (1, 2)

l(n 1) % A”(l, 3)]

w [ A1, 1)+ 1570 * (1, 2)
+ 1570 % Ap(1, 3)]

w [l A1, 1) + 157 AL, 2)

l(n Doy A13(1, 3)]
1#[1*1+0*0+0=0]
*[0¥0+0*0+1=1]
#[1%0+ 11+ 1=%1]
1

1 which is true.

1

1 =<

IA

(22)

This says that the color red is all right for Region 1. To
determine if the color red is possible for Region 2, we
must find /5;.

Fori =2and k = 1:
10 < 18 1T A (1, 1) + 15T % A(1, 2)
+ 1% 1)*1\21(1,3)]
L1 % A1, 1) + 15577 % A1, 2)
+ 15 ')*A22(1,3)]
# L1577 % A1, 1) + 1577 % Ax(1, 2)
+ 157 % Ay(1, 3)]
1<1*[1*0+0%0+ 0=*0]
*[1*1+1%0+1x%0]
*[0x0+0%0+1x*1]
1=1=%0
1 = 0 which is false.

A

(23)

Thus, 1, must be set to zero. Likewise, fori = 2 and k
= 3, l,5 is set to zero, and blue is not a possible label for
Region 2. Finally,

fori =2 and k = 2:

159 < 1570w 117D % Ay(2, 1) + 1577 % Ay(2, 2)
+ 157V % Ay (2, 3)]
# [1570 % An(2, 1) + 157 % An(2, 2)
+ 157" % Ap(2, 3)]
£ (1970 % Agy(2, 1) + 1577 % Ap(2, 2)
+ 157" Ap(2, 3)]
1<1*[1*1+0%0+ 0x*0]

#*[1%0+1%1+1%0]
*[0%x0+0*0+ 1=*1]

< 1 which is true. (24)

We see then that the value of Iy, l,,, and l3; are not af-
fected by the change of ,; and I, to zero. In fact, the
system of equations stabilizes after the change of /,; and
ly;, and the result is [;; = I, = ;3 = 1, while all other
hypotheses are zero. Thus, the only consistent labeling i is
to label Regions 1, 2 and 3 the colors red, green, and
blue, respectively.

III. THE HARDWARE IMPLEMENTATION PROBLEMS FOR
DRA

A. Assumptions and Statements

To concentrate our attention on tackling the major de-
sign complexities without losing generality for develop-
ing various DRA architectures, the following assumptions
are adopted in our implementations.
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Assumption 1: The numbers of objects and labels are
assumed to be equal, i.e., n = m. Since the extensibility
for different numbers of objects and labels has first been
considered to be an important factor in system design,
DRA?2 and DRAS3 are able to be specified to an arbitrary
number of objects and labels [10].

Assumption 2: For useful DRA applications, we have
chosen the minimal value of n and m to be 8. This is rea-
sonable, for example in image analysis applications.

Assumption 3: Contrary to the assumption in [4] that
the input data are always ready before the DRA compu-
tation begins, we assume that both data load-in time and
their hardware support cannot be ignored in a VLSI DRA
computation. This assumption provides a greater chal-
lenge for an advanced DRA system implementation.

Assumption 4: The time for binary operation is gener-
ally derived from the gate delay of the combinational logic
circuits, which is, in our DRA designs, always less than
one global clock cycle. Similarly, it is common that one
clock cycle is usually less than one Read/Write memory
cycle. That is, we have that

tgatedelay < tclockcycle = tmemoryR/chcle' (25)
Whenever we analyze the time complexity, the following
three statements hold.

Statement 1: Since the fact that the time complexity for
each DRA computing iteration is the same, theoretically,
we estimate the time complexity only within one iteration
of computation.

Statement 2: As for the worst case of iteration times,
which is solely determined by the convergence property
of the algorithm and problem feature, we give its esti-
mation in terms of the corresponding VLSI fabrication
technology.

Statement 3: We also follow the traditional notation for
time complexity analysis for the DRA system, i.e., we
describe it according to object number n and labels num-
ber m, and not the bit number of input data. For example,
following statement 1 that, it takes O(n) time for com-
puting DRA problem in DRA3 architecture, here n is the
number of objects, whereas we have actually loaded in
by m bits of input data for each computation.

B. DRA Hardware Implementation Problems

Definition 4: The DRA2 Hardware Implementation
problem has been defined as finding the consistent label-
ing matrix L:

L=(L,Ly, -~ ,L, - ,Ln)’
rlll, 112’ T, llm ]
121, lzz, Tty lzn
I (26)
_lnh ln2: ’ lnm _J
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for the given Region Coloring Problem, provided by the
initial labeling matrix:

!
Az(Al’Ab'”’Ai’“"An)
(o) (0) (o) 7
ll] ’ lll’ ’ llm
(0) (0) (0)
121 s 122 ’ ’ 12m
T (27)
(0) (0) (o)
_lnl s ln2 s T, lnm -

and the object-label pairs’ compatibility matrices Cy for
everyiandj(i,j=1,2, -+, n). ‘

Definition 5: The DRA3 Hardware Implementation
problem has been defined as finding the consistent label-
ing matrix L:

L=(L,Ly -, L, - aLn)t
rlu’ Loy ooy i ]
hi, DLy, -, by,
=] et e ... (28)
T O

for the given World Model, provided by the initial label-
ing matrix: ’

t
A —_ (Al’ A2, e, Ai’ LI A”)
(o) (0) (0) =
lll s 112 > T, llm
(0) (0) (0)
121 5 122 s Ty, l2m
= “ . e RS ... PR (29)
(0) (0) 1(0)
_lnl s ln2 H s lnm -

and the object-label pairs’ compatibility matrices C; for
everyiandj(i,j=1,2,---,n).

The above definitions represent our research strategy
for developing DRA architectures. The DRA2 system is
aimed at first reducing both the space and time complex-
ities for a particular DRA application problem, i.e., the
region coloring problem. The second one, DRA3 design,
generalizes DRA2 for an arbitrary DRA problem and leads
to a faster and more general purpose architecture.

IV. A ConvenTiIONAL DRA1 DESIGN AND THE
COMPLEXITY ANALYSIS

The entire DRA computation consists of mainly two
parts. The first part generates the n? m by m compatibility
matrices for object pairs u; and u;; i.e., computing each
matrix Ay(k,p) (i,j =1, -, nk,p=1, -, m)
from the most recently evaluated (or originally given at
the first iteration) labelings; as depicted in (13)-(21). The
second part as shown in (22)-(24), is an iteration process
for the relaxation of the current object pairs’ constraints
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among all different objects to produce new labelings; i.e.,
computing each new labeling [ (i =1, -~ -, n; k=1,

-, m), provided by the currently known object con-
straint matrices A;(k, p). Reviewing the DRA formula-
tion and the computational procedure for the region col-
oring example in Section II reveals the complexity issues
met in the DRA1 system design.

Time Complexity: With (22)-(24), at least n X m mem-
ory Read/Write operations must be performed for com-
puting an n by m matrix of l},’]”” * A;(k, p) elements.
Because there are n X m iteration equations (for comput-
ing new labels I, where i =1, - -+, n; k=1, -,
m) which need to be evaluated, the sequential computa-
tion time would be O(n*m?*). In the first DRA1 design,
in addition to using the sequential evaluation strategy, an-
other O(m) time is spent on the complicated nested con-
trol loop for memory Read/Write operations during each
iteration evaluation [8]. Thus the entire computation time
within each iteration costs 0(n2m3). There are other bi-
nary computations which must be taken into account. Ac-
cording to assumption 4, their contributions compared to
R/W operations of memory are ignored.

Space Complexity: During each iteration of DRA com-
putation, several intermediate arguments (initial argu-
ments at the first iteration) take certain amounts of space
be stored. The initial label matrix A (L) matrix ) and the
next iteration result of A each takes O(n*) space. The
matrices A; X A} and the label pairs compatibility ma-
trices C;(k, p) as well as the resulting object pairs com-
patibility matrices A;(k, p) (i,j=1,--,mk,p=1,

- -, m) each takes O (n*m*) space. The total space com-
plexity is:

0(2n* + 3n*m?) = O(n*'m*). (30)

Data Routing Complexity: It is meaningful to consider
the routing complexity only if a parallel DRA architecture
may possibly exist. We are to discuss this issue in Section
V and Section VI when developing parallel DRA archi-
tectures. In fact, the data routing complexity during each
iteration is over O(n*m?). For an 8-object 8-label DRA
parallel system, there are at least 8K data being routed or
communicated during each iteration.

The DRAL1 architecture, unfortunately, serially com-
putes each intermediate element. The computation strat-
egy imbedded in this design is purely I/0-bound. Assum-
N treaa = twrie = 500 ns for an NMOS process and the
time complexity is O (n*m®) of each iteration. Multiply-
ing the possible maximum iteration times, which is on the
order of O(ea®) and is determined by the feature of the
computational model [6], the worst case execution time is
over an hour. For practical applications, the number of
objects could be 8, 16, or 32, the corresponding memory
requirements for these different cases are 8K, 32K, and
128K, respectively. As shown in the DRA1 design, this
has greatly added to the circuit size which has been a bot-
tleneck in DRA1 system design when n becomes larger.

V. PARALLEL TREE-ROOT PIPELINING AND THE DRA2
SYSTEM

In the analyses above, most of the computing time was
spent on the R/W operations for matrices A;;(k, p); more-
over, one half of the O(nzmz) space is taken for the gen-
eration of matrices A;(k, p), which blocks the DRA1
VLSI computation. In this section we describe a DRA2
architecture which is completely independent of the A;; (k,
p) evaluation [9].

A. A Parallel Tree-Structured Reformulation for DRA

It should be clear that any attempt to speed up an I/O-
bound computation must rely on an increase in the mem-
ory bandwidth. Speeding up a compute-bound computa-
tion, however, may frequently come from the concurrent
use of many processing elements [16]. The degree of par-
allelism in a special-purpose system is largely determined
by the underlying algorithm. In order to solve the com-
plexity arising in the conventional DRAT1 design, the fol-
lowing three steps have been taken to design a hardware
algorithm that supports a high degree of concurrency in
DRA computation.

1) Constructing the Parallel Computation Tree: When
more effort is spent analyzing (2), we see that element
A;(k, p) can be decomposed as:

APV (k, p) = 1R1 Cy(k, p) (31)

which can form a leaf node as shown in Fig. 1, so that
(2) can be hierarchically formed as a tree-like structure
with each level imbedded in the parallel computation for
their leaves’ operands as shown in Fig. 3.

2) Speeding Up Iteration: Once a DRA problem in
processing is identified as convergent, its current com-
puting labeling reaches its final consistent labeling
asymptotically in such a way that the error vectors, i.e.,
the difference vectors between these two labelings, mon-
otonically decrease. Therefore, the node computation in
Fig. 1 can be speeded up by replacing the initial given

elements / f,f ) and l]‘-;) with the most recently n — 1th it-

erated results [§f ' and /{y ~". The modified computation
composed of the leaf node is shown in Fig. 2. The com-
putation tree for [j; ) is formed as shown in Fig. 3. In Sec-
tion V-B it is shown that the bottommost leaves’ operands
have been associated with a data pipelining channel, com-
pleting a multiple parallel tree-root pipelining scheme
which supports a highly concurrent DRA computation.
For convenient notation in the rest of the paper, we clas-
sify these three kinds of bottommost leaves’ operands of
Fig. 3 in the following definition.

Definition 6: 1) We define the labeling elements of the
Lpys (j = 1,--+,nandp =1, - - -, m), which are
inside the pipelining channel, to be [-pipe, and those on
the tree root to be I-root. Both l-pipe and Il-root have the
same logic values except they are topologically separated
in the system layout. 2) Signal [;, passes through all roots
horizontally through each row array of k; it is defined as
the broadcasting signal b,. 3) The C;(k, p) matrix ele-
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Bp("'" x (I BP(O) Cljﬂ"P))

Bp(n-l) 1, @ gp(o) C“(k.p)
Fig. 1. Leaf node for computing [, X A;(k, p).

,jp(n-l) x (Y Cylk.p))

Bp(n—l) llk(n-l) Clj(k'p)
Fig. 2. Modified leaf node computation for /;, X A;(k, p).

be by Culkd) Iy Ly Cylkm) b by Cplel) Iy b Cpkom)
Fig. 3. A parallel tree for computing nth /.

ments, which are systematically distributed along each
tree root, are defined as the C,-j(k, p)-Pattern.

3) Introducing a Time Dimension in the Computa-
tion: To compute an n-object m-label DRA problem, a
total of n by m [;’s need to be evaluated. This means at
least 64 computation trees as shown in Fig. 3 need to be
built inside the circuit for our n = m = 8 case, which
greatly increases the circuit size. To minimize this prob-
lem, each operand at the bottom of the tree has been con-
structed in a time-dimension. As the time changes for-
ward, different [,’s (i =1, - -+ ,n; k=1, -+ ,m)can
be generated. These time-varying characteristics can best
be described by the following spatial-temporal (ST) index
equations:

(32)
(33)

Denoted by A < B or we say that 4 is generated by B.
We call i, or i + ¢, and j, or j + ¢ the spatial-temporal
indexes since they characterize the indexes in the recur-
sive formulas of (1)-(9). They constitute the theoretical
basis for the recursive systolic computation and inter-
leaved processing in the DRA2 and DRA3 systems, while
the basic DRA-PE cell realizes the computation in the for-
mula. It is also of interest to see that in the DRA2 system
[9], the ST indexes generate the dynamic forward DRA
computational wavefront on a statically configured DRA2
architecture; while in the DRA3 architecture [10], it forms

i < i+ tmodn,

j < j+ tmodn.

the dynamically configurable DRA3 architectural wave-
front for a virtually static computation.

B. Implementation Issues for the DRA2 Chip

1) System Architecture and Block Diagram: The block
diagram of the DRA2 circuit is illustrated in Fig. 4. The
chip consists of four functional blocks.

a) Compatibility Matrix Registers (CMR). C; Regis-
ters are a set of eight 8-bit shift registers in the leftmost
part of the circuit; they are used for storing each C;; ma-
trix. Another set of C; Registers in the rightmost part of
the circuit are for storing C;;.

b) 8 X 8 Multiprocessor SIMD Array (MSA). The
MSA is composed of 8 by 8 simple and regular cells. They
are predefined to map the highly parallel computation al-
gorithm of Fig. 3 onto silicon. A number of parallel hor-
izontal and vertical communication wires are designed
around the four edges of the cells to make use of higher
degrees of parallelism in the computation.

¢) L-matrix Shift Register (LSR). It is used for 1) the
input and output data paths for the original and final la-
beling matrices, 2) the pipelining channel for tree-root op-
erand broadcasting and pipelining, forming a recursive
DRA computational wavefront, and 3) performing tem-
porarily the data storing and updating.

d) Control Module (CM). This module includes four
units. An 8-Bit Comparator is located on top of the first
8-bit shift register of the LSR to sense the equality be-
tween the nth output vector L{"™ of the MSA array and the
corresponding n — 1th row vector L{" ~" inside the LSR.
A Timer is served as both the systole pacer and tagged-
bit signal generator for iteration control. An 8-Bit State
Register is used for collecting comparison results from the
Comparator and monitoring iteration states. Finally a Fi-
nite State Machine (FSM) is built for performing a self-
timed synchronization among these functional blocks and
host computer.

This diagram of four functional blocks also serves as
the PPL layout floor plan for efficient layout (in subsec-
tion V-D). ,

2) Multiprocessor SIMD Array and the Cell De-
sign: The basic principle of the Multiprocessor SIMD ar-
chitecture for DRA?2 is illustrated in Fig. 5. By replacing
a single Processing Element with an array of 8 by 8 PE’s,
a higher computation throughput can be achieved without
increasing memory bandwidth. The function of the mem-
ory (i.e., the L matrix shift registers) in the diagram is to
pulse data l-pipe;, (j =1, --- ,n;p=1,--+,m)
through the array of cells. Then new data [-pipe; (i = 1,

- ,n k=1, -+, m) are returned to memory in a
rhythmic fashion. The crux of this approach is to ensure
that once the data are brought out from the memory they
can be used effectively at each cell they pass while being
pumped through the entire array.

To perform the parallel DRA2 computation, two cells
[as illustrated in Fig. 6(a) and (b)] with almost identical
logic and structure were used in constructing the entire
array. The only difference is that the first cell performs
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Fig. 4. Circuit block diagram for the DRA2 system.
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Fig. 5. Basic principle of the parallel DRA?2 system.
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Fig. 6. Two cells in multiprocessor DRA2 array. (a) Cell-A. (b) Cell-B.

the generation of the multiple broadcasting signals b, (k
=1, - - -, m) for each row array while the second cell
is only transparent to the passing of the b, signals. The
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construction of the multiprocessor SIMD array using these
two cells is illustrated in Fig. 7.

b, = l;, at column j = 1. (34)

J

<
M s

(ljp X Iy X Cii(k,P))

I
-]
Nk

= p§1 (lj]) X bk X C,-i(k, p))

= 2 (lp + b+ Ci(k, p)). (35)
Biiny = bi(our)» at columns j # 1. (36)
Ollt(j, k)j;e] = pgl (ljp X At](k9 P))
= p§1 (ljp X lik X C,](k, p))

p§1 (l]p X bk X CU(k’ p))

= é (I, + b + Cy(k.p)). (37)

According to Fig. 3 and (34)-(37), these two cells are
implemented in two levels of NOR gate combinational
logic. Their PPL [13], [14] layouts can be easily identi-
fied in Fig. 13.

We see from Fig. 6 that in essence the inner summation
part of (2) is carried out in Cell-A and Cell-B, while the
outer multiplication part of that equation is implemented
in each horizontal array in Fig. 7.

It is also noted from Figs. 6 and 7 that the DRA2 ar-
chitecture can readily be extended to different numbers of
objects and labels. For example, a row array of the num-
ber k in Fig. 7 can be added in order to attach one more
label for all objects, while a column array of the number
j in the same figure can be added to extend the system for
one more object, provided that the corresponding changes
inside each cell are made. The critical analysis indicates
that the monolithic DRA2 systems for 8, 16, and 32 ob-
jects are technically implementable in the 3.0 p NMOS,
2.0 p and 1.2 CMOS, and 1.0 u GaAs processes [12].

3) Circuit Features and Design Techniques: In addi-
tion to designing the simple and regular cells, several ef-
ficient techniques, such as interleaved processing, multi-
ple signal broadcasting, and self-timed synchronization,
were applied to the implementation of the SIMD multi-
processor DRA2 architecture.

Recursive Systolic Computation and Interleaved Pro-
cessing: Since the introduction of the time dimension in
subsection V-A, the multiprocessor SIMD array in Fig. 7
possesses a time-varying characteristic which makes re-
cursive systolic computation and interleaved processing
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.................................... j=2 i=1

Fig. 7. Construction of SIMD multiprocessor array using Cell-A and
Cell-B.

possible. Let us focus on the first column (j = 1) array.
It is clearly indicated that the first input vector, which is
the ith row vector of L, the labeling matrix, at the n —
1th iteration, is fed into the first column of DRA?2 array
as

(ljl’ ljZ’ lj3’ T ljm)’
where j = 1, - - -, n. The corresponding output vector
L, of the multiprocessor SIMD array, which is the ith row

vector of L labeling matrix at the nth iteration, is gener-
ated:

(ln, lig, liz, =+ -, lim)’

where i is fixed at a time ¢ = i. As time moves forward,
the elements in the L shift register have shifted from the
left to the right in an 8-clock-pace fashion. For example,
in the DRA2 system, at time t = i = 1, vector L,

(llla 1127 113’ ll4a 115’ 1169 ll77 118)

is generated [see Fig. 8(a)], and at time ¢ = i = 2, vector
L,

(121’ 122, 1231 1247 1257 126’ l27’ 128)

is generated, etc. [see Fig. 8(b)].

Each L; vector is computed based on the interleaved
utilization of the multiprocessor SIMD array, whereas
‘eight L; vectors form an entire computational wavefront
of the L labeling matrix, of the nth relaxation iteration.
Note that we use n computing trees for generating n X m
l’s in O(nm) time; we may also use O(nm) computing
trees to compute the same number of [;’s in O(n) time,
provided that the latter has a uniformly progressing wave-
front in time and in space.

Multiple Signal Broadcasting: The broadcasting
technique is probably one of the most obvious ways to
make multiple use of each input element. It plays an im-
portant role in making the parallel computation tree
of Fig. 3 implementable. Two multiple broadcasting
schemes are used in DRA2 architecture. In the first, n by

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-9, NO. 6, NOVEMBER 1987

(a)

(b)
Fig. 8. Computational wavefront pipelining and circulation for interleaved
processing.

m vertical broadcasting lines from each pipelining oper-
and are connected to the bottom most leaves’ node of each
parallel computing tree (passing each [-pipe to l-root).
Secondly, as depicted in Figs. 6 and 9, Cell-A at column
j(=1) is used to jog signal I§ ~" (which is the nth
l-pipe;,) and then propagate it horizontally from right to
left through the entire row array. Thus, the output vector
of the multiprocessor SIMD array, i.e., (L, L2, L3, L,
I;s, lig, li7, lig), can be generated simultaneously in a
highly concurrent manner.

Definition 7: The second multiple data routing scheme
for jogging by at column j = 1, as illustrated in (32) and
(34), and Fig. 9, is defined as the J-Pattern.

Associative Circular Pipelining: During each clock
cycle, many operations are performed by bringing the
right data together using the associative circular pipelin-
ing in the DRA2 design. Figs. 7, 8, 9, and 10 show the
implementation of two circular pipelining loops.

The first pipeline is designed for the /;, elements. This
pipeline can be viewed in two parts, the master pipeline
part and the slave pipeline part. The master pipeline refers
to a serial horizontal circular pipeline of the /;, elements
inside the main pipelining channel, LSR. While the mas-
ter pipeline is going on, a parallel horizontal virtual cir-
cular pipeline is followed in k row-horizontal array. The
parallel pipeline in the DRA array is a slave pipeline of
the master one which is supported by multiple signal
broadcasting.
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Fig. 9. Broadcasting scheme for the b, signals.

Viewing Fig. 10, the second pipeline loop for [ is a
parallel vertical circular pipeline which crosses the serial
horizontal pipeline at the rightmost first m-bit registers of
the main pipeline channel, updating the old labels in the
channel with new labels.

In addition to providing impressive parallelism, an ex-
tra advantage of both pipelining scheme is that they de-
crease the routing and control complexities significantly.

Self-Timed Synchronization and Tagged-Bit Con-
trol: By using recursive systolic computation and inter-
leaved processing, the computational task has been de-
composed into the smallest computing piece L;. To
compute each vector L;, the globally synchronized mul-
tiprocessor SIMD array of Fig. 7 is used. For completing
the entire relaxation computation, this synchronous array
is imbedded into a self-timed system. The self-timed
asynchronous scheme may be costly in terms of extra
hardware and delay in each element, but it has the advan-
tage that the time required for a communication event be-
tween two elements is independent of the size of the entire
system [17]. Also, it is easy to design and validate a self-
timed state machine in PPL methodology [18].

Among the 64-bit L shift registers, the rightmost first
8-bit SR is one which is able to parallel load in the nth
output vector from the multiprocessor SIMD array in or-
der to update the current n — 1th L; row vector. This it-
eration and updating process is the core of the relaxation
process described in (8). To sense the completion of com-
putation, a Comparator is built on top of the first 8-bit
SR. If two vectors are equal, a row-eq signal of 1 is pro-
duced and stored into 8-bit States SR of the Control Mod-
ule; otherwise a O signal is sent. As soon as the State
Register gets eight 1’s, which means the equality of (8)
is reached, an all-eq signal is issued to the FSM. Since
the control processes in this system are based on the data
validity of a control data flow, reliable and fast execution
in a data-driven environment is created. The control
mechanism used in the parallel DRA2 architecture is
shown in Fig. 11.

To ensure that the iteration cycle completes at the end
of n X m cycles, a tagged-bit is derived from an ANDed
term of both the I;; bit and the 64th-count of the Timer,

: Y
N -— o /
N i v /
\‘ .
\ . /

\. . :

\. /
.. ¢ e
\\--.———/'/

- ik

Fig. 10. Associative circular pipelining.

all-eq

row-eq

I
Emer ‘ FSM lSmes SR HComparato;‘
| S )
B k%

[ 64-Bit SR

!

Fig. 11. Self-timed synchronization.

which has served as a reliable alignment signal for com-
putation in the control flow. In Fig. 12 the state graph of
the FSM is illustrated.

C. Performance Evaluation

With the parallel tree-structured reformulation and tree-
root pipelining in its system design, the DRA?2 architec-
ture takes advantage of a high degree of pipelining and
multiprocessing. It gets rid of the need for storing and
computing each element associated with the object pairs
matrices A;;(k, p). One-half of the O(n’m®) space is
eliminated; the other half is reserved for input data C;; (k,
p), the label pairs compatibility matrices. In certain DRA
computations, as shown in the Region Coloring Problem,
the space complexity can even be reduced to O(nm); i.e.,
only an O(nm)-bit shift register is required to store all n
by m intermediate (or original) labeling elements [9]. Ob-
viously, the DRA2 computation during each iteration only
takes O(nm) clock cycles. Assuming a clock cycle is
about 120 ns (using a 3 u NMOS process and the PPL
design methodology ), DRA2 performs the DRA compu-
tation in microseconds, and in the worst case, i.e., mul-
tiplying the maximum possible iteration time, O (ea’), in
milliseconds [9].
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Fig. 12. State graph of the finite state machine.

D. The PPL Layout for DRA2 System

The DRA2 chip was built by assembling the four func-
tional blocks in Fig. 4 using PPL (Path Programmable
Logic) tools at the University of Utah [13], [14]. Since
parallel computation and the multiprocessor SIMD array
greatly simplify the design difficulties, the PPL layout is
very simple and straightforward. An overview of the com-
plete PPL layout, which is a PPL mapping of the block
floor plan in Fig. 4, is shown in Fig. 13.

For details associated with the complete system design,
the simulation results, interfacing strategy with host com-
puter, timing and wiring delay analysis, testing, pinout
description, and fabrication of the DRA2 chip see [9],
[11] (see Fig. 14).

VI. AN O(n) TIME ALGORITHM-CONFIGURED
DYNAMIC ARCHITECTURAL WAVEFRONT SYSTEM

Compared to the conventional DRA1 design, the DRA2
system achieves a very impressive performance improve-
ment in terms of speed, size, and memory access require-
ments. However, there are still several bottlenecks in de-
veloping a fast general purpose DRA architecture.

A. Complexity Issues Revisited

Time Complexity: The O(nm) time of the DRA2 sys-
“tem is suitable only for a small number of objects, al-
though the number of objects and labels in DRA2 archi-
tecture can be extended to a larger number of objects and
labels. The larger the number of objects and labels are,
the slower the DRA2 system becomes. It is desirable that
a much faster DRA architecture be designed for real-time
processing of a larger number of objects and labels.
Data Preprocessing Complexity: One of the remark-
able characteristics of the DRA problem is that a large
number of data, such as O (n*m*) elements of label pairs
compatibility matrices C;(k, p), must be loaded into the
system before the computation is performed. In addition
to this, the data ordering and format which might be pro-
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cessed during the load-in time must be arranged to support
efficient DRA computation. Following assumption 3, the
term Data Preprocessing Complexity (DPC) is used here
to refer to the complexity issues which arise in the anal-
ysis of the time and space, as well as hardware complex-
ities in this kind of data-preprocessing-intensive VLSI
computation. Some labeling solutions avoid this problem
by assuming that the data is always ready for computa-
tion.

Data Routing Complexity: One of the proposed DRA3
architectures [10] is shown in Fig. 18, in which the data
routing complex1ty in the horizontal direction between two
DRA modules is of O(m?); a total of O(nm*) connec-
tions are required for nm DRA modules to be routed. The
data routing complexity becomes another dominant factor
in designing the DRA3 system as the number of labels
increases.

Fabrication Difficulty: Although we have separated the
main pipelining channel and have used the larger buffers
to drive between shift registers, its characteristic turns out
to be worse as the numbers of #n and m increase.

C; (k, p)-Pattern Analysis

The DRA3 architecture overcomes these difficulties
based on the use of the dynamically configured architec-
tural wavefront on the DRA3 switch lattice [10]. It runs
the DRA computation in O(n) time without the extra re-
quirement for data preprocessing hardware and without
requiring the horizontal routmg among the DRA modules,
provided that only an O(nm*) number of switches must
be added to the original multiple broadcasting wires of the
DRA2 system.

In fact, computing time, data preprocessing complex-
ity, and data routing complexity form a coherent mixture
in the DRA3 system design. We illustrate its major ar-
chitectural concepts beginning with the analysis of Cj;(k,
p)-Patterns in the case of n = m = 3.

Referring to (2) and Fig. 8, the first computat10nal
wavefront for computing the nth labels / fk is formed at
time ¢t = { = 1 as follows.

landk =1, 2, 3:
D (10T Ak, 1) + 1570 % Ak, 2)
+ 157 % Ay (k, 3)]
x (1570 % Ak, 1) + 15570 * Ap(k, 2)
+ 1570 x Ak, 3)]
w1570 % Ak, 1) + 1577 * Ap(k, 2)
+ 157 % A(k, 3)].

Fori =
I = 1%

(38)

A snapshot of the Cy;(k, p) (j, k,p =1, 2, 3) matnces
distribution pattern which is matched with the 1 Ik wave-
front at ¢+ = 1 is shown in Fig. 15. At tlme t =2,acom-
putational wavefront for generating 159 is produced. For
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Fig. 13. The PPL layout of the multiprocessor SIMD DRA2 system.

'
/

Fig. 14. The photomicrograph of the DRA2 chip.
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Fig. 15. The C;(k, p) pattetn for generating /,;'s.

i=2andk =1, 2, 3:
B = UV (1070 % Ak, 1) + 1570 % Ay (k, 2)
+ 15570 % Ay (k, 3)]
[0 % Ap(k, 1) + 157" % Agy(k, 2)
+ 15'31—1) * Ap(k, 3)]
(15177 % Mgk, 1) + 1577 % Ags(k, 2)

+ 157" % Ay(k, 3)]. (39)

The C,;(k, p) (j, k, p = 1, 2, 3) matrices distribution
pattern at this time is shown in Fig. 16.

From Figs. 15 and 16, several criteria for DRA3 archi-
tecture are derived.

1) Attime ¢ = i, to compute each new labeling vector
L;, different computational wavefronts are formed and the
associated C;(k, p) matrices are distributed. More accu-
rately, at time ¢, each matrix C,j(k, p) elements (where
t,j=1,-++,nandk,p =1, - -+, m) stored in the
kth row of a parallel memory in Figs. 15 and 16 are re-
trieved. Thus a parallel Row-Readable RAM is required.

2) It is clearly indicated that the Cij(k, p) elements as-
sociated with each dynamically pipelined operand in the
main tree-root pipelining channel are one unit of j skewed
and horizontally circulated. The cyclic shifting of the bits
of C;(k, p)-Patterns elements to the right for m-bit po-
sition corresponds to a Block-data Shuffling operation
[21]. We summarize and extend all distribution C ma-
trices’ patterns in Fig. 17. (Each symbol actually is a ma-
trix distributed in Figs. 15 and 16.)

The first requirement requires a simple associative pro-
cessing, i.e., parallel Row-Readable RAM’s; while the
second criterion demands higher order design complexity
in time and data preprocessing, as well as in data routing.

A candidate design for the DRA3 system, where n =
m = 8, is presented in Fig. 18. The DRA3 system is made
up by using 8 by 8 DRA modules. Each module consists
of a PE cell (same structure as Cell-A and Cell-B in DRA2
system) and a local Row-Readable parallel RAM for
C;(k, p)-Pattern.

A preshuffling chip is implemented and fabricated using
a3 u NMOS PPL design methodology in order to make

L—’ ]n(n-l) |u(n-l)| l"(n.l) 131(n-l)1 lu(n-l)l |zz(n-l)' |ll(n-l) ’——J
T

LD l 15,001

k=l | Cu13) |Cyy(12) | C(1,1) || €213 |Cos1D) | Coptt,D) ([ 2213 | Cp(12) | CopliD) | —smm 1, ()
k=2 | Cu@d) [Cy2D)| CHRD || €23 |Co322)| Coy2h || €23 Cp2d) | Co2l) | —mm 1y
k=3 | 2133 | Cp(3.2)| Cp3,1) [] C5333) [C333.2) | Coy3D) [ Cp33)| €353.2) | Cpp(3,1) | mmemm 1™
i=1 j=3 j=2
t=i=2
Fig. 16. The C,;(k, p) pattern for generating ,’s.

t=1 Cis(k, p)  Cu(k,p)  Culk, p)

r =2 Cy(k, p) Cos(k, p) Cu(k, p)

1=3 GCylk,p) GCulk,p) Cylk, p)

Fig. 17. A circularly skewed C;; (k, p)-Pattern when generating /[;’s.
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Fig. 18. A candidate design for the DRA3 system.

the Cj; (k, p)-Pattern the same format as in Fig. 17 [22].
However the pre-processing hardware costs O(b%) time
(noting that b is the number of bits to be shuffled) and
takes more than half of the chip, provided that a difficult
inter-chip routing problem remains unsolved [10].

C. A Dynamically Configurable DRA3 Architecture

The configurable, highly parallel computer system is a
multiprocessor architecture that provides a programmable
interconnection structure integrated with the PE’s [15].
The original idea is that, the computer processing begins
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with the controller broadcasting a command to all switches
to invoke a particular static configuration setting. The de-
sign of the DRA3 system has revealed that by adopting
an advanced dynamic configuring strategy on the DRA3
switch lattice, not only can the DRA computational wave-
front be generated while retaining the benefits of uniform-
ity and locality that DRA-PE exploits, but also the com-
bined limitations imposed in upgrading DRA3 architecture
can be completely eliminated.

1) The Architectural-Computational Wavefront (ACW)
Notation: We rewrite Weiser and Davis’s definition of
wavefront [19]:

Definition 8: A wavefront, denoted as A, represents an
ordered set of data elements: {a(1, m), a(2, m), - -+,
a(N = 1, m), a(N, m)}, where m is the ‘‘time’’ sub-
script. The elements a (I, m) for all m belong to the Ith
data stream. For simplicity, the ‘‘time’’ subscript in the
elements of a wavefront is omitted and a (i, m) will be
simply represented as a (i ).

We extend the definition as follows.

Definition 9: The Architectural-Computational Wave-
front (ACW ) Notation [10] consists of two different wave-
fronts. The Computational Wavefront is an ordered set of
data elements: {c(1,i + 1), c(2,i+ 1), -, c(N,i
+ 1)}, where i + 1 is the spatial-temporal index in (32).
The Architectural Wavefront is an ordered set of architec-
tural configurations: {a(1,j + 1), a(2,j + 1), -,
a(N,j + t)}, where j + 1 is the spatial-temporal index
in (33).

The following distinctions are made which are neces-
sary for building a DRA3 system:

1) The computational wavefront dynamically pro-
gresses on a static architecture, as the ST indexes in-
crease. The architectural wavefront progresses, by dy-
namically configuring the system architecture, in a way
against the computational wavefront, as the ST indexes
increase. For instance, as we have seen that the ST index
in DRA2 forms a dynamic DRA computational wavefront
on a static DRA?2 architecture; we will soon see that the
ST index of DRA3 generates a dynamic DRA3 architec-
tural wavefront for a virtual static DRA computation.

2) The equivalence between computational wavefront
and architectural wavefront holds. Thus either one char-
acterizes both of them.

3) Both architectural and computational wavefront no-
tation have spatial parameters, such as i and j, and tem-
poral parameter, such as 7, so that both can be manipu-
lated on the space and time domains.

4) The conventional wavefront notation assumes a uni-
form progression of the data stream. This restriction is
eliminated by combining ST indexes with ACW notation,
as it is obvious that these indexes may behave synchro-
nously or asynchronously.

5) The ACW notation first differentiates the computa-
tional wavefront and architectural wavefront and is more
suitable for exploring architectural configurability and the
synthesis of highly configurable system.

Referring to (2), (32), and (33), there is always a data

dependence relation among these arguments with respect
to time ¢ and positions k and j, that:

m
. (n—1) -1
l‘Plpegi)z,k « Zl l-root iy 1k l'romj(":tz,p) Ci+t,j+1(ks p).
, p=

(40)

In Fig. 7 we see that this data dependency equation is
topologically mapped onto silicon in terms of the parallel
tree structure. The vertical broadcasting of the [-pipe op-
erands from pipelined channel to DRA array is described
by a routing function:

t41)

where the symbol { denotes an alignment relation such
that A4 3 B if and only if 4 and B have the same physical
column position of j. The J-Pattern of Definition 7 is
routed by equation:

. (n—1) —1
l'plpei+1,k - l‘rOOt]("Jlrz,p) i Ci+t,j+t(k’ P),

l—root}’iz,],) - l—rootiiz}() 2 Gy, p). (42)

The DRA computation is valid if and only if these two
dependency equations are true at any time 7 and positions
k and j, as well as the iteration times n. Equation (41)
stands for a static network in the DRA3 architecture.
Equation (42) is a virtually static network; a potential
speedup in the DRA3 computation can be reached by dy-
namic configuring (41) in an ACW notation.

2) Dynamic Configuring the DRA3 Architectural
Wavefront: Though symbol j represents the horizontal
spatial shifting (in Figs. 15 and 16) while the symbol ¢
represents the temporal unit, the computational wavefront
progression of l-root; ., , proceeds [referring to (32) and
(33)] as the increasing of j + ¢, where the combined pa-
rameter j + ¢ must not be associated with any dimensions.
By Definition 9, it is obviously correct that the [;; com-
putational wavefront moves from left to right, as the ST
indexes increase and is equivalent to that of the J-Pattern
(one configuration of the architectural wavefront) shifts in
the reverse horizontal direction, as the ST indexes in-
crease. The DRA computation can be performed by ma-
nipulating either a computational wavefront or configur-
ing dynamically an architectural wavefront.

In Fig. 19, we create a dynamically configurable DRA3
architectural wavefront by building an algorithm-config-
ured switch lattice. A total number of O(nm* + nm)
switches are added between each vertical wire and hori-
zontal wire.

In Fig. 19, there are n by m identical DRA modules
denoted by My, (j =1, - -~ ,nand k =1, -+, m).
Let SN, denote a Switching Node which connects vertical
broadcasting wire /; and horizontal l?roadcasting wire by
inside of each Module. Let BS; denote a Bus Switch
which connects the labeling output of the multiprocessor
SIMD array to the operands of the *‘pipelining channel,”’
noting that the pipelining channel is now static and is re-
placed with an O (nm)-bit RAM. These switches are pro-
grammed by a Self-Timed System Controller, as is shown
in DRA2 circuit, to avoid the time delay that occurred
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Fig. 19. The DRA3 architecture.

during the broadcasting on the switch lattice. For DRA3
computation, we give the following.

Definition 10: We define the DRA3 architectural wave-
front to be the interconnection patterns of the DRA3
switch lattice, of which both the switches SN, for a col-
umn j, i.e., the J-Pattern at a specified column j, and
switches BSj for that column j are invoked simulta-
neously, where index j is defined in (33).

During the DRA3 computation, at index j (mod n), the
DRA3 architectural wavefront shifts from right to left in
O(n) clock cycles, therefore, an entire DRA computa-
tion, which is virtually static, is dynamically generated.

It would now be of interest to examine whether the
complexity issues in Section VI-A are solved upon build-
ing the DRA3 architecture. First, a time upper bound of
O(n) is reached. Secondly, there is no particular hard-
ware support and no special requirements for data-prepro-
cessing. Under dynamic parallel configuring of DRA3,
the C;;(k, p)-Pattern is naturally distributed in matrix in-
dex order in the original parallel memory. For an intujtive
understanding, we redraw the Cij(k, p)-Pattern of Fig.
17 in Fig. 20 which is associated with our DRA3 com-
putation strategy.

The third problem, an intensive multiple data routing
requirement,. is eliminated by adding O(nm? + nm)
switches on the DRA3 switch lattice. As for the long
pipelining channel, it is replaced with O(nm) bits of
smaller and more reliable RAM cells, under the dynamic
data routing. Finally, since Cii(k, p)-Pattern is designed
for O (n®) arbitrary m by m C-matrices, the DRA3 system
is good for any general purpose DRA computation.
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Fig. 20. A C;(k, p)-Pattern under dynamic reconfiguration of DRA3.

VII. CONCLUSIONS

We have described several VLSI architectures for
speeding up the computation of the Discrete Relaxation
Algorithm. The key issues are a new tree-root pipelining
scheme and a technique to dynamically configure the ar-
chitectural wavefront in terms of DRA algorithm. The im-
plementations of these architectures offer much greater
processing performance than general purpose processors.
Further research in this area is to imbed the highest degree
of flexibility in DRA design by allowing programmability
in cells as well as reconfigurability of cell interconnec-
tions, for generating efficient and faster dynamically con-
figurable MIMD DRA architectures.
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