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Abstract

This paper explores the connection between Computer Aided
Geometric Design and computer vision. A method for the automatic
generation of recognition strategies based on the geometric
properties of shape has been devised and implemented. This uses a
novel technique developed for quantifying the following properties of
features which compose models used in computer vision:
robustness, completeness, consistency, cost, and uniqueness. By
utilizing this information, the automatic synthesis of a specialized
recognition scheme, called a Strategy Tree, is accomplished.
Strategy Trees describe, in a systematic and robust manner, the
search process used for-recognition and localization of particular
objects in the given scene. They consist of selected features which
satisfy system constraints and Corroborating Evidence Subtrees
which are used in the formation of hypotheses. Verification
techniques, used to substantiate or refute these hypotheses, are
explored. Experiments utilizing 3-D data are presented.

1. Introduction

We describe a systematic approach for both the generation of
representations and recognition strategies based on Computer Aided
Geometric Design (CAGD) models. Figure 1 shows such an
integrated system which is composed of several components: a
CAGD system, a milling system, a recognition system and a
manipulation system. Recent work by Ho has focused on the
generation of computer vision models directly from the CAGD
model’- 2. In this paper, the automatic generation of recognition
strategies based on the CAGD model is studied.
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Figure 1. Integrated Automation Environment
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The work described here investigates the use of geometric
knowledge in constructing strategy trees. These trees provide a
robust mechanism for recogniton and localization of three
dimensional objects (occluded as well as non-occluded) in typical
manufacturing scenes. The run time matching of 3-D models to a
scene can be expensive. If the search technique is optimized, cost
can be decreased, thereby improving run time performance. One
way to accomplish such optimization is by the off-line examination
and evaluation of the 3-D model.

1.1. Related Work

One of the first researchers to study the automatic synthesis of
general recognition strategies was Goad®. His work differs from that
described here in that he obtained 3-D interpretations of 2-D intensity
images rather than 3-D sensor data. The only features used were
straight edges from intensity images and the search trees were
generated from a template and ordered by hand rather than
automatically. His system didn't consider partial occlusion.
However, this was a major contribution since it was one of the first
attempts to automate the generation of recognition schemes.

Another influential project was the 3DPO system by Bolles and
Horaud4. This work is the 3-D generalization of the Local Feature
Focus methodS. Their system annotates a CAD model producing
what is called the extended CAD model. From this model, feature
analysis is performed to determine unique features from which to
base hypotheses. The focus feature in their system is the dihedral
arc. When the recognition system finds a dihedral arc, it looks for
nearby features which are used to discriminate between model arcs
with similar attributes. From these, an object's pose is hypothesized
and subsequently verified. The work here work closely parallels the
3DPO system. However, focus features were hand chosen in 3DPO
as were the local features used for discrimination.

Recently, Ikeuchi has explored the use of interpretation trees for
representation of recognition strategies®. His system uses the
concept of visible faces to generate generic representative views,
called aspects. From this set of aspects, an interpretation tree is
formed which discriminates among the different aspects. There
doesn’t appear to be any algorithmic approach for the application of
the rules to discriminate between the aspects. The branching on the
tree seems to be a function of the particular aspects chosen rather
than being based on the geometric information in the model.

The system developed in this paper incorporates ideas from all of
the systems described above. However, the system isn't dependent
on a certain class of features but rather can be extended to inciude
many classes of features. The system also performs automatic
selection of features based on a set of constraints: feature filters.
These features are used to form a strategy tree which provides a
scheme for hypothesis formation, corroborating evidence gathering
and object verification.
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Our main goal is the automatic synthesis of recognition system
specifications for CAD-based 3-Dimensional computer vision.
Given a CAD model of an object, a specific, tailor-made system to
recognize and locate the object is synthesized. To attain this goal,
the following problems have been solved:

1. Geometric Knowledge Representation,
2. Automatic Feature Selection, and
3. Strategy Tree Synthesis.

2. Geometric Knowledge Representation

The use of geometric data is central to a strong recognition
. paradigm. The Alpha_1 B-spline model® allows the modeling of
freeform sculptured surfaces. To obtain the geometric features of
interest for 3-D recognition, techniques for the transformation to a
computer vision representation have been developed.

In the experimental system developed here, a modified winged-
edge model® is used as the interface between CAD and vision,
where relationships between features are explicit in the model. It is
extended for inclusion of non-planar surfaces. In addition to special
mechanisms for matching, access to the geometric knowledge of the
object is required for the automatic generation of strategy trees.
From this modified winged-edge description, an index on feature
attributes can be generated which can quickly and efficiently access
the geometric knowledge contained in the model.

. 3. Automatic Feature Selection
Several kinds of knowledge are required for 3-D feature selection.
Geometric knowledge permits the selection of a complete and
consistent set of features, while the sensor knowledge provides
information on the robustness and reliability with which such features
can be extracted. On the other hand, domain specific information
about the task can be used to select feature extraction algorithms
based on their complexity, robustness, etc.

The part to be recognized or manipulated is examined off-line for
significant geometric features which can be reliably detected and
which constrain the object’'s pose as much as possible. Moreover,
such a set of features must cover the object from any possible
viewing angle. In solving the feature selection problem, a technique
is given for synthesizing recognition systems. This produces much
more efficient, robust, reliable and comprehensible systems.

The feature selection process can be viewed as a set of filters
applied to the complete original set of features of an object. Filters
select and rank features; order of application is important.
Conceptually, the filters remove features from the input, in order of
application, which do not meet the filter's criteria. The goal here is to
automate and optimize this filtering process. The filters select
features based on the following qualities:

e rare - histogram the features; rare features are useful
for quickly identifying the object; these features make
good root nodes in a search tree.

e robust - measure of how well the features can be
detected; error and reliability.

¢ inexpensive - measure of complexity (space and time)
for computing feature.

e complete - does set of features cover all possible views
of the object.

e consistent - how completely does feature characterize
object pose; (i.e., how many degrees of freedom are
unresolved); how well does the feature differentiate
between objects; measure of likelihood of correctly
identifying the object.
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There are two types of feature robustness a system can quantify:
the robustness of a feature itself and the robustness of the extraction
techniques which are applied to obtain the feature. Furthermore,
features should be dependable with respect to artifacts in the scene.

Three dimensional models define the entire object, yet, during
scene analysis only a single view is available, or possibly multiple
views, but not a complete view. How then, can the mode! be
matched with the sensed data from the scene? One solution is the
use of aspect graphs. An aspect graph is a representation of an
object’s topology; thus it captures all viewpoints of an object!®. The .
aspect is the topological appearance of the object from a particular
viewpoint. Slight changes in the viewpoint change the size of
features, edges and faces, but do not cause them to appear or
disappear. When a slight change in viewpoint causes a feature to
appear or disappear, an event takes place. An aspect graph, or
visual potential graph, is formed by representing aspects as nodes
and events between aspects as paths between corresponding
nodes. Several researchers have developed algorithms for the
construction of aspect graphs, however, the size of the graphs poses
computation limitations to their use!!- 12,

We use a discrete approximation by placing a tessellated sphere
around the model, where each of the polygons represents a different
viewpoint. Tessellation cells which contain the same features are
merged into the same aspect. When no more tessels can be
merged, the minimal aspect set for the model/sensor pair is reached.

Although features may fulfill the requirements of the above filters
for a specific workcell and task configuration, they may not
discriminate between views of the object or between different
objects. A feature set is considered consistent if it possesses the
necessary geometric information to distinguish between aspects.
Symmetric objects pose problems for this type filter since multiple
aspects appear similar to the system. The consistency filter forces
the set of features to be strong enough to form a hypothesis.

When used in combination, these filters provide the mechanism
with which to build a strategy tree. The task requirements may be
such that the result of these filters is the null set of features.
(Alternatively, the features can be ranked; see below.) This can be
dependent on the order in which the filters are applied to the
complete feature set. For example, if the filtter for rare features
determines that a 1/4 inch dihedral edge is the best feature and is
applied prior to the robustness filter, that dihedral might not be
accepted by the robustness filter since it is so small. Thus, the set of
features would be null after the application of the robustness filter.
Whereas, if the robustness filter is applied first, it wouldn't accept
such features and when the rare filter is applied to the features
accepted by the robustness filter, it would determine a different set of
features as being best. The order of application is to be determined
by knowledge of both the task to be accomplished and experience.
The order was specified manually in the experiments described here.

4. Strategy Tree Synthesis

Once a robust, complete and consistent set of features has been
selected, a search strategy is automatically generated. Such a
strategy takes into account the strongest features and how their
presence in a scene constrains the remaining search. The features
and the corresponding detection algorithms are welded, as optimally
as possible, into a search process for object identification and pose
determination. The automatic synthesis of search strategies is a
great step forward toward the goal of automated manutacturing.
Generation of strategies is constrained, not only by the feature
selection process, but by the actual task to be accomplished. Thus,
strategies for a specific task might not be as strong when applied to
a different task; strategies are task specific.

Another benefit of the tree structure is the inherent parallelism of
trees. This occurs whenever there is a branch; thus, trees with
greater breadth will, in general, have higher inherent parallelism.
The sequentiality of trees refers to the depth of paths in the tree.




Strategy trees are shallow trees with many branches in.the first two
levels. Thus, there is a great deal of inherent parallelism in these

trees.

The matching strategy consists of two phases: the hypothes!s
generation phase and the hypothesis verification phase.  This
recognition technique is known as hypothesize and verify. The
hypothesis generation phase is controlled by the strategy tree and
the verification phase substantiates or refutes the hypotheses
generated from the strategy tree.

4.1. Description of Strategy Trees
A strategy tree consists of three major parts:
1.The Root - Which represents the object to be
recognized.

2. Level 1 Features - Which are the strongest set of view
independent features chosen for their ability to permit
rapid identification of the object and its pose.

3. Corroborating Evidence Subtrees, CES - Whose
purpose is twofold: they direct the search for
corroborating evidence that supports the hypothesis of
the level 1 features and they direct the search for
geometric information to completely determine the
pose prior to hypothesis generation.

4.2. Construction of Strategy Trees .

A method is now needed for extracting the features of interest
from the aspects. The level 1 nodes of the strategy tree are built
from these features. Recall, that an aspect is a feature accumulator
which forms a topologically equivalent set of features from multiple
viewpoints. The Aspect Coverage Algorithm, shown in Figure 2, is
used to form level 1 nodes by extracting the best, unique features
from the aspects.

Aaigorithm Define 4; to be the set of all features contained in the ith aspect, where

0 < 1 < number-of-aspects. Define the operation, —, to denote set difference. Define, f,
to be a level 1 node containing a set of unique features, possibly a singleton set, which
permit rapid identification of the object and its pose.

For each A,
D=ND,; whereD;;=A;-A;(i<}))
if D # 0, then
chose ffrom D
if D = 0 and no D;; = @, then
select fto be the union of 1 element from each D,,
if D;; = @ for some j, then
A; C A; so do nothing

Figure 2. The Aspect Coverage Algorithm to Choose Level 1

When D not the empty set, it means there is at least one feature
which is contained in all the aspects. Thus, that feature is used as a
level 1 node. In the case where D is null but all the Dys are not
empty, there is a combination of features which uniquely spans the
aspects. Thus, a set of features for the level 1 node is used. In the
last case, where the Dij is null for some j, then D will also be null.
Additionally, it is known that the aspect, A; is completely contained in
aspect A A; must be a subset of A; because the set difference is
null and if the two aspects, A; and Aj, contained the exact same
elements, they would have been merged. Since A, is contained in
Aj, a level 1 node is not created at this point. Rather, this aspect will
be covered by the level 1 node generated from aspect Aj.

Once the level 1 nodes are built, it is necessary to generate the
CES, Corroborating Evidence Subtrees.  The CESs simply
substantiate that a hypothesis should be generated based on a
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feature matching a level 1 node. Sufficient evidence must be found
that a correct hypothesis is being made before a hypothesis for the
verification phase to validate is generated.

Occlusion becomes a factor during the determination of the CES
strategy. Since dihedral edges and arcs provide the most consistent
information, they are used for level 1 nodes more often than regions
or curved surfaces. Edges and arcs are composed of a starting
point, an ending point, and the connecting edge or arc. When
forming a strategy to handle occlusion for these features, both ends
of the feature must be considered since it can't be known a priori
which end is occluded. Generally, four cases are considered when
forming the subtrees for local feature corroboration: (1) detected
feature is not occluded, (2) one end of detected feature is occluded,
(3) other end of detected feature is occluded, or (4) both ends of -
detected feature are occluded. For some features, such as faces or
regions of constant curvature, there is no concept of direction;
hence, the end conditions check can be replaced with adjacency
information. -

There are several rules which are implemented to control the
construction of the CES level. These rules are feature dependent

and are expandable should other classes of features be included in
the system (e.g., generalized cylinders).

A CES is generated for every feature in the model which has
similar attributes as the level 1 node. For example, suppose the
level 1 node is a dihedral edge of included angle 30° and a dihedral
edge in the scene is detected with an included angle close to 30°. A
CES is generated for all 30° angles in the model. In other words, an
attempt is made to determine which 30° dihedral was detected. The
use of corroborating evidence focuses the search strategy by
pruning unattractive paths at an early stage of the search.

4.3. Usage of Strategy Trees

The strategy tree guides the search through possible solutions.
When a level 1 node is matched in the strategy tree and it is
supported by the Corroborating Evidence Subtrees, then a
hypothesis is generated. The hypothesis is passed to an object
verifier which determines whether the hypothesis is valid within some
confidence level.

In the above method, occlusion must be detected in the range
data. Three simple cases suffice to determine whether occlusion is
present or not. These tests are performed at the boundary of the
detected features (i.e., dihedral edge - endpoints, surface/face -
bounding edges).

Two forms of verification have been examined: structural and pixel .
correlation. Structural verification refers to verifying spatial relations
among the features which should be present in the scene. This is
similar to relational graph matching in 2-D. Pixel correlation refers to
the verification technique of matching predicted depth, pixel by pixel,
in a generated image and the sensed image. This corresponds to
template matching in 2-D. Either of these methods provides for
verification. . This follows the hypothesis verification techniques used
by others® 4 13, One of three states is assigned to the match of the
hypothesized feature or pixel with the observed feature or pixel:
positive evidence, neutral evidence, negative evidence. If these
measures are accumulated for the predicted range image or
structural features, the hypothesis can be quantified and accepted or
rejected accordingly. This quantification provides a measure of
confidence in the hypothesis.

5. Experiments and Discussion

The concepts which have been outlined above have been
implemented in an experimental system. This section describes the
sensing and computational environment. The synthesis of strategy
trees is demonstrated with an example polyhedron. The equipment
used for the experiments consisted of a Technical Arts 100A White



Scanner, DEC VAX class processors and an HP Bobcat. The
images used in the experiments are part of the the Utah Range
Database which was compiled for standardization of research on
range images for the research community"‘. Feature computation
was coded on a VAX 750 in C. The automatic generation of strategy
trees and the matcher were coded on an HP Bobcat in HP Common
Lisp.

5.1. Geometric Design

A polyhedron, called poly_1, was designed using the Alpha_1
design system. Of course, this simple polyhedron doesn't exploit the
freeform power of Alpha_1 but suffices as an example of how the
system functions. Starting with a primitive object, a parallelpiped,
planes of intersection are defined with which to remove portions of
the primitive. For poly_1, two portions are removed, and this is
accomplished with the set difference of two planes and the primitive.

The construction of the hierarchical winged-edge model from the
CAD model is quite simple. Form an object consisting of faces which
consist of edges which consist of vertices. Figure 3 shows the edge
numbering of the model. Table 1 lists the dihedral edges for poly_1.
Table 2 lists the faces for poly_1. These are used by the feature
selection process as well as in the generation of strategy trees. Note
the grouping of the edges in Table 1 denoted by the horizontal lines.
Due to noise in the data and error in the feature extraction methods,
the system can't discriminate on angle value alone. Thus, dihedrals
are grouped together if they are within 5 degrees of each other.

Figure 3. Wireframe Drawing for Poly_1

5.2. Feature Selection

The next step in the process is the evaluation of features. The

- filters are applied to the complete set of features. For the rare filter,
a feature histogram is used to determine which features don’t occur
often in the model. Table 3 shows the histogram for the angle of all
dihedral edges.

Robustness must be determined with respect to both the sensor
and the suite of algorithms used. Through experimentation, it has
been determined, for the sensor configuration used here, that an
edge length under 1.0 inch can't be reliably detected. Similarly, if a
face is below a certain size, its surface area can't be reliably
detected, nor can the pointwise normals or the dihedral edges which
form the face.

Dihedral edges were selected as the most consistent feature since
they solve 5 DOFs. For this reason, the consistent filter ranks
dihedral edges as the best level 1 feature.

The ability of the strategy tree to provide a path for recognition
given an arbitrary object orientation is assured through the use of the
aspect generation. Thus, the complete filter must be sure that at
least one feature from every aspect (there are 26 aspects for poly_1)
is included as a level 1 node. It is desirable to use features which
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edge angle length adjacent faces
4 45.8 5.99 16
0 42.6 1.4 06
6 76.09 1.52 14
7 134.19 5.84 13
1 13248 245 01
5 132.5 1.53 12
2 137.33  0.28 03
21 90 7.1 56
15 90 5.5 35
19 90 3.41 46
14 90 2.25 34
3 90 2.18 05
20 90 1.48 45
9 90 1.45 26
10 9 0.5 24

Table 1. Edge Attribites in Poly_1

face area normal poly type
0 1.8225 -0.678 0.000 0.735 convex
1 13.9725 -0.240 0.676 0.697 convex
2 0.3625  0.000 1.000 0.000 convex
3 6.9438  0.000 0.000 1.000 convex
4 4.4643  1.000 0.000 0.000 convex
5 9.2925 0.000 -1.000 0.000 convex
6 18.5328 0.000 0.000 -1.000 convex

Table 2. Face Attributes in Poly_1

angle in degrees

0-35 85-55 55-65 65-82.5 82.5-100 100-125 125-145 145-360

0 2 0 1 8 0 4 0

Table 3. Histogram of Dihedral Edges
are visible from the greatest number of different viewpoints.

Feature cost has not been incorporated at this time. It is clear that
algorithmic cost could be included via Logical Sensors and this is an
area of future research.

5.3. Strategy Tree Synthesis

Since strategy tree synthesis is automated, it is desirable to
minimize the possibility of the null feature set and non-optimal level 1
nodes. This is accomplished by ranking the features with the filters.
Thus, each filter produces a ranked list of the current feature set. As
the strategy tree is built, the application of filters now means to
choose the feature with the highest rank from that set.

The order in which the filters are applied was determined through
experimentation. It has been found that if the complete filter is
applied first, the desired coverage is assured. From this filter, a set
of aspects is produced which contains visible features. Level 1
features are selected for the strategy tree such that all aspects are
represented by a level 1 node. However, one feature might be
visible from multiple ‘aspects. Using the histogram, form a set of the
features which are contained in the greatest number of aspects
(highest histogram value), possibly a singleton set. From this set of
features, use the rare filter to determine which of these features are
unique. From the ranked set of unique features, use the robustness
filter to rank the robustness of each of these features. Select the
feature which is most robust. If this feature is robust enough, then
use it as a level 1 node. If it isn’t robust, repeat the algorithm for the
next lowest histogram value. When a level 1 node is generated,
remove, from the set of aspects, all the aspects which contain this
feature. Recompute the histogram with the remaining aspects and




repeat. Either a set of level 1 nodes has been generated which
spans the entire set of aspects or there are aspects remaining which
contain only non-robust features. In the latter case, a weaker level 1
node must be formed for each of these aspects. This level 1 node
will contain a feature which is not the most consistent type of feature.
In this case, rather than having a dihedral edge as a level 1 node,
the back up strategy is to match a face. At this point, the CES can

be built.

One corroborating evidence subtree is generated for each dihedral
edge which has attributes similar to the level 1 node. For example,
for the level 1 node, edge 7, a CES must be formed for each of the
edges in the 125-145 range. The reason for this is that when a 135°
edge is located it should match one of these edges, but which one
isn't known until corroborating evidence is gathered.

The next branch in each CES is determined by looking at the ends
of the dihedral edge to determine if they are occluded. Recall that
occlusion is determined by the end type of a particular edge.
Shadow is assumed to be occluded, jump edge depends on whether
it is an occluded jump or a non-occluded jump edge. All others are
non-occluded.

In the non-occluded case, use the rules described above for the
type feature which forms the particular level 1 node. In the example,
most level 1 features are dihedral edges so the dihedral rules are
used. The rules are applied in the following order:

1. Attempt to find a dihedral edge close to the endpoint of
the current edge. If founa, use this to quickly form a
hypothésis. .

2. Attempt to find the local 2-D corners. If found, these
can help determine which hypothesis should be
formed. For example, if a 135° edge is located, the
adjacent 2-D corner can help to determine which, if
any, of the 125-145 edges have been located.

3. Use the areas of the adjacent faces and relations
between them to generate a hypothesis.

Figure 4 shows part of the strategy tree for poly_1. The edges are
represented by their edge number in the model. Note that there is a
CES for each dihedral edge which is similar to the level 1 node.
These are derived from Table 2. For level 1 node 7, edges 1, 5, and
2 all have similar dihedral angles. Thus, there is a CES for each of
these edges as well as edge 7. Note that the same CES can appear
under multiple level 1 nodes. When matching, the rules on attribute
similarity are used to invoke these CESs. Figure 5 shows the
Corroborating Evidence Subtree for the dihedral edge 7. Note that
there are 4 possible branches shown for clarity. The non-occlusion
branch is composed of an OR of the partial occlusion cases. Thus,
during run-time, the results of the partial occlusion are used by the
non-occlusion branch.

5.4. Recognition

Now that the off-line procedure is completed, the usage of strategy
trees can be demonstrated with an example of matching. A range
image is obtained and low-level 3-D feature extraction performed on
that data. From this data, the pointwise intrinsic features are
computed for the object: surface normals and surface curvature.
Since this is a polyhedral object, the planar face finder is used to
develop a surface representation. Two dihedral edges are located
using the dihedral edge finder. These edges correspond to edge 7
and edge 1 in the model.

Now the strategy tree shown in Figure 4 can be used. The level 1
features in the strategy tree are the dihedral edges: 7, 19, 14, 3, 4, 1,
0, 21, 6, 20, and 9. The dihedral edges located in the scene are
shown in Table 4. (The corresponding model edges are included to
help the reader.) The system has not matched the dihedral edges at
this point.

The detected edge A is too short for reliability so it is not used.
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The detected edge D has an angle which doesn't match the model
so it is not used in the matching process. Detected edges B and ¢
both have angles with in the 130-140 range. These edges match 2
different level 1 nodes each: model edge 7 and model edge 1. The
first determination in the strategy tree is to check for similarity. If
detected edge is larger than a model edge, the match fails. Detected
edge C fails to match the level 1 node: edge 1, because the length is
too long. Next the check for occlusion takes place. Detected edge B
is non-occluded at both endpoints and detected edge C is occluded
at one endpoint. Since it has been determined that detected edge B
is a non-occluded edge, the attributes must be close to the model for
a match to succeed. For this reason, edge B fails to match the level
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Figure 4. Strategy Tree for Poly_1

1 node: edge 7. Thus, only one Corroborating Evidence Subtree is
invoked for each of the level 1 nodes which have been matched:
edge 7 and edge 1.

The CES strategy first looks for an adjancent dihedral. In both
cases, a dihedral is found. For the level 1 node: edge 7, the dihedral
used as corroborative evidence is detected edge B. Whereas for the
level 1 node: edge 1, the dihedral used as evidence is detected edge
C. These two dihedrals are sufficent to solve all 6 DOFs and each of
these forms a hypothesis at this point.

Since both the hypotheses are the same, the verifier only needs to
check one. An image is formed with the hypothesized transform
applied to the model and the perspective transform of the sensor
applied to that result. For every pixel in the image, the z-depth is
determined. Pixelwise evidence gathering can now be performed.




The positive, negative and neutral evidence is combined to verify or
refute the match. For the hypothesized transform, the hypothesis is
Q correct in this case. This is shown in Figure 6.

Although the example is a polyhedral object, extensions to non-
polyhedral objects are underway. If occlusion occurs in the scene,
more CESs would be invoked to corroborate possible matches. The
use of this approach with multiple objects merely requires running
the recognizers in parallel.

OR 6. Future Work :
The application of these concepts to other representations, such

as generalized cylinders, should be explored, as well as the use of
T diverse 3-D geometric features. Another problem is the use of a
F more general knowledge-based framework for the synthesis of

recognition schemes.
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