Multiconstraint shape
analysis
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The paper presents a method for applying multiple
semantic constraints based on discrete relaxation. A
separate graph is maintained for each constraint
relation and used in parallel to achieve consistent
labelling. This permits both local and global analysis
without recourse to complete graphs. Here, the term
‘local” is used with respect to a particular constraint
graph, and thus includes global spatial relations on
the features, eg parallel edges on an object will be
neighbours in the parallel constraint graph even though
they are far apart in Euclidean space. Another major
result is a technique for handling occlusion by incor-
porating the use of spatially local feature sets in the
relaxation-type updating method.
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One of the problems in computer vision is to identify
the set of objects present in a given image. This is,
in essence, the scene labelling problem. The problem
can be mapped into what has been variously called
the consistent labelling problem’, the satisfying assign-
ment problem?, the constraint satisfaction problem?,
Waltz filtering* etc. We will refer to it as the consistent
labelling problem (CLP). It has been shown this
problem is NP-complete. There have been several
approaches to solving the problem, including back-
tracking, graph matching and relaxation.

The approach used here is based on discrete relaxa-
tion; however, there are some major philosophical dif-
ferences. As explained later, we distinguish between
different types of constraints during the process of
relaxation. Many relaxation-based approaches make
use of only the local constraints as opposed to global
constraints. They tend to ignore the global constraints
because occlusion sometimes prevents their use. We
argue that global constraints can be useful and, under
certain circumstances, they may be extremely advan-
tageous. The model proposed in this paper uses both
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local and global constraints. Also, with the advent of
parallel computers it is imperative to look at the problem
again and see if the approaches are suitable for parallel
processing or not. This is especially important because
the problem at hand has an exponential growth rate.
For an example of the use of multiple semantic con-
straints with stochastic relaxation, see Faugeras and
Price®.

This paper gives a formalism to describe the 2D scene
analysis problem as a consistent labelling problem, and
explores the suitability of thé approach for parallel
processing.

CONSISTENT LABELLING PROBLEM (CLP)

Although there are several variations, the CLP can be
formulated as follows, given

® 3 setof items orunits, U = {uy, u,, . ... U}
® that each unit u; has a domain D; which is the set
of acceptable labels; often the units all have the

same domain, in which case D, = D, = ... =
D,= D D ={D,, D, ..., D}
® a labelling L = {L,, L, ..., Lg, where kK < n, L;

= (u, ), u; € Uand [, € D; Ls are called unit
labels

Without loss of generality, we can assume that all us
are distinct. If kK < n, then the labelling is a partial
labelling and, if k = n, it is called a complete labelling.

A unit can have any label which is in its domain.
Usually, however, there are restrictions on the labels
a set of units can have simultaneously in order to be
consistent. These constraints are expressed by a con-
straint relation R. Potentially R can be an n-ary relation.

A pair of unit labels L, = (u, /). L; = (u; ) are
consistent if and only if (v, /, u, /) € R. A given
labelling L = (L, L, ..., L,) is consistent if unit labels
L;and L, are consistent forall /, j < k.

The goal of the labelling problem is to find a com-
plete consistent labelling, given a set of units U, the
domains of these units D and the constraint relation
R.
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(CLP)::= (U,D,R)

Other formulations of the problem ask for all solutions,
but the nature of the problem is not changed. If a
complete consistent labelling cannot be obtained, then
the largest (or ‘best’) partial labelling should be
found.

Solutions to CLP

The consistent labelling problem can be solved in many
ways. The most straightforward method is what is
called the generate-and-test method. Here, we list all
the possible configurations and then select those which
are consistent. It should be obvious that this method
is going to be extremely slow for problems where U
and D are large. For example, if U] = 10 and |D|
= 10, then the number of possible configurations is
10'. In many cases the labels assigned to the first
few units make the whole labelling inconsistent, and
this can be detected early, during the configuration
process. This observation could save a lot of computa-
tion time.

A better method, which takes advantage of the above
observation, is standard backtraokmg Here we start
with a single unit and assign a label to it from its
domain. Then we select another unit from the rest of
the units and assign a label to it from its domain.such
that the partial labelling built so far is consistent. If
at any point we cannot find such a label, then we
go back one step and give the next possible label to
the unit which was last assigned a consistent label,
and continue the process. If we manage to assign labels
to all the units consistently then we have found a
solution, and if we run out of labels then there is no
solution.

Although standard backtracking is more efficient
than the generate-and-test method, it is still not good
enough for many practical applications. There have
been several approaches to overcome this problem.
Gaschnig? attempted to solve it within the backtracking
framework and gave two new backtrack-type algor-
ithms: Backmark, where all redundant pair-tests are
eliminated; and Backjump, where it is possible to back-
track across multiple levels, instead of just one level.
These algorithms do indeed show better performance
than the standard backtrack algorithm, as shown by
Gaschnig. Haralick and Elliot® gave another algorithm
called ‘forward checking’ to improve backtracking; this
performs better than the other two algorithms in some
cases. However, the results are only known to apply
to problems where the labelling of each unit is
constrained by all other units.

Haralick et al’ have described two ‘look-ahead’
operators, @ and ¥, to reduce the computation during
the backtracking process. Haralick and Shapiro'®
generalized these operators to ‘look ahead” arbitrarily.

Waltz* took another approach to solve the problem.
The idea was to initially assign all possible labels to
all the units and remove a label from the label set
of a unit if it was found that the label was not compat-
‘ible with any.of the labels of the others. Removing
a label from a unit, in turn, makes some labels of some
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other units inconsistent. This process continues until
there is no label of any unit that can be removed or
the label set of one unit becomes empty. In the former
case, it is still necessary to search for an unambiguous
solution, while in the latter situation, no solution exists.
Convergence to a consistent set of labels depends on
the nature of the problem and the:constraint set R.
Rosenfeld et a/® have described a modified version
of Waltz's filtering algorithm which is a parallel iterative
procedure, and has been generalized to allow probabili-
ties to be associated with the labels.

Mackworth® and others use yet another approach
to reduce computation during the backtracking pro-
cess. For binary constraints, the problem can be formu-
lated using graphs, where the nodes correspond to
the units and the arcs represent the constraints between
the units. Each node also has an associated label set,
which gives the possible labels for the unit. Montanari™
explores the fundamental properties of such networks
and their applications. Mackworth® gives three consist-
ency tests, node consistency, arc consistency and path
consistency, which prevents the thrashing behaviour
of the backtrack algorithms. He also gives several algor-
ithms to achieve the above three consistencies in
networks. These consistency checks are done first, and
then the backtracking process is" applied. Recently,
Mohr and Henderson have given an optimal algorithm
for arc oon31stency and an improved algorithm for path
consttency

Complexity o_f” CLP

In thxs sect:on we analyse the complexity of the CLP.
As Knuth'? points out, it is difficult to analyse the back-
tracking algorithms without actually running programs.
Even then, the results are not very convincing since

it is not obvious. either why or if they should hold
'in a totally different problem domain. Gaschnig? took

the experimental approach to study the complexity of
different algorithms, ‘

Since it is known that CLP is NP-complete'®, it is
not important to find the complexity of the various
algorithms used to solve the CLP, since the worst-case
complexity will be exponential anyway. What is more
important is to determine whether a particular algorithm
is consistently better than the others. Even this is not
a straightforward problem. Gaschnig? and Haralick and
Elliot® give experimental results for the efficiency of
some of these algorithms.

Application of relaxation to scene analysis

Relaxation techniques have been successfully applied
to several problems. Gaschnig investigated the applica-
tion of relaxation to the n-queens problem, criptarith-
metic problems, the Soma Cube and Instant Insanity.
Henderson and Davis used it for syntactic shape analy-
sis’™™. The application with which we are concerned
here is scene analysis. The problem is to locate and
identify all the objects in a given scene. There are
several methods that can be used to locate the objects.
If we locate the boundary of the object then it unam-
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biguously determines the object. Also, a set of features,
if located in the right configuration, can sometimes
determine the location and orientation of the object.
So. to locate the objects, we must locate the various
features (or the boundary edges). Once these features
are obtained from the image, they can be assigned
a set of possible labels depending on the problem at
hand. Then the relaxation procedure can be applied
to produce a consistent set of labels and backtracking
is used to find a solution.

Parallel relaxation

Since the worst-case execution time for the problem
at hand is exponential, it might be worthwhile to
explore whether the problem lends itself to a parallel
execution model. Also, now that multiprocessors are
available, we can actually test these models, not just
theorencally analyse them. In this paper, we describe
a model which exploits the parallelism in the relaxation
process.

Local versus global constraints

One of the first steps in locating an object is to locate

its features. We .can recognize objects on the basis

of global features, like number of holes, size of various
segments, total area of the segments, perimeter etc.
Alternatively we can also use local features to locate
objects. Here we use local features like corners, holes
etc. We look for certain structure with respect to these
local features in the image, and if we can find such
a structure then we can locate the object.

Both methods have their advantages and disadvant-
ages. A system based on global feature matching is
prone to mistakes, particularly when the object is
occluded or even partially defective. On the othér hand,
if the object is completely isolated in the scene under
consideration then the method is very straightforward
and efficient. A system using local features is probably
moré sophisticated and is more robust for a general
scene, but it also takes a long time.

A method based on local féatures can use only the
local constraints, ie constraints between nearby fea-
tures. This is useful in many circumstances, when the
object is partially occluded and it is likely that some
of the features would be visible and they can be used
to identify the object. However, there are instances
when it would be very useful to have global constraints
also, and in certain instances it is necessary to use
global constraints to identify an object! For example
the object in Figure 1a, as it appears in the scene in
Figure 1b, can never be identified using local features
alone since all the holes are occluded. However, by
using global constraints like the parallelism and per-
pendicularity of sitles, we can easily identify the object.

Scene analysisiusing local features

Recently, several successful 2D scene analysis systems
have been proposed based on the use of local fea-
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a ' b

Figure 1. a an object and b a scene with the object

tures’™"”. Of course, many of the very first systems
proposed were based on global features, eg Fourier
coefficients and moment invariants. To give a basis
of comparison, we bneﬂy describe a system which uses
local features to recogmze objects in a scene; this is
described in detail in Bolles and Cain'™. (Most of the
terms used in this section are from that reference.) The
algorithm is then analysed for its complexity.

LFF method

The local feature focus (LFF) method has two major
components: a training system and a runtime system.
During the-training phase, the object models are fed -
into the system and the system comes up with a set
of strategies for recognition of each type of object.
For each object it gives a list of features, which are
termed focus features along with a set of neighbouring
features. The idéa is that if the focus feature is found
in the image along with the neighbouring features, in
the cofrect configuration with respect to the distance
and orientation, then the object’s location and orien-
tation can be unambiguously determined.’

The steps during run time can be summarized as
follows

® Step 1: locate all potentially useful local features
in the image

® Step 2: locate a focus feature; if there are none avail-
able in the image, then quit

® Step 3: get the set of nearby féatures for the focus
feature

® Step 4 select those features which satisfy certain
criteria, ie those features which have a correspond-
ing occurrence in the actual i‘m"age

® Step b: make object-feature to image-feature asmgn—
ments and transform these into a graph

® Step 6: find all the maximal cliques of the graph
and hypothesize the object using thert

® Step /: verify the hypotheses; if a hypothesis suc-
ceeds, mark all the visible features of the object in
the image as explained: go to step 2.

Analysis of the LFF method

Let:
@ the total number of features in the image be N,

® the number of line segments defining the boundary
of the object be N
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& the total number of features in the object be N,

@ the number of focus features for the object be N;

®. the average number of nearby features for each focus
feature be N,

® the average number of possible labels for a nearby
feature in the image by N,

Now we analyse the algorithm defined in the previous
section, step by step. We are ignoring the complexity
of step 1, since the time it takes is proportional to
the size of the image and is (most often) independent
of the scheme used.

e Step 1. O(image size), since features must be
extracted from the entire image

® Step 2: O(constant), since the list of focus features
can be built when the local features are being
extracted from the image, )

® Step 3. O(constant), since the nearby featurés can
be put in some kind of property list of the focus
feature; an indexing scheme could also be used,
with the same effect

® Step 4. O(N,N), since we essentially have to go
through the whole list of the image features for each
nearby feature, which takes, on average, (N,N)/2
steps

® Step 5. O(N,N,)? since the number of vertices in
the graph is (N,N,) and for building the graph we
have to check for compatibility of each pair of
vertices of the graph

® Step 6: This is a slightly complex step to analyse.

. The general problem of finding the maximal cliques
of aigraph is known to be NP-complete’?°. How-
ever,|if the graph is planar then it can be done in
lineat time with respect to thé number of vertices?'.
Using Kuratowski's theorem?, a planar graph cannot
have K; or K 5 as a subgraph. This reduces the prob-
lem to finding only Kys. and K;s in the graph, which
can be done in linear time. So, the best case for
this step is O(N,N,) and the worst-case complexity
is O(K™), where xis (N,N,) and kis a constant

® Step 7: O(N; + N,), since we have to loop over
the list of segments of the object and then we also
have to loop over the list of the features for that
object

So the totalicomplexity for each iteration through steps
2 to 7 is the sum of all the above complexities, and
the complexity of the whole algorithm is N/, times this
factor, since, ‘we have to loop over the list of focus
features.

Since step 6 in the worst case takes exponential
time, the worst-case complexity of the algorithm is also
exponential.

SCENE ANALYSIS USING BOTH LOCAL
AND GLOBAL CONSTRAINTS

In this section we decribe a scheme to do scene analy-
sis which uses both local and global constraints. It
also lends itself well to a parallel excution model. We
analyse the model and compare it with some other
models, especially the LFF method described in the
previous section.
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The first step in scene analysis, before any. attempt- ~

to locate objects in the scene, is to identify what are
the possible objects which can be in the scene. We
also need to extract a list of features from the image
and their locations. They form the basis for all computa-
tions done in order to identify the objécts which are
actually in the scene.

Models for the objects

A model for an- object is defined using the location
and orientation of features eg holes, corners, boundary
edges, with respect to a fixed coordinate frame. These
features are named or numbered and constitute the
label space for the CLP.-We"also have constraints
between these features. The constraints could in
general be n-ary, where n is the number of features
in the model. However, it is often sufficient to consider
only binary constraints.

Let the set of models be M and the number of models
be n.So, M = {M,, M2 ,,,,, M,,}. Each of these models
M, is defined by, M, = (F7, C"), where F” is the
set of features and C”’ is the set of binary constraints
for model M, \

Although all the constraints in C™ are. binary, there
are differences between them. For example, consider
two boundary edges E; and E,. Also, assume that E,
is both parallel to and longer than E,. The two con-
straints can be expressed as predicates parallel(E;, E,)
and longer(E,, E,) respectively. Here, even though both
are binary constraints, they are of different types. For
one thing the parallel constraint is symmetric, while
the longer constraint is not. Also, they have different
semantics. , ,

A constraint can equivalently be represented as a
relation. In the above example, (E;, E,) belongs to both
parallel and longer relations. So the constraint set for
each model can be expressed as a set of relations,

- each with different meanings

C”’.={Rm', : ’",R";k,}

where R™, < F"X F", 1 < /< k

if "“
LetC™ = U, C7

The relations here are not just abstract relations. Here
the relations also have a physical meaning associated
with them. For example, if (a, b) € longer relation,

then it also means a is physically longer than b.

Information from the image

After an image is acquired, the different feature
instances are extracted from it. After that all the compu-
tation and analysis is based on these extracted features.
Now the main.problem is to associate. these feature
instances with the features of some models. The fea-
tures thus obtained from the image are related to each
other in some ways. For example, the image may have
two holes and a corner, and we can have constraints
like above(Corner,Hole;), or bigger(Hole;.Hole,).
Obviously we could form many relations, each with
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different physical meaning, to relate these features.
However, we choose only those which are used to
define the constraints between the features in the
models. So the scene can be represented as

S = (F, C%
where F; is the set of features in the image and
C°={R; R; ..., R} R FFXF

There is a direct correspondence between the two sets
C™and C°. For each relation R%in C° there is an equiva-
lent relation R’” in C™ which has the same physical
“interpretation, a!though the domains of both relations
are different,

Scene analysis as CLP

Now we formulate scene analysis (SA) as a consistent
labelling problem (CLP) as defined in an earlier section.
The set of units which needs to be labelled is the set
of feature instances found in the image. For a simpler
ana!ysxs we assume that the domain of each of these
umts is the union of the features in all the models.
In practice, however, it would be the set of features
in all models which are of the same type as the unit
(feature mstance) For example, if the given feature
instance is of type 'hole’, then only those features in
the models of type 'hole’ can be in its domain.
Obviously the constraints in the models should be in-
cluded in the constraint set for the CLP. We also have
to include the constraints in the image since they also
constrain the labelling process.

Features can have the same name in different models.
To differentiate between them each feature in the
model is prefixed by the model name. For example,
feature "Hole" in model Part’” will be referred to as Part_

hole. We assurmie that no two models have the same

name and the set of features F”; for each model is
augmented to remove any ambiguities. So the scene
analysis problem in terms of a CLP is

SA = (U, D, R),
where
U=F.D=U_,F%R = (U.,C") UC?

Network model for relaxation
i : = !

This section briefly describes a graph/network model
which is the underlying basis for the relaxation process
explained above. This is similar to the network model
used by Mackworth® and others in the sense that the
nodes represent the units to be labelled and the con-
straints are represented by the arcs in the graph. How-
ever, there are several differences. What we have here
is conceptually closer to a set of graphs than a single
graph.

Instead of one graph, we have a set of graphs, one
for each of the relations in the image. We also have
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a set of graphs, corresponding to the object models.
This set of graphs is used to represent the constraints
in the model. Let G™ be the composite graph to repre-
sent the set of model graphs, and let G* denote the
same for the image graph.

Model graphs

G"={G7.G% ..., G7}
where n is the number of models being considered.
Each of the G™ also consists of a set of graphs corres-

ponding to the various relations in the constraints

G" = {G"). G"y, ....G"}

where k; is the number of relations in €7, Each G”Zj

isa graph and can be represented by
G",= <FLE%>
where edge (x.y) is in E7, iff (x,y) ~ R"; The nodes

of the graph are the features in the image Wthh need
to be labelled and the arcs represent a relation.

Image graphs

Unlike the model graphs, we have only one compaosite
image:graph, since we are concerned about only one
image at a time. However, the composite image graph,
G?®, is again composed of a set of graphs, one for each
of the relations in the image. So

G’ = {G} GJ..... G}
where k; is the number of relations used in the image
graphs. Each of these graphs corresponds to a relation
in the image. So

Gi= < F E5>

where edge (x, ) is in ES, iff (x, ) € RS

Example

The following example is simpler than the scenes one
would normally find in actual cases, but is only used
to explain the concepts. Figure 2 shows two simple

B1 - B2

A4 B3 X1 X2

A3L- B4 7 OOO

A1l B8 O '®)
X4 X3
A2 B7
B6 ; B5

Figure 2. Part, (left) and Part,
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industrial parts, taken from Nitzan et a/%; we refer to
the parts as Part; and Part,. The set of features for
each part consists of only its boundary edges.

M = {Part;, Part,}
Part; = (F7, C7). Part, = (F7, C?%)

F7 = {B1B2, B2B3, A4B3, A3A4, A3B4, ..., A2B7,
BbB7, B5B6, B1B6, B1B2}
CT = {parallel, perpendicular, longer-than, equal-
length}

F3 = {X1X2, X2X3, X3X4, X4X1} |
C7 = {parallel, perpendicular, longer-than, equal-
length}

We have four relations to express the constraints in
the model for Part,. These four relations are given in
Table 1. The relations are not complete, but an idea
is given of what these relations look like. Part, has
similar relations.

Relaxation process

In this section we describeé how the actual relaxation
process is executed, and how it fits in a parallel pro-
cessing framework. The first ‘step is to build all the
graphs, ie all the model-graphs and the image graphs.
We associate a set of labels with each node. i the
image graph, which represents the set of features it
could be. It should be pointed out that, although we
treated the graphs separately in the previous sections,
they need not be really disjoint in actual implemen-
tation. Since the node set of all the image graphs is
the same, they could be shared. The same applies to
the model graphs, too. The topology of all these graphs
remains unohanged during the relaxation process.
What ohanges is the label set attached to each of the
nodes in the image graph. The model graphs remain
completely unchanged.

Once the graphs are constructed, the next step is
to énforce the node, arc and path consistencies in the
image graphs. This is where the system lends: itself
to parallel execution. We have graphs which are inde-
pendentin the sense that they represent totally different
types of constraints. We may have one graph to incor-
porate the size constraints, eg Edge; is longer than
Edge,;. We may have another graph to represent the
directional constraints, eg Edge; is parallel to Edge,.
The size and directional constraints are independent.
However, they share the same set of nodes. To exploit
this parallelism we' créate a process for each of the
constraint types. So, in the above example, we will
have four processes, trying to enforce consistencies
in the parallel, perpendicular, longer-than and gqual-

Table 1. Constraint relations in Part,

Equal-length

Parallel Perpendicular  Longer-than

(A3B4 A1B8) (B1B2 B2B3) (B1B6B1B2) (B1 B2 B5B6)
(A1B8 A2B7) (B2B3 A4B3) . (B1B6 A3A4) (A3A4 A1A2)
(A2B7 B5B6) (A4B3 A3A4) (B1B2B2B3) (A4B3 A3B4)
(B1B6 A3A4) (A3A4 A3B4) (A1B8 A2B7)

(A3A4 B2B3)
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length graphs. Hence the relaxation process is now
distributed or split into subprocesses or levels which
work on individual constraint types. The subprocesses
structure is given in Appendix 1. The controlling pro-
cess is described in Appendix. 2.

After the consistencies are énforced, we find all the
solutions-using standard backtracking or one of the
modified schemes described above. It is hoped that
the amount of bactracking necessary would be much
less now that the networks are arc and path consistent.

To prove the correctness of the algorithms in the
previous section, we state the following proposition.
If a label L is removed from the label set of a node
N in any graph. then the node N cannot have the
label L in any complete consistent labelling.

The proof of this proposition is that, for a labelling
to be consistent, it must be consistent in all the under-
lying graph types. Once a label in a node is removed
by a process relaxG working on graph /, it is not onsis-
tent with respect to constraint type /, ie it cannot be
part of a globally consistent labelling. So no solutions
are lost by the above procedure.

The correctness of the algorithm is obvious. After
consistency checks are enforced, we use backtracking
to find all the solutions and reject those labels which
do not lead to complete consistent solutions.

Efficiency considerations

In the previous section we described an algorithm to
solve the scene analysis problem, and proved that it
is both correct and complete. However, the perfor-
mance of the given algorithin is very poor. In this
section we analyse its efficiency and give some
:mprovements to make it more efficient.

Complexity

The inefficiency of the algorithm can be seen very
clearly at the step where we assign the initial label
set to each of the nodes in the image graph. We assign
L, to label sets of all the nodes. L, is the union of
all the features of all the models which can be in the
scene.

L, = U/—xu 1F

Clearly, this is a very large set. Even though many of
the labels would be removed during the first few itera-
tions of the relaxation process, this is definitely a major
source of inefficiency.

Improvements

One simple and obvious improvement to the algorithm
can be made by deleting those labels which are not
of the same type from the label set of a feature. For
example, if the feature in the image is a hole, it makes
little sense to assign a label which is a corner or a
boundary edge. Although this is a very simple modifi-
cation, it should considerably reduce the initial size
of the label set of the nodes.
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However, it does not solve the problem entirely. One
of the reasons the above method is so inefficient is
that we are trying to do too many things at the same
time. Although we are enforcing the constraints in dif-
ferent graphs in parallel, which is obviously useful, we
are still, in essence, trying to label all the features of
the image at the same time. Since this, in general, is
going to be a very tough problem to handle — a scene
may have a hundred features — it might be worthwhile
to break the problem into smaller problems and try
to solve them (the ‘divide-and-conquer’ paradigm). We
should perhaps note again that we are dealing with
an NP-complete problem. Since in the worst case it
takes exponential time anyway, all we are trying to
do is to gain speed wherever possible.

One way to break the problem into smaller (simpler)
ones is to divide the scene into a set of smaller sub-
scenes and try to analyse these. Although it might
sound very simple, there are problems with this scheme.
The riost obvious one is how to perform the sub-
division.

One simple way is to divide the scéne into an m
by n rectangular grid. Here, the problem is how to
choose optimal values for m and n. There might also
be duplication of effort, since an object may be spread
over more than one rectangle. '

The problem with the rectangular grid scheme is that
we have no basis for performing the subdivision. We
are essentially using heuristics to.choose the values
of m and n. Instead, we should be using the image
and the models to guide our subdivision process. In
the next section we propose a method which is based
on the understanding of the models and the image.

New model

As mentioned in the previous section, the basic idea
is to let the models and the image direct the process
of dividing the scene into subscenes. There are two
key observations which should be noted:

e o feature instance in the image can belong to only
a few objects; for example, if the feature under
consideration is a hole, then it can only belong to
objects which have holes

e if a feature instance in the image is hypothesized
to belong to a particular object, then the other
features of the object should be located within a
certain distance of it

What the first observation méans, is that a feature can
only belong to certain objects, and it should only have
the labels corresponding to the features of those
objects. The second observation implies that it is use-
less to consider the portion of the scene which could
not include any features of the object under considera-

tion. The above two observations form the basis of

the subdivision of the scene into subscenes.

The algorithm which uses these ideas is given in
Appendices 3 and 4. The process relaxM is the top-
level process which spawns processes 10 work on
subscenes. The process relaxSS works on the sub-
scene, and for each possible object it tries to perform
relaxation and find if the hypothesis is true.
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Table 2. A set of objects

Object set Features

M = (M, M,, M;,
M, Mg}

F, = {round-hole, square-hole}

F, = {square-hole, triangular-hole}

F, = {round-hole, square-hole, triangular-
hole}

F, = {round-hole}

F; = {square-hole}

Process relaxM controls the top-level division of the
scene into subscenes. Function ‘find-objects’ returns
all the objects which can have a particular feature. A
very simple indexing scheme can be used to do this
(see next section). Once a feature is chosen, and the
objects it can belong to are associated with it, process
relaxSS works to see if any of the objects actually
are in the scene. This could be done in parallel as
showni in the processes relaxS and relaxG. The process
finds all the features in the bounding circle of the fea-
ture. The radius of the bounding circle is determined
beforehand and is available (see below). The process
then marks off these features, since they could poten-
tially be explained. Then actual relaxation is done on
this subscene using the object’'s model. If it turns out
that the object is in the subscene, then all the features
which have been labelled by the relaxation process
are marked as explained, and all the other features are
unmarked. This process also restarts the main process
if necessary. . ,

Simple indexing scheme

Function ‘find-objects’ in the process relaxM takes a
feature and returns a set of objects of which it can
be a part. This can be done by a brute force method:
by searching each object for its feature list and check-
ing whether it has the given feature as a member. It
is a simple but very inefficient method. A simple index-
ing scheme is very effective at making it faster. The
objects are indexed using the features as the keys, and
finding the objects for a given feature is a one-step

- operation. The computation needed for making the

index tables is done before run time and is a one-time
step. Also, new objects can be added to the list incre-
mentally, without totally reconstructing the index
tables.

Table 2 shows a hypothetical set of objects and their
features. From it we construct the index tables which
are given in Table 3.

This indexing can be extended further on the basis
of certain measures of the features. For example, if
M, has round holes of only a certain size, which is
different from those of Mj and M, then the round

Table 3. Index tables for the objects in
Table 2
Feature Object with feature
Triangular-hole {M,, My} ’
Square-hole {M,, M,, M, Mg}

{M;. M;, M.}

Round-hole
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holes can be further indexed with the size as the key.
However, not all features may have such a measure.

Bounding circle

Here we describe a simple method to determine the
bounding circle for a feature of an object. This helps
in breaking up a scene into subscenes on which the
relaxation is done. Like the index tables, this is done
before run time and is a one-time computation. We
associate with each feature of the object a position
in two dimensjons. So each pair of features 7, and f;
has a distance measure d; associated with it. We
choose the Euclidean distance as the measure of dis-
tance, The radius of the bounding circle, 7, for the fea-
ture 7, is the maximum of the distances associated with
it.

= Max (d;)) V j: 7j €F

Appendix b describes the computation. The function
‘distance’ computes the Euclidean dlstance between
the positions of the two features.

Comments

The approach we have proposed in this section works
better in certain situations than others. Our subdivision
is based on the scene itself and for the bounding circle
we use the worst-case estimate. If the objects are very
close together, we would use features of both objects
for the relaxation process and this would slow down
the process. On the other hand, if the two objects
are close together, then the chances are that many
features of one (or some of both) would not be visible.
So the number of features we have to deal with' may
not be as large as it may seem at first sight.

If, however, the objects are spread out without much
overlap, the relaxation process would reach a solution
very quickly. Also, even if the objects are overlapping
in physwal space but fairly disjoint in the feature space,
then, again, the convergence to the solution is speedy
sihce those features which cannot belong to the object
under consideration are ignored, thereby effectively
reducing the number of initial labels the riode in the
graph can have. For example, if one object has only
square holes and another has only round holes, then
even if the square and the round holes may lie close
to each other in the image, we would not include the
round holes in the list of features in the bounding ciicle
for a square hole.

EXTENDING RELAXATION FOR
OCCLUDED SCENES

So far we have not given the details of how the relaxa-
tion process actually works for occluded scenes. In
this section it is described in detail, since it has been
transformed into a very different form. Although the
relaxation process warks fine for nonoccluded scenes,
it does not work well if the scene is occluded. The
basic reason is that, if- a constraint is missing in the
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image. it does not mean that thé constraint actually
does not hold. It is possible that a constraint is not
satisfied because some or all of the associated units
are occluded. So the constraints do not have the same
discriminating power in occluded scenes. In non-
occluded scenes, we use the boundary edges directly
to describe the constraints, but this cannot be done
in occluded scenes.

Also, some of the constraints have to be used or
interpreted differently. For example, if a boundary edge
X is longer than another edge Y in the model, it does
not follow that the corresponding edge for X in the
image will be longer than the correspondmg edge for
Y. In fact, if a boundary edge W is longer than another
boundary edge Z in an image, no definite conclusion
can be made about them from this information alone.

However, some of the constraints can be used under
certain circumstances. For example, if there are-only
a few boundary edges which are longer than some
absolute amount, and we find an edge in the image
which is longer than this threshold, then it has to be
one of the above edges. But this does not constrain
the problem enough. to reduce the solution set of the
other labels.

One way to get around this problem is to use only
local features like holes, corners etc and the constraints
between them. Instead of using constraints between
the sides (or boundary edges), we use constraints
between the lines between the locations of features.
We refer to these vectors as interfeature vectors (1Vs).
The advantage of using IVs instead of sides is that,
unlike the sides, they are either present or absent, ie
they cannot be partially missing or broken up into
different parts because of occlusion. If both the features
constituting an IV are present in the image. then the
IV is defined; otherwise it is not. We can use the same
constraints as before, but they are now between the
IVs instead of the sides. Before they were binary
constraints, but now they aré essentially quarternary
constraints.

However, the constraints still do not have the discri-
minating power to drive the relaxation process, since
the constraint set in the image is incomplete. Initially
each unit has all the labels of the model in the label
set. We delete a label at a node if a certain constraint
is not satisfied. But now we are not sure if the con-
straint is unable to be satisfied or is just not satisfied
because of occlusion. So to drive the relaxation process
we need to seed the label set of some units and then
let relaxation take over. The goal is to get some positive
information from the scene and then propagate it. The
next two subsections describe how the IVs are created
and how the initial seeding is done.

Creation of interfeature vectors

An interfeature vector is defined to be the vector
between two feature locations. The magnitude of the
vector is the distance between the two feature
locations. If there are N features under consideration,
then there could be as many as N(N=1) IVs. This
could be too large to be manageable, particularly in
an image where there could be a large number of
features. To avoid this problem, we connect only the
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features which are within a certain distance of each
other. This distance is not arbitrarily chosen; rather it
is computed for each model separately so as to keep
the number of Vs small. For example, for the object
described in Figure 3, there are 28 IVs for a distance
threshold of 2.1

Initial seeding of label sets

The goal of the seeding process is to reduce the label
sets of some units, drastically if possible, so that it
will then drive the relaxation engine. This means we
- need to find the peculiat properties of some features,
their locations or their relationships. Since we are using
the Vs as the basis for the constraints, we decided
to look for peculiarities among these 1Vs. Two such
quan“utles are used here and we found them very useful
for the seeding process; they are

® magnitude of the interfeature vector (or thé distance
between the corresponding two feature locations)

® angle between two interfeature vectors; the two Vs
are chosen such that they have exactly one common
end point, ie they share one feature

We group these quantities, and try to find quantities
which are very unusual. In our case we say a quantity
is unusual, if it does not occur more than a certain
number of times in the above groups. We determine
this by histogram; Appendix 6 gives a brief outline
of how the process works. (It should be noted that
threshold distance, interfeature vectors, histograms etc
are created for the models beforehand. Th|s computa-
tion is performied only once.)

The function “details’ collects some mote information
about the interfeature vectors which correspond to the
th histogram entry (the associated features, etc).
Function 'GetSize' computes the size of the histogram.
It is computed such that two consecutive entries in
the histogram are at least ‘error’ apart. All the special
distances are collected in a list and become a part
of the model. Special angles are also computed by
a similar procedure and are stored in the model. A

special distance is actually not a single quantlty but.

it has a range associated with it. The idea is that if
the distance between two units in the image is in this
range, then the two units should correspond to the
two features in the model.

In the case of the objects given in the section on
nonoccluded object recognition, we found that there
are a few special lengths and angles for each of the
models that are fairly unusual in the sénse that there
is practically no other quantity which is close to these
special quantities in-terms of magnitude. This informia-
tion can be used to seed the label set of units in the
image.

Labelling process

The process of labelling starts with type checking.
Initially each unit (primitive) in the image is given all
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the labels of the desired model. Then, if the types of
the unit and any of its labels are not consistent, those
labels are removed from the label set (as above). The
next step is the seeding process. Before the actual
seeding can be done, the interfeature vectors and the
angles are constructed for the image. The distance used
is the threshold distance used by the model. After the
lengths and angles are constructed, they are searched
for the special angles and lengths. If any of the dis-
tances (or angles) match a special distance (or angle)
for the model, then the label sets of the assomated
units are updated.

The control is then passed on to the relaxation pro-
cess, and finally to the backtracking operator. Due to
the changed nature of the problem, the structure of
the relaxation process has been changed considerably
too. In the next section, we give the motivation and
the structure of the new version of the relaxation pro-

- cess.

Split-level relaxation process

The main reason to change the structure of the relaxa-
tion process is that there is no way to use positive
information in relaxation. For example, if during the
seeding process we infer that the primitive X can be
either A or B, then we cannot use this information
in any way more than if the label set of X had A and
B without seeding. In relaxation, all nodes are treated
equally and the information from seeding, which is
very povverful and positive, cannot be used. As a matter
of fact, it is poss&b!e for node X to lose all its labels
during relaxation just because it lacks support at some
other pnmmve which may not even belong to the

model.

We divide the nodes (primitives) into two groups:
nodes whose labels are fixed during the seeding pro-
cess are called the strong nodes and others are called
weak nodes. The strong nodes signify positive informa-
tion, The strong nodes always remain strong, while
the weak nodes may be elevated to strong status.
During relaxation, a strong node can affect the label
set of another (either strong or weak) node. This pre-
vents the nodes which are not a part of the model
from affecting the label sets of other nodes. Those units
which survive the first iteration, ie whose label set is
not empty at the end of the iteration, are then changed
to strong nodes, Those nodes which do not survive
the first iteration are not considered further and are
not considered to be part of the model. After that,
the relaxation process works as usual..

Another way to solve the problem of weak nodes
deleting the labels of strong nodes is to allow a label
at a node to remain if there is at least one support
for it from any other node. (In standard discrete relaxa-
tion, a label remains if it has support from all neighbour-
ing nodes.) This is motivated by the fact that some
of the constraints may be unsatisfied due t6 occlusion.
It should be noted. however, that there has to be sup-
port for the label in each of the possible graph types.
This is fairly effective, but takes more time, since the
labels are deleted after all the constraints are processed.
The effect of change can only be perceived during
the next iteration. In split-level relaxation, we delete
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a label once it is determined that there is no support,
and the change can be used by the next constraint
during the same iteration.

Discussion

In this section we point out some of the advantages
and disadvantages of this approach. Clearly the success
of the method depends on the special lengths and
angles. If they are occluded, then the methed may take
a longer time than usual. During the process, it might
lose all the labels in which case it would not recognize
the object. Or it may reduce the label sets of some
nodes and leave the rest of the work to the backtracking
procedure, which can be expensive.

However, if there are enough special distances and
angles then, even if some are missing, the method will
work very well. Qur experience is that it will work well
if we can reduce the label sets of two or three nodes
to about two or three. Also, it is not unusual-to find
about four or five special distances and angles. If these
are not enough, we could increase the threshold dis-
tance (for connection) to include more interfeature
vectors, thereby increasing the possibility of finding
more special distances and angles. Of course, this
increases the cost of computation, both for the model
and the image. The positive side of this is the fact
that these computations can be done ahead of time,
more than once if necessary to arrive at an optimal

= set of special distances and angles. Once this is done,

it is a part of the model of the object and need not
be recomputed.

Also, this takes care of a certain amount of efror
in both the model and the image. As pointed out before,
the special distances have a range associated with
them. So, if there is any small error the initial seeding
is not affected. This makes the system more robust.

IMPLEMENTATION AND RESULTS

Most of the above ideas were implemented in PSL
(Portable Standard LISP)?*. The compiled code was run
on a VAX-8600. The actual run times can be vastly
improved if implemented on a LISP machine like the
Symbolics 3600.

The system works in two phases. In the first phase,
all the models are input and the threshold distance,
special lengths and angles are determined and stored
in the model structure. This is only a oneé-time cost
and is similar to the training phase of local feature
focus’®. The input is at an intermediate level of descrip-
tion. What is input to the program is a list of local
features, their locations and the constraints between

Table 4. Results for nonoccluded scenes

Object Run time Constraint Total number
number (ms) types of constraints
1 357 5 43

2 476 6 33

3

8b 4 15
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Figure 3. Object number 1

them. The different types of constraints used are
parallel, perpendicular, adjacent, longer-than etc.

In the second phase, an image description is given
along with the set of constraints associated with the
local features in it. We also give a model to be searched
for in the image. We only check for node and arc
consistency. The AC-3 algorithm as defined by
Mackworth® is wused. for enforcing con513tency
Although we look for a single object in an image, it
would be a strmghtforvvard extension to look for
multiple objects in the same lmage We essentially
follow the model given above. The image descnpt:on
is similar to that for the models.

At the end of relaxation process, control is passed
on to a backtracking procedure which does further con-
sistency checks and lists out all the solutions. The out-
put is a listing of local features in the image and the
corresponding features in the object. If the label set
of a primitive is empty, it is labelled as unkhown. =

Nonoccluded object recognition

Table 4 ‘giveés the time taken to recognize three parts
shown in Figures 3, 4 and 5 in nonoccluded scenes.
It also gives the number of different types of constraints

and total number of constraints used. It should be

Figure 4. Object number 2
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Figure 5. Object number 3

noted that the number of constraints and the constraint
types are not optimized. Here only the boundary edges
are used for recognition.

Occluded object recognition

Figures 6, 7 and=8 show three scenes where some
parts are occluded. These scenes were searched for
occurrence of objects 1, 2 and 3 respectively. Table
b gives the time taken to recognize these parts in thé
corresponding scene. There are two run times in the
table, corresponding to the two schemes used.

CONCLUSIONS

In this paper we have formulated the scene analysis
(SA) problem as a consistent labelling problem (CLP).
We also gave a solution to the problem within the
framework of discrete relaxation methods. However,
the approach is based on a different perspective in
order to exploit the inherent parallelism in the problem
and to account for occlusion. We have also recom-
mended several variations to improve the efficiency of
the computation. Also, unlike many other works, we
have used more than binary constraints. In fact, we
effectively handle unary, binary, ternary and guaternary
constraints.

Although the approach sounds attractive, particularly
if a multiprocessor is accessible, it by no means solves
all the problems. First, we are still dealing with 2D
models. Extending the approach to 3D has its obvious
challenges. Although we do take into account a certain
amount of error, both in the models and during the

Table 5..Results'for occluded scenes

Scene : Run time 1 Run time 2
number (ms) © (ms)

1 1360 6307

2 1581 2074

3 3791 26452
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Figure 8. Occluded scene number 3
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low-level processing, thé error measurements are not
based on any sound theory to analytically determine
them. ‘

We have shown that global constraints can be useful,
and we can effectively use them with local constraints.
A -problem we have not considered is the optimality
of the constraint set. We have uséd the constraints
which were obvious in the models and the image.
However, some of them are redundant and there should
be a systematic way to eliminate the redundancy.
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APPENDIX 1: SUBPROCESS STRUCTURE

type .

state = (changed, unchanged, working)
process relaxG(i : integer)
begin

repeat

Status[i] := waorking;

Enforce Arc, Node and Path consistencies in the

ith graph;

If there is change in the label-set of any node

then
Status[i] :

Else
Status[i] :

until terminate.
end;

Changed

Il

UnChanged
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APPENDIX 2:_ CONTROLLING PROCESS

var . '
. integer; (* number of graph types *)

n :integer; (* number of models *)

k :integer; (* number of features in the image *)
process re!axS(scene models)

begin
var'i, temp : integer:
Count :integer;
status  : array [1 .. m] of stater
N : Set of nodes ’
L. . Set of Features;
N :=F% (* Features in image are nodes *)
L= Vi F%,

build the image and model graphs;

fori:= 1 to k do Label-set of node N, := L,
fori:=1tomdo Status[i]‘:= changed;
Count = 0;

fori:=1tom do fork-process(relaxG, i):

while (Count # m) do

begin
temp := 0; ,
fori:=1tomdo

if (Status[i] = unchanged) then
temp := temp + 1
Count ;= temp:
end:;

terminate = true:
find-solutions():
end;

APPENDIX 3: TOP LEVEL PROCESS

process relaxM;
begin
while (there is an unmarked feature in the image)
do
begin
:= first unmarked feature;
O := find-objécts(f); (* find objects it can be a
part of *)
for (every object O;in O) do
fork-process(relaxSS, O, 1):
end;
end;
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APPENDIX 4: PROCESS FOR WORKING
ON A SUBSCENE

process relaxSS(O : object, f feature)
begin
S .= features-in-bounding-circle(O, )
for each feature fin S do mark(f);
relaxS(S, O);
if object O is confirmed then
mark all its features as explained;
T := all other features in S;
if T is not empty then
begin
‘unmark every feature in set T;

| “restart process relaxM;

end:
end;

APPENDIX 5: PROCEDURE FOR
COMPUTING THE RADIUS OF THE
BOUNDING CIRCLE

function BCircle (£ F) : real;
begin
var max, dist : real;

max := 0.0;

- foralt features f,in F do

begin :
dist ;= distance(f, f);.

if (dist > max). then max := dist;
end;

BCircle := max;
end;

APPENDIX 6: COMPUTATION OF SPECIAL
DISTANCES

procedure ComputeSpecialDistances:

begin ;
Compute thé threshold-distance:
fori:= 1 to No-of-Features do
forJ =i+1 to No-of-Features do
If distance(feature[i], feature [i] <= threshold~
distance then
v = Make-inter-feature-vector(feature[i],
feature[j]);
‘ Append(lvs iv)
endif; , '
sizé .= GetSize(IVs, error)
H := Make- hlstogram(le size)
fori:=1 to size do
if H[i] <= Nuniqgue then
Append(Special-Length-List, details(i));

endif;
Store the Special-Length-List in Model:

end;
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