Partern Recognition, Vol. 19, No. 4, pp. 279288, 1986.
Printed in Great Britain.

0031-3203/86 $3.00+ .00
Pergamon Journals Ltd.
Pattern Recognition Society

SHAPE GRAMMAR COMPILERS

THoMAS C. HENDERSON and ASHOK SAMAL
Department of Computer Science, The University of Utah, Salt Lake City, Utah, U.S.A.

(Received 28 October 1985)

Abstract—Compiler generation tools have been used quite successfully to produce parsers for certain classes
of string grammars. Such techniques can also be applied to the development of syntactic shape parsers. We
present a generalization of LR parsing to shape grammars based on the use of geometrical relations between

the symbols. The components of this approach are:

(1) a grammar for defining classes of 2-D and 3-D shapes,
(2) a shape grammar compiler which produces a tabular representation of the explicit and implicit

constraints between the parts of the shape,

(3) and a general parsing mechanism which uses these tables of constraints to perform the analysis of

unknown shapes.

Syntactic methods Compiler generation

1. INTRODUCTION

We believe that the syntactic method offers many
advantages for shape analysis. The major advantage is
the possibility of defining logical relations between
anthropomorphically significant parts of a shape.
Moreover, formal techniques allow both the automa-
tic generation of constraint relations for grammatical
descriptions of shape, and the application of these
constraints during the analysis of shape. Shaw,!) Fu,?
Rosenfeld® and others*~? have proposed various
approaches to syntactic or grammatical shape models,
but in general, the parsing methods for these models
are standard string parsers, e.g. Earley’s algorithm. In
order to obtain the most advantage from the grammati-
cal approach, however, the relation between the shape
grammar and the shape parsing method must be
formally established. In this paper, we consider a
bottom-up parsing mechanism and its relation to a
particular class of shape grammars. Our goal is to
outline a framework for a coherent approach to
syntactic pattern recognition.

In choosing the parsing mechanism for a given
shape grammar, the problem is much the same as that
faced by a compiler writer trying to choose a re-
cognizer for a string grammar. In the traditional
bottom-up parsing approach,®) a recognizer is im-
plemented in a general way using tables. These tables
are derived from the given grammar and describe
relations between the vocabulary symbols of the
grammar. A constructor is designed which, given a
grammar, checks it for suitability and builds the
necessary tables for the recognizer (see Fig. 1). That is,
to implement the recognizer for a given grammar, the
constructor is run with the grammar as data, and the
output is merged with the recognizer. We will show
how this technique can be extended from string
grammars to shape grammars.

Constraint techniques

Shape analysis

Our general shape grammar scheme is to produce a
shape parsing mechanism by means of a shape gram-
mar compiler from a high-level shape grammar de-
scription. This is analogous to using an automatic
parser generator to produce a string parser from a
high-level programming language description. Note
that this contrasts with most syntactic methods; they
use a general context-free parser.

However, for an approach which is similar in spirit,
see Bunke’s attributed programmed graph grammar
transformation system.*® The shape parsing mechan-
ism performs the actual analysis of unknown shapes
and outputs an organization imposed on the shape
primitives in terms of the underlying grammar.

Most proposed syntactic shape analysis methods
have dealt with the shape grammar (or model) at
length, while the corresponding parsing algorithm has
been chosen ad hoc and from a string grammar
perspective, e.g. You*!) uses Earley’s algorithm. The
shape parsing mechanism has usually been construc-
ted manually. Finally, in most formalisms it is a
tedious process to produce the shape grammar for any
interesting class of shapes. ,

This provides an impetus for developing more

Input
* Same for all
Parse parsers
Driver Routine(*) Table + Grammar
(+)) Dependent

l

Output
Fig. 1. Parts of an LR parser.

279

280

suitable user-oriented languages for describing a shape
grammar. Thus, one problem faced is the design of
suitable shape grammar description languages, and
the subsequent problem is the construction of correct
and efficient compilers for such languages.

As an example of one approach to syntactic shape
analysis, we propose a generalization of LR parsing as
the framework within which to define shape grammars
and their parsers. For another example see Mohr and
Masini.!? The major motivation for this choice is that
methods exist for automatically deriving the shape
parsing mechanism. In particular, we have:

—a shape grammar formalism which accounts for
most structural aspects of 2-D and 3-D shape,

—a table-driven parsing mechanism which uses cons-
traints between pieces of the shape, and

—an automatic method to compute constraint rel-
ations between the vocabulary symbols of the
grammar.

This process can be viewed as a generalization of
traditional table-driven grammar techniques in that
the grammars involve constraints between string
grammar symbols. With string grammars, bottom-up
parsing involves scanning from left to right until the
tail of the handle is found, then scanning right to left
from the tail until the head of the handle is found. This
works well enough for string grammars, but shape
grammars pose the problem of complicated relations
between the symbols, and these relations must be
accounted for and taken advantage of by the shape
parsing mechanism.

2. DETAILS OF THE APPROACH

Most syntactic approaches which consider the pars-
ing problem at all typically use parsing algorithms
which are applicable to the entire class of context-free
grammars, e.g. the Cocke-Younger-Kasami algor-
ithm or Earley’s algorithm. Although these are general
parsing methods, they are computationally expensive
even for string grammars, and they require on the
order of n® time and order n? space. On the other hand,
it is possible that for specific grammars, these require-
ments can be reduced. Other methods, such as LR(k)
parsing, are available, though, which do not suffer
from these deficiencies, and are the recommended
technique for implementing parsers for programming
languages. It is in this vein that we explore the

TaoMAs C. HENDERSON and ASHOK SAMAL

extension of the LR(k) approach to shape grammar
parsing and the automatic generation of parsers from
shape grammar descriptions.

2.1. LR parsing

The LR(k) grammars are a class of context-free
grammars which can be parsed deterministically.®
The parse uses a left-to-right scan (the L in LR) of the
input to produce (the reverse of) a right sentential parse
(the R in LR) and can scan k input symbols ahead.
Suppose that is a rightmost derivation of w, where rm
means rightmost and p; means production i is applied.
Then an LR(k) parser produces p,, Pm-1> ---» DP1-
Basically, the parser shifts input symbols onto a
pushdown list. When a handle appears

p1 P2 Pm
S=ag=0;=...=>0, =W
m rm m

at the top of the pushdown list, the handle is reduced.
This process continues until the start symbol is
produced or an error is detected. For LR(k) grammars,
it is possible to determine which nonterminal should
replace the handle by scanning at most k symbols to
the right of the handle.

Thus, an LR(k) parser must decide whether to shift a
new input symbol onto the pushdown list or whether a
handle is present already. Once it is determined that a
handle is present, it is necessary to find the left end of
the handle. Finally, the appropriate nonterminal to
replace the handle must be chosen (this involves
finding the right production to apply).

An LR(k) parser is a table which encodes the current
state of the parse in terms of (1) a parsing action
function and (2) a goto function. A parse proceeds by
applying the parsing action to the head of the push-
down list. The four possible actions are: shift, reduce,
error or accept. If shift, then the next input symbol is
shifted onto the pushdown list. If reduce, then the
indicated production is used to remove the symbols on
the top of the pushdown list which correspond to the
right hand side of the production. The left hand side of
the production is placed on the pushdown list. If error,
the parse is halted with an error message, or some kind
of recovery may be attempted. If accept, the parse is
halted and the parse is known. k

One advantage of LR(k) parsing is that it is possible
to optimize LR(k) parsers. LR(k) grammars represent
one of the largest classes (of unambiguous grammars)

Fig. 2. The regular pattern appearing in a normal ECG.

Shape grammar compilers”

for which deterministic parsers can be constructed,
and LR parsers can compete quite well with other
kinds of parsers. The basic problem for producing an
LR(k) parser is to generate the LR(k) table which
controls the parsing. Although it is possible to auto-
matically produce these tables, they are often too large
to be practicable. However, since LR(k) parsers have
the desirable properties of being fast and capable of
early error-detection, the return is high if an optimiz-
ing step is taken.

2.2. Extending LR techniques for shape grammars

Now let’s consider how this approach applies to
shape grammars. First of all, it is possible to encode a
class of shapes directly as an LR(k) grammar using
terminal symbols which correspond to some shape
primitives. Such parsers can be produced using stan-
dard parser generators such as lex (lexical analyzer
generator) and yacc (yet another compiler compiler).
For the examples given below, we have used these tools
running under Berkeley Unix 4.2. Thus, for any class of
shapes which can be described by LR(0) grammars, it is
quite straightforward to generate the corresponding
recognizers using such parser generator tools.

First, parsers can be produced rather easily for any
class describable by regular expressions. For example,
normal ECGs (see Fig. 2) can be characterized by the
following regular expression (from Gonzalez®)):

[prbt (b|bb|bbb)] +.

The input to lex is given in Appendix A. This is all that
is required to produce the finite state recognizer.
Context-free grammars require the use of yacc.
Consider the following two examples from Fu,® one
for median chromosomes and the other for acrocentric
chromosomes. These shapes are shown in Figs 3 and 4.

Grammar for median chromosome
G, =(T,N,P,S)
={a, b, ¢, d}
=mmaaaamn

where a, b, c and d correspond to

A1, ==, ¢ ,respectively.

Productions (P).
S—>AA
A—-cB
B—~FBEHDJ
D> FDE|d
E—b
F—b
H-a

J - a

281

Fig. 3. Median chromosome shape.

The LR parsing table produced for this grammar is
given in Appendix B.
Grammar for acrocentric chromosome
G,=(T,N,P,S)
» = {a, b, c,d}
N={&ABJLEEGJLLLRJW.

Productions (P):

S—»AA
A—-cB
B> FLIRE

) D—»FGIWE
bE—>b

"F-b
G- FG|d
H-a
J—a
L-HDJ|FL
R—»HD.IIRE‘
W WEld

The LR parsing table for this grammar is given in
Appendix C.

However, for more complex geometrlcal shape
grammars, the extension to LR(k) parsing must be
more general. It is important to note that LR(k) tables

“form the basis for LR(k) parsing. Moreover, LR(k)
_tables encode the structure of the strings of a language
'in terms of their neighborhood relations; e.g.

PRECEDES and FOLLOWS. That is, the LR(k)
‘tables represent in a finite and deterministic way the
combinatorics of these relations. This suggests that
one generalization of LR grammars to shape gram-

Fig. 4. Acrocentric chromosome shape.

282

mars can be based on the use of relations between
symbols, where these relations include geometrical
relations between the shape primitives. Several issues
must be dealt with:

(1) the definition and use of the parsing tables,

(2) the generalization of “left-to-right” scanning,

(3) the nature of the parse which is produced, i.e. the
control of the parse, and

(4) the noise and ambiguity in the data and shape
primitives.

The goal of this paper is to define the general
advantages and disadvantages of this approach and to
indicate how some of the previous work in syntactic
pattern recognition addresses these issues. It is clear
that many possibilities exist for tackling these
problems.

The automatic generation of parsing tables is at the
heart of the approach. It is possible to define table-
driven shape parsing methods, where the tables encode
various geometric relations of interest between sym-
bols in a convenient way. Even though a deterministic
parsing method does not necessarily result, it is
possible to apply intrinsic shape constraints during a
parse. This approach can exploit the mechanism of
table-driven methods in two fundamental ways.

(1) First, it is possible to use the tables directly
defined in a similar way as string grammar tables. E.g.
we have already seen that shapes can be defined as
strings. Typically this approach is possible if a com-
plete, finite, unambiguous set of shape primitives is
available. Moreover, simple extensions to more gen-
eral shapes are possible (and the left-to-right scan can
be appropriately modified). In general, though, this
direct approach runs into too many problems with
missing or ambiguous shape primitives, noise, etc.

(2) Alternatively, the tables (which define the shape
relations) can be used to drive a parsing process which
is based on using the error information in the tables. In
fact, the hierarchical constraint process (HCP) imple-
ments just this notion. The process works as follows:

—shape primitives are assigned a set of possible
terminal symbol interpretations,

—these multiple labelings give rise to a host of possible
shapes depending on which combination of labels is
ct}osen,

—the failure of a constraint on a given vocabulary
symbol hypothesis for a particular shape primitive
causes that hypothesis to be removed.

The major idea is that the tables encode general 2-D
and 3-D shape relations and can be used by a shape
parser to eliminate invalid hypotheses Thus, the parse
proceeds in two modes:

—a “disprover” mode in which inconsistent hypo-
theses are discarded, and

—an “apply productions” mode in which higher-level
vocabulary symbols are produced from the current set
of symbols.

TraoMmas C. HENDERSON and ASHOK SAMAL

The table techniques can be used in both of these
modes. The tables used in this process can be automat-
ically produced from the shape grammar which defines
the class of shapes to be recognized. (Methods for
producing tables of the second mode can be found in
Aho and Ullman,® and table generation methods for
the “disprover” mode can be found in Henderson.!!)

In general, it is not possible to talk about or define a
“left-to-right-scan” for a set of shape primitives, unless
the shapes are described as silhouettes. Even in this
case, it is not easy to define a unique starting primitive.
In our previous work on HCP, we have actually
defined and used grammars for silhouettes. However,
in order to take noise and ambiguity into account (also
see below), no left-to-right scan was defined or used.
Thus, in the most general case, the vocabulary symbols
are considered in parallel. (Note that, for a shape
grammar, a vocabulary symbol corresponds to a part
of the shape, where terminal symbols define the lowest
level granularity of shape description, and the start
symbol represents a complete shape.) Also, no uni-
quely appropriate sentential parse has been defined.

Finally, the problem of noise and ambiguity must be
addressed in applying syntactic techniques to shape
analysis, especially if real world images are to be
analyzed. Several solutions have been proposed for
this problem, including;

—relax the condmons for extractmg the shape

.prlmmvcs

—introduce probabilities on the productions and
strings which describe the shapes, and

—allow multiple hypotheses for the shape primitives
and delete inconsistent or unsupported hypotheses.

All of these approaches can be used within the shape
grammar compiler paradigm proposed here. Our
work with HCP has concentrated on the last of these
approaches. The choice of one of these methods should
be made on the basis of the kind of data that will be
available, the class of shapes to be recognized, and the
desired robustness.

Other important issues, such as the control of the
parse, the choice of constraints, etc. can be discussed
once a particular method is chosen. For example, if the
shapes can be modeled by an LR string grammar, then
the parse is a deterministic LR parse, and the cons-
traints are determined by the handles of the language.
On the other hand, HCP can use a wide range of
constraints and controls the parse through hypothesis
elimination.

3. A 3-D SHAPE GRAMMAR EXAMPLE

To illustrate these ideas in the context of 3-D shape
modeling, we first review the hierarchical constraint
process and then give an example. We present a
grammar for the “cup” shape [compare, for example,
the grammar in Lin*], where the shape primitives
are certain generalized cylinders.

Shape grammar compilers

Stratified shape grammars have been described
elsewhere in detail,!® and we give only a brief
summary here. A stratified context-free grammar, G, is
quadruple (T, N, P, S), where T is the set of terminal
symbols, N is the set of non-terminal symbols, P is the
set of productions, and S is the start symbol. Let V
= (N uUT) be the set of all vocabulary symbols.
Associated with every symbol v eV is a level number,
In(v): V — {0, 1,...,n}, where In(S) = n,and Y ve T, In(v)
= 0.

T consists of symbols which correspond to relatively

large pieces of the shapes modeled by the grammar. In
particular, each terminal symbol corresponds to one of
the following: a circle, a cylinder, or a curve segmerit.
N consists of symbols each of which has a level
number from 1 to nassociated with it. In any rule v: =«
(the rewrite part of a production), if In(v) = k, then
every symbol in the string a is at level k — 1. Fur-
thermore, VveV

v = {name part) {attachment part} [semantic part],
where

{name part) is a unique name by which the symbol vis
known,

{attachment part} is a set of attachment points of the
symbol,

[semantic part] is a set of predicates which describes
certain P consists of productions of the form (v:=o, A4,
C,G,G)and v: = o

that indicates the replacement of the symbol v by the
group of symbols o, where veN and a = v,v; ... v
such that v;e Vand In(v;) = (In(v) — 1)fori= 1,k: Ais
a set of applicability conditions on the syntactic
arrangement of the v;; C is set of semantic consistence
conditions on the v; and consists of various predicates
describing geometric and other properties of the v; G,
is a set of rules for generating the attachment part for v,
the new symbol; G, is a set of rules for generating the
semantic part of v, the new symbol.

What is important to note about such grammars is
that it is possible to derive very useful geometric
constraints from them, and that such constraints can
be used in a table-driven way. In fact, the constraints
are nothing but relations implemented as tables.

We will not go through the details of the constraint
compilation techniques. From the shape grammar,
these techniques produce an enlarged set of relations
which are only partially explicit in the grammar. For
example, it may be possible to discover that two pieces
of a shape (more technically, their syntactic symbols)
are indeed parallel, even though no explicit statement
of that is given in the productions. :

Such relations can be used to significantly reduce the
amount of work necessary to determine if an unknown
shape is in the class defined by the shape grammar. The
mechanism which performs this function is the Hierar-
chical Constraint Process. HCP uses the hypothesis
elimination mode to account for ambiguity and noise
in the data. In fact, the ambiguity of the underlying

283

data is a major problem faced by any syntactic shape
analysis method, but not by string parsers.

Usually no clear-cut decision can be made in
associating the terminal symbols of a grammar with
the shape primitives. Thus, the parsing mechanism
must not only overcome the problem of parsing a
complicated arrangement of symbols (i.e. concaten-
ation is no longer the only relation between symbols),
but must also disambiguate the interpretations of a
given shape primitive. HCP solves this in the following
way. Given a set of shape primitives (i.e. circles,
cylinders, or curve segments detected in a scene), and a
stratified shape grammar for the class of shapes, HCP
performs the following actions:

—associate with each shape primitive a set of possible
interpretations, i.e. terminal symbols,

—determine the initial network of hypotheses, that is,
for each possible interpretations of each shape primi-
tive, insert a node in the network; two nodes of the
network are connected if their underlying shape primi-
tives are physically adjacent,

—apply procedures to the network until the network is
empty or the start symbol is produced.

The association of terminal symbols with shape
primitives will (in the limit) be to hypothesize every
terminal symbol for each primitive. However, methods
for reducing the number of hypotheses include using a
more global analysis to derive indications of appropri-
ate scale, orientation, etc. from simple global pro-
perties; e.g. one can histogram selected features of the
primitives themselves to infer properties of particular
vocabulary symbols.

The network of hypotheses represents all possible
sentential forms for the given shape primitives. Every
path in the network represents a distinct set of
interpretations of the primitives and must be parsed.
However, this is usually much too large a set to be
parsed one after the other. The hierarchical constraint
process computes a bottom-up parse of all the paths in
parallel. This is done by applying the constraints to the
network and can be described by specifying three
simple procedures and two sets which these proce-
dures manipulate.

BUILD—Given level k of the network, BUILD uses
the productions of the grammar to construct level k
+ 1 nodes. Physically adjacent hypotheses are linked,
and a record is kept of which nodes are used to

_construct each level k + 1 node. All level k + 1 nodes

are put into the CONSTRAIN-SET, and all level k
nodes are put in the COMPACT-SET (both of these
sets are initially empty).

CONSTRAIN—While the CONSTRAIN-SET is
not empty, CONSTRAIN examines each member of
that set; if a node fails to satisfy the constraints, then its
neighbors are put into the CONSTRAIN-SET, any
nodes it helped produce and the nodes used to produce
it are put into the COMPACT-SET, and it is deleted
from the network. :

284 THOMAS C. HENDERSON and ASHOK SAMAL

Neighbors: bot cyl bod han cup
bot 1
cyl 1
bod 1
han 1
cup
Parallel:

bot cyl bod han cup

bot 1 1 1 1

cyl 1 1 1 1

bod| 1 1 1 1

han| 1 1 1 1

cup| 1 1 1 1
Fig. 5.

COMPACT—While the COMPACT-SET is not
empty, COMPACT examines each member of that set;
given a node n from the COMPACT-SET, if one of the
lower level nodes used to produce n has been deleted,
or if n has not helped produce a node at the level above
it, (and that level has been built), then n’s neighbors are
put into the CONSTRAIN-SET, any nodes it helped
produce and the nodes used to produce n are put into
the COMPACT-SET, and n is deleted from the
network.

This then is the shape parsing mechanism. The
constraint propagation is based on the discrete relax-
ation techniques developed by Waltz!® and Rosen-
feld.'® As an example of this approach, consider the
following 3-D shape grammar for the class “cup”.

= {bottom, cylinder, handle}
= {cup, body}
= {cup}, and
p={
Production 1:

{cup) { } [vertical_axis diameter height]: =

A: [end’ =end”]
S [(normal’ = axis”) and (diameter”: = diameter’)]
G,: [(contact;: = "free”) (contact,: = "free”)]

G [(Verti‘cal_axis: = axis’) (diameter: = diameter’)
(height: = height)]

where “free” is on the cylinder and matches anything.

Identities:

<b‘ottom> {end} [n d] = {circle) {end} [n d]
<handle) {e, e,} [ha] =

The compiled constraints “Neighbors” and “Parallel”
are shown in Fig. 5 where a blank in the table means
zero. Also, 0 means the relation does not hold, while a 1
means that it does. These tables can then be used in the
normal manner by HCP as described in Hender-
son.!» Note that the parallel constraint is quite
powerful since every symbol is parallel to every other.
This makes it possible to detect errors very quickly.

4. DISCUSSION

We have shown one possible approach to construct-
ing a framework for shape parsing, and have shown
how to implement a bottom-up, constraint-driven
parsing mechanism. In addition, we have explained
how it relates to traditional string parser theory. For
the syntactic approach to prove useful, it is necessary
that a clear conceptual relation should exist between
the grammar and the parser. Moreover, parser gen-
erators must be made available to make the develop-
ment of shape grammars and their parsers feasible and
effective.

In analyzing a class of shapes, we proceed as follows:

—define a shape grammar for the class of shapes,

—derive the syntactic and semantic constraints be-
tween the vocabulary symbols of the grammar, and

—apply the parsing procedure to a set of shape

{body) {contact, contact,} [vertical axis’ diameter’ height’]

+ ¢handle) {end," end,’} [height” vertical_axis”]

A: [(contact, = end,) and (contact, = eridz)
or (contact, = end,) and (contact, = end,)]

S: [(vertical_axis’ = vertical_axis”) and (height’ = height”)] °

Ga: []

. [(vertical _ ax1s = vertical_axis’) (dxameter = diameter”’)

(helght = height")]

Production 2:

{body) {contact, contact,} [vertical_axis diameter helght] =

{bottom} {end'} [normal’ diameter’]
+ {cylinder) {end'} [axis" diameter” height”]

{curve segment) {e; e,} [h a].

[

Shape grammar compilers

primitives using the constraints to produce a parse
(perhaps by eliminating incorrect hypotheses).

Successful experiments have been run for detecting
various kinds of shapes. However, several problems
have been encountered. Shape grammars can have
many productions, and a convenient means for defin-
ing a grammar has yet to be developed. Thus, at
present, shape grammars are a major source of error
and usually require much debugging. One solution to
this is an interactive, graphical shape grammar speci-
fication system; another attractive approach is to
generate such grammars directly from a CAD design.

There are two other critical issues which we are now
studying. First, we would like to be able to provide
deterministic parse tables for shape grammars. This

could tremendously speed up the parsing process. The

second issue is the choice of constraints (perhaps even
the combination of several constraints). Currently, this
is guided directly by the kinds of relations specified in
the grammar (e.g. parallel, relative length, etc.). How-
ever, a deeper analysis might radically reduce the size
and number of tables used in the parser.

SUMMARY

We believe that the syntactic method offers many
advantages for shape analysis. The major advantage is
the possibility of defining logical relations between
anthropomorphically significant parts of a shape.
Moreover, formal techniques allow both the automa-
tic generation of constraint relations for grammatical
descriptions of shape, and the application of these
constraints during the analysis of shape. Various
approaches have been proposed for syntactic or
grammatical shape models, but in general, the parsing
methods for these models are standard string parsers,
e.g. Earley’s algorithm. In order to obtain the most
advantage from the grammatical approach, however,
the relation between the shape grammar and the
shape parsing method must be formally established. In
this paper, we consider a bottom-up parsing mechan-
ism and its relation to a particular class of shape
grammars. Our goal is to outline a framework for a
coherent approach to syntactic pattern recognition.

Our general shape grammar scheme is to produce a
shape parsing mechanism by means of a shape gram-
mar compiler from a high-level shape grammar de-
scription. This is analogous to using an automatic
parser generator to produce a string parser from a
high-level programming language description. Note
that this contrasts with most syntactic methods; they
use a general context-free parser. (However, for an
approach which is similar in spirit, see Bunke’s
attributed programmed graph grammar transformation
system.) The shape parsing mechanism performs the
actual analysis of unknown shapes and outputs an
organization imposed on the shape primitives in terms
of the underlying grammar.

As an example of one approach to syntactic shape
analysis, we propose a generalization of LR parsing as

285

the framework within which to define shape grammars
and their parsers. The major motivation for this choice
is that methods exist for automatlcally deriving the
shape parsing mechanism. In particular, we have:

—a shape grammar formalism which accounts for
most structural aspects of 2-D and 3-D shape,

—a table-driven parsing mechanism which uses con-
straints between pieces of the shape, and

—an automatic method to compute constraint rel-
ations between the vocabulary symbols of the
grammar.

This process can be Viewed as a generalization of
traditional table-driven grammar techniques in that
the grammars involve constraints between string
grammar symbols. With string grammars, bottom-up
parsing involves scanning from left to right until the
tail of the handle is found, then scanning right to left
from the tail until the head of the handle is found. This
works well enough for string grammars, but shape
grammars pose the problem of complicated relations
between the symbols, and these relations must be
accounted for and taken advantage of by the shape
parsing mechanism. '

REFERENCES

1. A. C. Shaw, A formal picture description scheme as a
basis for picture processing systems, Inf. Control 14,9-52
(1969).

2. K.S. Fu and B. K. Bhargava, Tree systems for syntactic
pattern recognition, IEEE Trans. Comput. C-22,
1087-1099 (1973).

3. A. Rosenfeld and D. Milgram, Web automata and web
grammars, Machine Intell., pp. 3307-3324. Edinburgh
University Press, Edinburgh (1972). '

4. K. S. Fu, Syntactic Methods in Pattern Recognition,
Mathematics in Science and Engineering, Vol. 112.

" Academic Press, New York (1974).

5. C. R. Gonzalez and M. G. Thomason, Syntactic Pattern
Recognition, Applied Mathematics and Computation, Vol.
14. Addison-Wesley, Reading, MA (1978). ~

6. T. Pavilidis, Structural Pattern Recognition. Springer,

- Berlin (1977).

7. Q. Y. Shi and K. S. Fu, Parsing and translation of
(attributed) expansive graph languages for scene analysis,
IEEE Trans. Pattern Anal. Mach. Intell. PAMI-5;

 472-484 (1983).

8. S. Aho and J. D. Ullman, The Theory of Parsing,
Translation and Compiling, Vol. 2. Prentice Hall, En-
glewood Cliffs, NJ (1973).

9. D. Gries, Compiler Construction for Digital Computers.
John Wiley, New York (1969).

10. H. Bunke, Attributed programmed graph grammars and

their application to schematic diagram interpretation,
IEEE Trans. Pattern Anal. Mach. Intell. - PAMI-4,
574-582 (1982).

11. K. You and K. S. Fu, Syntactic shape recognition, Tech.
report in Image Understanding and Information Ex-
traction, Summary Report, Purdue Umversny, March
(1977).

12. G. Masini and R. Mohr, Mirabelle, a system for struc-
tural analysis of drawings, Pattern Recogmtlon 16
363-372 (1983).

13. T. Henderson and L. Davis, Hierarchical models and
analysis of shape, Pattern Recognition 14,197-206 (1981).

286 THomAs C. HENDERSON and ASHOK SAMAL

14. W. C. Lin and K. S. Fu, A syntactic approach to 3-D Winston, Ed. McGraw-Hill, New York, pp. 19-91
object representation, IEEE Trans. Pattern Anal. Mach. (1975).)
Intell. PAMI-6, 351-364 (1984). 16. A. Rosenfeld, R. Hummel and S. Zucker, Scene labeling

15. D. Waltz, Understanding line drawings of ‘scenes with by relaxation operations, IEEE Trans. Syst. Man

shadows, The Psychology of Computer Vision, P. H. Cybernet. Vol. SMC-6, 420-433 (1976).

About the Author—THoMAS C. HENDERSON received the Ph.D. in Computer Science from the University of
~ Texas in 1979. He then spent one year at Deutsche Vorschungs- und Versuchsanstalt fuer Luft- und
Raumfahrt near Munich, West Germany as a Research Associate in the Image Analysis Group. The next year
was spent as a visiting professor at the Institute National de la Recherche en Informatique et en Automatique
near Roquencourt, France. In 1982, he took a regular faculty position at the University of Utah, where he is
“ presently an Associate Professor. ‘
Professor Henderson’s research interests include artificial intelligence, computer vision and robotics, an
he has published numerous papers in these areas. He is co-author of Relaxation Techniques in Computer
Vision to be published by Oxford University Press.

About the Author%ASHOK SAMAL received his B.Tech. degree from the Indian Institute of Technology
Kanpur, India in 1983. Since then he has worked as a Teaching Assistant and Research Assistant at the
Department of Computer Science, University of Utah, Salt Lake City, USA, where he is working for his Ph.D.

APPENDIX A ‘ state6
: " B FBE
The input to lex for the ECG waveform grammar is: ..a shift9
A b shift8 =
, o error
[(prb?) (b|bb|bbb)]+ {printf{"Normal ECG Pattern/n"); };
la-z1+ {print{”Abnormal ECG Pattern/n"); }; IE go:o éo
Sy goto
%% ' H goto7
state 7 o .
) B: HDJ -
6. APPENDIX B : i ;
.) b shift 8
The states generated by yacc for the medidn chromosome d shift 13
grammar are: error
F goto 12
state 0) .
Saccept: _S $end D gotoll
S shift3 state 8
' error F b M
. =8 gotol D . . reduce 7
A _goto2) L ‘state 9
state 1 ‘ H:oa)
i Saccept: S_S$end o o . reduce 9 -
$end accept ‘ ' » state 10
e error B: FBE
state 2 ' b shift 15
) S:, A_A i 4 . error
¢ shift 3 E goto 14
. error
state 11
A gotod B "HD_J
tate 3 - &
e B a shift17
S ; . error
a shift9) .
b shift8 ., . - J goto 16
error . state 12
B goto5 D: FDE
F goto6 , b shift 8
v “H goto7 v ‘ d shift 13
state 4 . . y . error
S: AA_ (¢ F . goto 12 .
reduce-1 D gotol8
state 5 : state 13

4 B @ brod. ()
;. reduce 2 . . = .- reduce 6

Shape grammar compilers

state 14
B: FBE_ 3)
reduce 3
state 15
E. b_ ®)
reduce 8
state 16
B: HDJ_ 6]
reduce 4
state 17
J oa_ (10)
reduce 10
state 18
. FD_E
b shift 15
error
E goto 19
state 19
D: FDE_ %)
reduce 5

7/127 terminals, 8/300 nonterminals

11/600 grammar rules, 20/750 states

0 shift/reduce, 0 reduce/reduce conflicts reported
8/350 working sets used

memory: states, etc. 84/12000, parser 16/12000
11/600 distinct lookahead sets

3 extra closures

13 shift entries, 1 exceptions

14 goto entries

2 entries saved by goto default

Optimizer space used: input 48/12000, output 27/12000

27 table entries, 6 zero :
maximum spread: 260, maximum offset: 259

APPENDIX C

The states generated by yacc for the acrocentric chromosome

grammar are:

state 0
$accept: _S $end
¢ shift3
error
S gotol
A goto2
state 1
$accept: S_$end
$end accept
error
state 2
S: A A
¢ shift3
. error
A goto4
state 3 -
A: ¢ B
a shift 10
b shift 8
error
B goto5
F goto6

state 4

state 5

state 6

R
H

ot

state 7

&

state 8

state 9

NS

SR

state 10

state 11

state 12

state 13

H:

B:

SN

state 14

B:
R:
b

287

goto 7
goto 9

44 (1)

reduce 1

cB_ ?2)
reduce 2

F_L

shift 10
shift 8
error

goto 13
goto 11
goto 12

R E
RE

shift 15
error

goto 14

b (12)

reduce 12

H_DJ

shift 8
shift 19
error

goto 17
goto 16
goto 18

a (7

reduce 17

FL. (3

reduce 3

HDJ
shift 8

shift 19.
error

goto 17
goto 20
goto 18

F_L

shift 10
shift 8
error

goto 13
goto 21
goto 12

RE. (4
RE_ (14

reduce 14
reduce 4

288

state 15
E:

state 16
R:

J
state 17

Qo

Q™

state 18

E
state 19

w:

state 20
L:

a

J

state 21
L:

state 22
R:

state 23
J:

D:
w:
b

e

reduce 7

HD_J

shift 23
error |

goto 22

FG

shift 8
shift 26
error

goto 25
goto 24

W_E
W_E

shift 15
error

goto 27

d (16
reduce 16

HD_J

shift 23
error

goto 28

FL_ (1)

reduce 1 1‘ ‘

HDJ_ (13)
reduce 13

a (18)

reduce 18

THoMAs C. HENDERSON and ASHOK SAMAL

state 24
D: FG_)

reduce 5

- state 25 -

G F.G

b shift 8
d shift 26
error

F goto25
G goto 29

state 26
G d_)

. reduce9
state 27 :
: D: WE_ 6)
W: WE_ (15)
b

reduce 15
reduce 6

state 28
L. HDJ_ (10)

reduce 10

state 29
G:. FG_ ®)

reduce 8

7/127 terminals, 12/300 nonterminals

19/600 grammar rules, 30/750 states

0 shift/reduce, 0 reduce/reduce conflicts reported
12/350 working sets used

memory: states, etc. 142/12000, parser 29/12000
12/600 distinct lookahead sets

2 extra closures

20 shift entries, 3 exceptions

24 goto entries i

3 entries saved by goto defaul

Optimizer space used: input 78/12000, output 37/12000
37 table entries, 4 zero

maximum spread: 260, maximum offset: 259.

