[EEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-24, NO. 2, MARCH 1986

301

Correspondence

Storing Feature Descriptions as 2-D Trees

THOMAS C. HENDERSON aNp ERNST TRIENDL

Abstract—Many methods have been proposed which produce low-
level features from digital images, e.g., the raw primal sketch or in-
trinsic images. However, in some cases the features occur sparsely in
the image, and a more efficient storage scheme can be used than a reg-
istered array of feature images. Edges constitute one of the most useful
sorts of information for scene analysis. Even though edge responses
usually occur sparsely throughout an image, the output from an edge
detector in most image analysis systems is itself an image of the same
dimensions (but possibly multichannel) as the original intensity image.
Appreciable savings in space and time can be achieved if the full edge
descriptions (orientation, radius, and likelihood information) are stored
as a 2-D tree. This is a binary tree which uses the (x, y) locations of the
pixels as keys and splits the data at the median along the key with
greatest spread (i.e., this is a k-d tree for k = 2).

I. INTRODUCTION

Feature extraction plays a prominent role in image analysis, and
has always been important for the analysis of remotely sensed data.
Features range from the intrinsic characteristics found in images
(edges, reflectance, depth, etc.) to physical characteristics of a sur-
face (temperature, smoothness, compressibility). Features are often
used to characterize objects, and as time efficiency is crucial, fea-
tures are usually chosen so as to provide an adequate description
which is obtained cheaply and reliably. Feature extraction will be
viewed as a distinct step performed on the raw sensor data, but
obviously a ‘‘smart>> sensor might provide such features directly.

In the context of digital image analysis, various schemes have
been proposed for organizing properties or features recovered from
2-D images. For example, Marr proposed the primal sketch [7],
Barrow and Tenenbaum investigated the intrinsic images of a scene
{11, [2], and in a more limited context, Pavlidis has described the
region adjacency graph [8].

Marr proposed the computation of a primitive but rich descrip-
tion of the gray level changes present in an image as the first im-
portant step for early visual information processing. Such a de-
scription is called the primal sketch. In this approach, the vision
problem begins with a gray level intensity array. The primal sketch
consists of a set of assertions, expressed in terms of a vocabulary
of symbols and identifiers that are powerful enough to capture all
of the important information in an intensity array, such as edge
position and orientation. ,

Barrow and Tenenbaum suggested that an appropriate represen-
tation of early visual processing is a description of the scene in
terms of intrinsic characteristics, such as range orientation, reflec-
tance and incident illumination, of the surface element visible at
each point in the image. They envision a set of cooperative pro-
cesses operating on a registered set of intrinsic characteristic im-
ages.

Of all the low-level representations, the one that is the closest
precursor to what we propose below is the region adjacency graph.

Manuscript received January 30, 1985; revised October 15, 1985.

T. C. Henderson is with the Department of Computer Science, Univer-
sity of Utah, Salt Lake City, UT 84112. :

E. Triendl is with DFVLR-Oberpfaffenhofen, 8031 Wessling, West
Germany.

1IEEE Log Number 8407045.

Each node in this graph corresponds to a region in the image, and
an arc between two nodes indicates that they are neighbors in the
image. The region adjacency graph has been used in various forms
in many picture segmentation schemes.

However, most feature detectors produce very sparse results in
terms of the class of images under study. The remainder of this
paper discusses the use of the 2-D tree as a more efficient repre-
sentation of such features. The following discussion addresses the
problem of edge information, but it applies equally well to many
other types of features. The major idea is that images may not be
the most efficient data structure for feature storage and processing.

Various data compaction schemes have been proposed for im-
ages, one of the most important being the quad-tree [9]. A quad-
tree is a successive subdivision of an image into quadrants, where
a nonterminal node represents a nonuniform quadrant and leaf nodes
represent a uniform quadrant at some level. This data structure is
inappropriate for feature encoding since edges usually occur in thin
strips throughout an image; moreover, quad-trees are most useful
in conjunction with binary images.

II. k-p TREES

The k-d tree is a generalized form of the simple binary tree used
to achieve order(nlogn) sorting and searching. Therefore, a k-d tree
is a binary tree in which each node represents a subset of the vec-
tors in a set of vectors and a partitioning of that subset [4]. The
root of the tree represents the whole set of vectors (in our appli-
cation, the vectors are (x, y) locations in an image where a feature
was detected). Each nonterminal node has two successor nodes
which represent the two subsets classified by the partition. The ter-
minal nodes represent mutually exclusive small collections of the
vectors in the set. These data vectors collectively form a partition
of the set and are known as buckets. See Bentley [3] for the original
definition of k-d trees. The version used here minimizes the ex-
pected number of vectors examined during the search for nearest
neighbors. This is achieved by appropriately choosing both the dis-
criminator key element and the partition value for each subset, and
the number of vectors in each bucket.

Since information provided to a binary choice is maximal when
the two alternatives are equally probable, it is equally likely that a
vector will be placed on either side of the partition. Hence, irre-
spective of which key (i.e., which element of the vector) is selected
as the discriminator, the median of the marginal distribution of key
values serves well as the partition.

The search algorithm can stop searching the subset on the side
of the partition opposite the query vector if the partition boundary
does not intersect the ball centered at the query vector with radius
equal to the dissimilarity to the mth closest vector so far encoun-
tered. Consequently, the partition will intersect least the ball for
that key which showed the greatest range in values before parti-
tioning. _

With these considerations in mind, the optimized k-d tree algo-
rithm chooses at every nonterminal node the key with the largest
range in values as the discriminator, and the median of the discrim-
inator key values as the partition. (Upon analysis of performance,
the terminal buckets should each contain one record in order to
minimize the number of vectors examined.) The average case com-
plexity required to build a k-d tree is of the order(nlogn), and the
m nearest neighbors for a vector query can be found in order(logn)
operations.

As an example, consider the set of points shown in Fig. 1. The
sequence of partitions is shown in Fig. 2(a), where the first parti-

0196-2892/86/0300-0301$01.00 © 1986 IEEE

302
Y
.l
.3
", B LK
® w,
5
-l
X
Fig. 1. A set of points in the plane.
A|F|cC|G A
E = B c
B o= D E F G
o = " |™ ¢+ 2 3 4 5 & 7 8
[",
.‘ £l

(a) (b)
Fig. 2. (a) The partitions of the k-d tree. (b) The k-d tree.

“ tion is labeled A, the second B, etc.: the k-d tree (where & = 2) is
shown in Fig. 2(b).

[II. EDGE ORGANIZATION IN LANDSAT DATA

Edge information can serve as the basis for many purposes, in-
cluding segmentation, shape analysis, and image registration. The
edge-guided registration of Landsat images with other types of im-
agery and drawings motivates the approach described here. In order
to achicve a subpixel registration accuracy, full edge descriptions
of multichannel Landsat images arc computed (see Henderson et
al. [5]. [6]). Edges are described at cach pixel as a triple: (orien-
tation, radius, edge likelihood).

The oricntation and radius locate the edge with respect to the
center of the pixel that serves as the origin, and the horizontal and
vertical image axes serve as the x-axis and y-axis, respectively. To
obtain values for the radius and orientation of the edge, we use a

small window w centered at the pixel in question (usually a3 X 3

ora5 X 5). The gradient is used to get initial estimates for the
radius and orientation. Using these estimates, intensities can be
generated for the appearance of the edge in a similarly sized win-
dow s. These two windows, w and s, are then compared. An op-
timization technique is used to determine the best values for the
radius and orientation parameters such that the synthesized edge
appearance most closely matches the actual image window. See
Triendl [10] for a description of this edge detector and Triendl and
Henderson [11] for its application to texture images.

Thus, the output of the edge detector is a three-channel image
with the same number of pixels in each channel as in the original;
the three channels give the orientation, radius, and edge likelihood
of the most likely edge at a given pixel. For a four-channel Landsat
image, then, the output is a twelve-channel edge description im-
age. Note that many image processing systems provide only the
edge likelihood as the output image.

IV. STORAGE COMPARISONS

Let us consider now the advantages of storing the edge descrip-
tion as a 2-D tree. Suppose that the input image is a k-channel m
by n image; let p = mn, and suppose there are ap significant edge
responses (i.e., above some likelihood threshold), where a is in [0,
1], and finally, suppose that each edge description consists of ¢
elements. Then in the standard case. the number of storage ele-
ments required is ekp. If the 2-D tree scheme is used, then there

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-24, NO. 2, MARCH 1986

Fig. 3. An edge image.

are (e + 2)apk storage elements required for each leaf of the tree,
as the (x, y) location must be stored in addition to the e elements
of edge description; also, there is a (4apk)/b storage element over-
head for the nonterminals in the tree, where b is the bucket size or
number of records per leaf and assuming four storage elements per
nonterminal. Thus, the 2-D tree is more economical whenever

a < el{(4/b) + ¢ + 2}.

For single-channel input image and edge descriptions, the break-
even point is around 14-percent edge density when the bucket size
is 1; below this percentage of edge responses needing to be stored,
the 2-D tree is more economical, while above it, the standard image
representation requires less space. When the bucket size is 4, the
breakeven point is at 25-percent edge density. In our application,
i.e., edge data associated with a given control point, this efficiency
can only become more important as the library of control points is
increased. ‘

For example, consider the image in Fig. 3. Then, we have that

k=1, p=64, a=0.125, ¢ =3, and b = 1.

Therefore, the storage required as an image is 192 elements,
whereas the 2-D tree requires only 72 elements. If there were four
channels of data, then the required storage would go up by four for
each case; that is, an image would require 768 elements, while the
2-D tree would require only 288 elements.

V. PROCESSING COMPARISONS

Typical operations on edge descriptions include channel group-
ing and spatial grouping. Channel grouping means that the edge
responses across all the channels are averaged together in some
way. In other words, for every pixel, the edge descriptions at that
location from each channel are combined. Spatial grouping means
that in each channel, the edge description at each pixel is modified
by taking into account the edge descriptions at the neighboring pix-
els. This tends to produce smoother continuation of edges on
boundaries.

A comparison of the cost of these grouping operations reveals
that the 2-D tree representation offers time advantages, too. Con-
sider first the time required to perform channel grouping.

In the usual case, i.e., multichannel edge description, the num-
ber of memory accesses required for channel grouping is kp since
at each pixel the edge likelihood channel must be checked for each
of the k output edge descriptions. However, if the edge descriptions
are organized as'a 2-D tree using the (x, v) location in the image
as the two keys, then the tree will contain multiple entries with the
same (x, y) keys if there are edge responses at the same pixel in
more than one channel. Multiple responses can be stored as a linked
list associated with a singie entry for the (x, y) location. This means
that channel grouping can be accomplished by simple tree traversal
and the number of memory accesses is 2apk + (4apk)/b for ter-
minals and nonterminals, respectively.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. GE-24, NO. 2, MARCH 1986

Thus, whenever
a < b/{2(2 + b)}

then the 2-D tree representation is more efficient. For bucket size
of 1, this is around 17 percent of the edge responses, and at b =
4, the breakeven point is 33 percent.

Spatial grouping of edge responses requires computing a
weighted average of edge responses occurring in some predefined
neighborhood of a given pixel. In the standard array image repre-
sentation, these neighbors can be found in constant time; thus, if
spatial grouping is performed on the m neighborhood of a pixel,
then m memory accesses must be performed for every pixel in the
image, i.e., mp memory accesses. For the 2-D tree representation,
the entire tree must be traversed, and for each leaf record, all
neighbors within the prescribed distance must be found. This gives
a number of memory accesses that is proportional to

log (2ap)2ap + (4ap)/b.

Although no direct comparison is possible, there are two major
reasons why the 2-D tree representation will be more efficient than
the standard one. First, the 2-D tree only performs spatial grouping
at pixels where an edge response occurred and then only accesses
those locations in the prescribed neighborhood where edge re-
sponses occurred.-Second, given the sizes of the representations,
it is much more likely that the complete 2-D tree will fit in core
memory, whereas with the complete array representation, there will
be significant disk I/O overhead.

VI. CONCLUSION

The 2-D tree representation of feature images has been shown
to be more efficient under certain conditions than the standard im-

303

age array representation. In practice, we have found the 2-D tree
to offer significant advantages. Obviously, the 2-D tree represen-
tation does not offer an immediate visual representation. However,
in the case of edge descriptions, this is not a significant disadvar-
tage in that an edge visualization image is computed from the mul-
tichannel edge description image anyway. Thus, this intermediate
step applies equally well to the 2-D tree representation.

REFERENCES

[11 H. G. Barrow and J. M. Tenenbaum, ‘‘Computational vision,”’ in
Proc. IEEE, vol. 69, no. 5, pp. 572-595, May 1981.

[2] —, “‘Recovering intrinsic scene characteristics from images,”’ SRI
International, Tech. Rep. 157, Apr. 1978.

[3] J. L. Bentley, ‘‘Multidimensional binary search trees used for asso-
ciative searching,”” CACM, vol. 18, no. 9, pp. 509-517, Sept. 1975.

[4] J. H. Friedman, J. L. Bentley, and R. A. Finkel, ‘‘An algorithm for
finding best matches in logarithmic expected time,”” ACM Trans.
Math. Soft., vol. 3, no. 3, pp. 209-226, Sept. 1977.

[5] T. Henderson, E. Triendl, and R. Winter, ‘‘Edge- and shape-based
geometric registration,’’ IEEE Trans. Geosci. Remote Sensing, vol.
GE-23, no. 3, pp. 334-342, May 1985.

[6] —, ‘‘Edge-based image registration,’’ in Proc. 2nd Scandinavian
Conf. Image Analysis, pp. 106-111, June 1981.

[7] D. Marr, ‘“Early processing of visual information,”* Phil. Trans. Roy.
Soc. London, vol. B. no. 275, pp. 483-524, 1976.

[8] T. Pavilidis, Structural Pattern Recognition. New York: Springer-
Verlag, 1977.

[9] H. Samet, ‘‘Region representation: Quadtrees from boundary codes,’’
CACM, vol. 23, no. 3, pp. 163-170, Mar. 1980.

[10] E. Triendl, ‘‘How to get the edge into the map,’’ in Proc. Int. Joint
Conf. Pattern Recognition, pp. 946-950, 1978.

[11] E. Triendl and T. Henderson, *‘A model for texture edges,”’ in Proc.
Int. Conf. Pattern Recognition, Dec. 1980.

