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Abstract

We present a new method for applying multiple semantic
constraints based on discrete relaxation. A separate graph is
maintained for each constraint relation and is used in parallel to
achieve a consistent labeling. This permits both local and global
analysis without recourse to complete graphs. Here ‘local’ means
with respect to a particular constraint graph, and thus actually
includes global spatial relations on the features; e.g., parallel edges
on an object will be neighbors in the parallel constraint graph even
though they are far apart in Euclidean space. Another major result
is a technique for handling occlusion by incorporating the use of
spatially local feature sets in the relaxation-type updating method.

1. Introduction

One of the problems in computer vision is to identify the set of
objects present in a given image which essentially is the Scene
Labeling Problem. The problem can be mapped into what has been
variously called the Consistent Labelling Problem[4], the Satistying
Assignment Problem|[3), the Constraint Satisfaction Problem[7],
Waltz Filtering [9], etc. We will refer to it as the Consistent Labeling
Problem (CLP).

The approach used here is based on discrete relaxation [5].
However, there are some major differences. We distinguish
between different types of constraints during the process of
relaxation. Also, the model proposed here uses both local and
global constraints. We also give a formalism to apply this technique
in a parallel processing framework. For an example of the use of
multiple semantic constraints with stochastic relaxation, see
Faugeras and Price [2].

2. The Consistent Labeling Problem (CLP)

The basic idea is to assign labels to a set of items or units, U =
{uy, Uy, ..., U} The labels can take any value from a discrete
domain, D, which forms the set of all acceptable labels for the units.
Usually, however, there are restrictions on the labels a set of Units
<an have simultaneously in order to be consistent. These
constraints are expressed by a constraint relation R. Thus the
labeling problem is to find a complete consistent labeling, given a
set of units U, the domain D, and the constraint relation R.

<CLP> == (U, D,R).

_ There are several ways to solve the problem: generate and test,
standard backtracking, etc. It can be shown that CLP is NP-
complete, which means that there is no efficient solution procedure.
So, some approaches use a preprocessing step to reduce the
computation. Mackworth [7] gives three consistency tests, Node
Consistency, Arc Consistency, and Path Consistency, which prevent
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the thrashing behavior of the backtrack algorithms. Recently Mohr
and Henderson have given an optimal algorithm for arc consistency
and an improved algorithm for path consistency [8].

Now we give an informal formulation of scene analysis (SA) as a
consistent labeling problem (See [6] for a formal treatment). The set
of units which needs to be labeled is the set of feature instances
found in the image. The domain of the units is the union of the
features of all possible objects which can be in the scene. The
constraints which control the relaxation process now are not only
the constraints in the models but also the constraints in the image.

3. Relaxation Process

The grapt/network model which is the underlying basis for our
algorithm is similar to the model in[7]. The nodes represent the
units to be labeled and the constraints are represented by the arcs
in the graph. However, what we have here is conceptually closer to
a family of graphs rather than a single graph. For the rest of the
paper we assume that we are looking for a particular object in the
image. It can be easily extended for searching multiple objects in
the same scene.

The model has a set of graphs (model constraint graphs)
corresponding to the different constraint types, e.g., parallel,
neighbor, etc. Thus each relation has its own graph. Similarly the

image has a set of graphs (image constraint graphs) corresponding

to its constraint types.

Now we summarize how the relaxation process works and how it
fits in a parallel processing framework. The first step is to build all
the graphs, i.e., the model and the image constraint graphs and
associate the labels with the nodes of the image graphs. Then the
node, arc, and path consistencies are enforced. This is where the
system lends itself to parallel execution. The graphs are
independent since they represent different types of constraints and
hence can be processed in parallel. After the consistencies are
enforced, we find the solutions using standard backtracking. It
should be pointed out that, although we treated the graphs
separately, they need not be really disjoint in actual implementation.
Also the structure of the graphs does not change during relaxation.

It can be shown that the above procedure is both correct and
complete (see [6]). However, the performance of the algorithm is
very poor. There are several ways to make it better. One simple
and obvious improvement is to do a type-checking while assigning
labels to a feature. Also if a feature in the image is hypothesized to
belong to a particular object then the other features of the same
object should be close by. So it is useless to consider the the
portion of scene which could not have any features of the object
under consideration.



4. Extension for Occluded Scenes ‘

Although the relaxation process works fine for non-occluded
scenes, it doesn't work well if the scene is occluded. The basic
reason is that the constraints don't have the same discriminating
power now. If a constraint is missing in the image, it doesn’t mean
that the constraint actually doesn't hold. It may just mean that some
or all of its associated units are occluded.

One way to get around this problem, is to use only local features
like holes, corners, etc. and constraints between them (4 la Local
Feature Focus [1]). Instead of using constraints between the sides
(or boundary edges), we use constraints between the vectors
between the locations of features. We refer to these vectors as
inter-feature vectors (or iv's). The advantage of using these iv's is
that, unlike the sides, they are either present or absent; i.e., they
cannot be partially missing or broken up into different parts because
of occlusion. If both the features constituting an iv are present in the
image, then the iv is defined, otherwise it is not. We can use the
same constraints as before, but now they are between these iv's
instead of the sides.

Still the constraints don't have the discriminating power to drive
the relaxation process, since the constraint set in the image is
incomplete. In order to drive the relaxation process we need to
seed the label set of some units to start with. The idea is to get
some positive information from the scene and then propagate it.

So we start by seeding the label sets of nodes of the graphs.
Before the actual seeding is done, the iv's are constructed for the
image. The details of how the iv’s are constructed and how they are
used in the seeding process are given ir [6]. Then the control is
passed on to the relaxation process, and finally to the backtracking
operator. We now give the structure of the modified version of the
relaxation process.

We have used two different approaches to overcome the
problems described above. In the first scheme we divide the nodes
(primitives) into two groups. The nodes whose labels are fixed
during the seeding process, are called the strong nodes and others
are called weak nodes (thus, the name "split-level” relaxation). The
strong nodes signify positive information. During relaxation, only a
strong node can affect the label set of another node. This prevents
the nodes which are not really a part of the model from affecting the
label sets of other nodes. Those units whose label sets are not
empty at the end of the first iteration, are then changed to strong
nodes. Nodes which do not survive the first iteration are ignored
from then on and are considered not to be part of the model. After
that, the relaxation process works as usual.

Another way to solve the problem is to allow a label at a node to
remain, if there is at least one support for it from any other node. (In
standard discrete relaxation, a label remains iff it has support from
all neighboring nodes.) This is motivated by the fact that some of
the constraints may be unsatisfied due to occlusion. However there
has to be support for the label in each of the graph types.

5. Implementation and Results

Most of the above ideas were implemented in PSL (Portable
Standard Lisp). The compiled code was run on a VAX-8600. The
actual runtimes can be vastly improved if implemented on a lisp
machine like the Symbolics 3600.

The system works in two phases. In the first phase (also called
training phase) information about the model is computed and stored.
The input to the system consists of a list of local features, their
locations and the constraints between them. The different types of
constraints used are parallel, perpendicular, adjacent, longer-than,
etc.

In the second phase, an image description is given along with the
set of constraints associated with the local features in it. We also
give a model to be searched for in the image. We only check for
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node and arc consistency. The AC-3 algorithm as defined in [7] is
used for enforcing the consistency. The output is a listing of
features in the image and the corresponding features in the model.
If the label set of an unit is empty, it is labelled as unknown.

We now present some results obtained using the algorithms
described. First, we give the run-times for recognizing unoccluded
objects. Figure 4 summarizes the results obtained by using the
algorithms on objects in Figures 1,2, and 3. It also, gives the
number of different types of constraints and total number of
constraints used. Here only the boundary edges are used for
recognition. i
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Figure 1. Object No 1

Figure 3. Object No 3

Object RunTime Constraint Total Number

No (msec)  types of constraints
1 357 5 43
2 476 6 33
3 85 4 15

Figure 4. Resuits for unoccluded scenes *




Next we present some results for occluded scenes. Figures 5, 6,
and 7 show three scenes where some parts are occluded. These
scenes were searched for the occurrence of objects 1, 2 and 3,
respectively. Figure 8 gives the time taken to recognize these parts
in the corresponding scene. There are two run times in the table,
corresponding to the two schemes described in the previous
section.

Figure 5. Occluded Scene No 1

Figure 7. Occluded Scene No 3
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Scene RunTime(1) RunTime(2)

No (msec) (msec)
1 1360 6307
2 1581 2074
3 3791 26452

Figure 8. Results for occluded scenes

6. Conclusions and Extensions

In this paper we have formulated the scene analysis (SA)
problem as a consistent labeling problem (CLP). We also gave a -
-solution to the problem within the framework of discrete relaxation
methods..  However, the approach is based on a different
perspective in order to exploit the inherent parallelism in the
problem and to account for occlusion. We have also recommended
several variations to improve the efficiency of the computation.

Although the approach sounds attractive, particularly if a multi-
processor is accessible, it by no means solves all the problems.
First, we are still dealing with 2-D models. Extending it to 3-D has
its obvious challenges. Another problem we have not considered is
the optimality of the constraint set. We have used the constraints
which were obvious in the model and the image. However, this
leads to redundancy and hence should be done systematically.
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