A Systolic Array Implementation of
Discrete Relaxation Algorithm

UUCS-TR-86-008

. Wei Wang”, Jun Gu, and Thomas C. Henderson

*Department of Electrical Engineering
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

12 March, 1986

Abstract

Discrete Relaxation techniques have proven useful in solving a wide range of problems in digital signal
processing, artificial intelligence, machine vision, and VLSI engineering, etc. A conventional hardware
design for an 8-label 8-object Discrete Relaxation Algorithm (DRA) requires three 4K memory blocks
and the maximum execution time of over an hour, which makes such a DRA hardware implementation
infeasible. A highly parallel systolic array for the computation of an 8-label 8-object DRA problem has
been developed. This realization eliminates the 12K memory requirement and performs DRA
computation in microseconds, at the worst case in milliseconds. The circuit requires about 6,382
transistors. Major design issues and chip descriptions are described in this paper.

This work is supported in part by NSF Grants MCS-82-21750, DCR-85-06393, and DMC-85-02115; and in part by a University
of Utah Research Fellowship.

UUCS-TR-86-008
Table of Contents

1.Introduction and Motivation

2.Discrete Relaxation Algorithm (DRA)
2.1 Boolean Formulation of Discrete Relaxation
2.2 An Example

2.3 The Hardware Implementation Problem for DRA

3.Implementation of Discrete Relaxation Algorithm Using A Systolic Array
3.1 Complexity Analyses
3.2 Two Considerations for DRA Hardware Design
e Concurrency and Communication
e Simple and Regular Design
3.3 A Highly Parallel Reformulation for DRA
e Consu'uﬁdng the Parallel Computation Tree
e Speeding up the Iteration
o Introducing Time Dimension in Computation
3.4 Basic Principles and Implementations for DRA2 Circuit
o System Architecture and Block Diagram
e Systolic Cells and Array Design
e Circuit Features and Design Techniques
35 »PPL Layout
3.6 Pin Descriptions and Interfacing with CPU
¢ Pin descﬁpﬁons .
o Interfacing with CPU
3.7 Simulation
¢ Functional Simulation

o Logical Simulation

Page 1

UUCS-TR-86-008

4. Testing
e Testing for Sysiolic Array

e Testing for Iteration Process and Control Module

5. Comparison with A Conventional Design
5.1 A Brief Description of the DRA1 Design

5.2 Comparisons
6. Further Advanced Development
7. Conclusions
8. Acknowledgments
References

Appendix

e PPL Simulation File for Region Coloring Problem

Page 2

UUCS-TR-86-008 Page 2

4. Testing
¢ Testing for Systolic Array

o Testing for Iteration Process and Control Module

5. Comparison with A Conventional Design
5.1 A Brief Description of the DRA1 Design

5.2 Comparisons
6. Further Advanced Development
7. Conclusions
8. Acknowledgments
References

Appendix

¢ PPL Simulation File for Region Coloring Problem

Please address all your problems to Department of Computer
Science, University of Utah.

UUCS-TR-86-008 Page 3

List of Figures

Figure 1: Leaf Node for Computing ljp X Aij(k,p)

Figure 2: Modified Leaf Node Computation for 1, X A;;(k,p)

Figure 3: A Parallel Tree Structure for Computing n® 1,

Figure 4: Circuit Block Diagram for DRA2

Figure 5: Basic Principle of the Systolic DRA2 System

Figure 6: Two Cells in DRA2 Systolic Array '

Figure 7: Construction of Systolic Array Using Cell-A and Cell-B

Figure 8: Cornputauonal Wavefront Pipelining and Circulation for Interleaved Processing
Figure 9: Broadcasting Scheme for b, Signal ‘ '
Figure 10: Self-Timed Synchronization

Figure 11: State Graph of Finite State Machine

Figure 12: The PPL Layout of DRA2 Chip

Figure 13: The PPL Layouts for Several Circuit Modules

Figure 14: A New PPL layout Using Full-Custom Designed Cell-A and Cell-B
Figure 15: Pinout Diagram

Figﬁre 16: Interfacing Block Diagram

Figure 17: DRA1 Functional Block Diagram

Figure 18: Initialization State Diagram

Figure 19: Loop State Diagram

Figure 20: DRA1 Chip Layout

Figure 21: DRA1 Chip Pin Out Diagram

Figure 22: The Comparisons with DRA1 Design

UUCS-TR-008 Page 4

1.Introduction and Motivation

Relaxation is a very general computalional technique for a wide range of theoretical and engineering problems.
Since its invention many years ago it has demonstrated powerful and extensive applications in many areas. Some of

them are listed below:

1. Digital Signal Processing: such as digital signal and digital image filtering;

2. Mathematics: (1) for solving linear and certain partial differential equations; (2) finding out the

objective function; (3) performing linear programming and optimization;
3. Artificial Intelligence: doing heuristic optimal search and propagating numeric constraints, etc.;

4. VLSI Engineering: for building various kinds of relaxation simulation tools and for developing a

hardware accelerator;

5. Computer Vision: dealing with the problems such as graph homomorphism, graph coloring and image

understanding. For line finding, stereopsis, line-labeling, and semantics-based region growing, etc.;
6. Robotics: for solving its vision problems;

7. Mechanics: in computing stresses,etc.

For a review of the numerous applications of relaxation processes see [11,12,13,14,15,16].

Classical relaxation (CR) was introduced by Southwell in 1940 [11] and the symbolic (as opposed to numeric)
versions of relaxation (SR) were introduced in the mid-seventes [12]. The version used here is that described by
Henderson [Note on Disc]. The Discrete Relaxation Algorithm (DRA) is a restriction of the classical relaxation
process to systems of Boolean inequalities which take values over the two element set {0,1}. One of the significant
technique resulting from the introduction of DRA is that both classical and symbolic relaxation algorithms are
directly executable in silicon subroutines, thus making many real-time relaxation applications feasible. The project

described in this paper is the first successful hardware implementation of this algorithm.

UUCS-TR-008 Page 5

2.Discrete Relaxation Algorithm (DRA)

2.1 Boolean Formulation of Discrete Relaxation

Instead of seeking a real number solution in a numerical relaxation situation [13], the solution to be found in discrete
relaxation case involves the assignment of a set of labels at each unknown éuch that some constraint relation among
the labels is satisfied by neighboring unknowns. Whereas the unknowns in numerical relaxation take on real
number values, the unknowns in a labeling problem take on a Boolean vector valué with each element in the vector
corresponding to a possible label. Boolean vector operations are denoted by °, X, t, *, + and - which represent
complementation, vector multiplication, transpose, Boolean "and,” Boolean "or,” and Boolean vector dot product,
respectively. Let

1.U= (u;,....u,) be the set of unknowns,

2. A = {A,... A,) be the set of possible labels,

3. A;=(1,....1)" be the column vector describing the set of labels (i.e., zero or one) possible for u;, where

1j=l if lj is compatible with u;; 0 otherwise.
4.C be an m by m compatibility matrix for label pairs, where C(i,j)=1 if A; is compatible with lj; 0
otherwise.
5. Ay= (A;x Aj‘)*((]\iei(ij)’E-f—C) be an m by m compatibility matrix for u; and u;, where E is the m by m

matrix for all 1's, and Nei(i,j) = 1 if y; neighbors u; 0 otherwise,

6. Ay denotes k™ row of A,

A labeling is a vector L = (L,,...L), where L; = (I;},...1;) in A, is a Boolean vector with Lj=1if label A;is a
possible label for object u; 0 otherwise. A labeling is consistent if for every i and k:

ST (57 Ot tlph] (1)

/ It can be rewritten as:
LSty [) (L XA kp))] (2)

If the 1, ’s, k=1,m are now gathered together in vector form:

UUCS-TR-008 Page 6

R 1T [a, T
Ill Iil Z ([lp‘Ail(l‘P))) Z (,np'Am(l’ P))
p=1 . p=1
I, I, (1,0 A4(2, S (1A (2,
2 < 27 . pgz(ip 1 p)) “‘“. pgl(np “m(P)) (3)
Iim, I{m Z (Ilp.Ail(m’ p)) : z (lnp“\m(’n’p))
e J e sk -P-l ‘ ’ J p-l
or | o g
Iy Iy Lis A1) L,*A,(1)
1:.'2 < 11'2 . Ll.{\il(z)’ . e Ln“‘,}ln(z)’ _ (4)
lim 1:‘»1 Ll‘Ail(m)’ Ln‘Aln(m)’ ‘
or
n . - . , ' :]
LsL» _[]1({[1,,] x[4,0)"2,m)])) (5)
e
Let |
r'Pl-
PZ
P=|P (6)
-P".J
where the column vector:
PETIL; ((ILIXIA L) A (m)]}). (7)
Gathering together the L;’s, i=1,n, we have
| | L) (8)
This formulation emphasizes the relation to classical relaxation. The relaxation is achieved by repeating
Le=L*P (9)

until L does not change value.

2.2 An Example

UUCS-TR-008 Page 7

Suppose that we are analyzing a picture of a scene, with the aim of describing it, and that we have detected a set of
objects uy,...,u, in the scene, but have not identified them unambiguously. The relationships that exist among the

objects are used 1o eliminate the ambiguity.

An example for eliminating the ambiguity in a region coloring problem is given here to demonstrate these ideas and
computation procedures. For simplicity, consider the case of three regions to be colored red, green or blue with the

constraints:

1. Region 1 must be red.
2. Region 3 must be blue, and

3. No two regions may be colored the same color.

Thus, y; = Region i (fori=1,2,3) and:
U= {u;, uy, us}
A={2y, 2.5
vt'hcre A, isred, A, is green, and A4 is blue. Since region 1 must be red, wé have:
A=[1001
and since region 3 must be blue:
A=[0017
Finally, since there is no restriction on region 2's color, we have all possibilitiés:
A=[1117

Since only similar colors are incompatible, we have:

J | o (10)

—t et O
—t D ot
O bt bt

UUCS-TR-008 , Page 8

for different objects, and

100 . -
Cc={010 : : (1)
001

for the same object.

We see then that C actually depends on the objects under consideration; i.e., technically, we should write ‘Cij which

is identified as:
Nei(ij)’ Nei(i,j) Nei(ij) |
C..=| Nei(ij) Nei(ij)’ Nei(i) ‘ (12)
Nei(ij) Nei(i,j) Nei(i))’

where

[0 if Region i does not neighbor Region j, - .. o ,
Nei(i,j)=14 , (13)
- | 1if Region i does neighbor Region j. '

Now we can calculate Aij as:
100)(100)(100 ’
Ayy=([100]* x [10 0)*(("EHC)= [o 00 Ho 10 Ho 0 o] (14)
" \ooojloo1 {000 ,
' 111)(o11)(011
Anquoorx[l1uy«rﬁyck[ooo}(101}{ooo] - (15)
000)\110/\000
| 0o01Y(o11Yfo0o1))
Ap=([100]'x[00 I)*((I"EHC)= [000}(101}(000] , (16)
000){110)1000

UUCS-TR-008

Ay=([111]'x [1 0 0)*((I'ENC)=

OO O
QOO

Hr_/
Y Y
i et O

g

Ap=(111]'x[1 1 1IN*(OE}C)=

O = O
OO

-

N~

- Y

OO~
.

S~
el Y
OO0

OO O
QO ettt

Agy=([00 1'% [1 0 O)*((I"E}+C)=

A3p=([0011'x [1 1 I)*((I’E)+C)=

001
Ay=([1111'x[00 ID*((I’ENC)= (0 01

001
Azy=([00 1'% [0 0 I)*((O’E)+C)= (

The (p,q) entry of A tells if A_ at object i is compatible with A, at object j. For example, A, reveals that only A, is
) ij q 11 1

compatible with A, at object 1; i.e., that Region 1 must be colored red.

Finally we continue the iteration process. According to equan’bn),

Fori=1 and k=1:

1@ <1, @ De [@D%A (1,141, 0D%A (1,204,014, (1,3))
[y @ %A (1, 1+, * O DA (1204, %A 5(1,3))
*3 O D*A 11+ O DA (12045 DA 1 (1,3)]

1 € 1*[1*14+0%0+0*0]
*[0%0+0%0+1*1]
*[1%0+1%1+1%1]

(23)

UUCS-TR-008 Page 10

1<1 whichis true

This says that the color red is all right for Region 1. To determine if the color red is possible for Region 2, we must
find L,,. |

For i=2 and k=1:
Iy ® £ by O DMLy O DA (111, D* A (1, 2)41,507D% A, (1,3))
Uy O DAy (L1 O Ay (1.2)4 5, DAy (1,3)) (24)
*[ISI(n-l)*Azs(l'1)'*132(“-1)*/\23(1’2)"'133(“-’)*A23(1'3)]
1 < 1¥[1*0+0*0+0*0]
*[1*1+1*0+1*0]
*[0*0+0*0+1*1]

1<1%0

1<0 which is false.

Thus, I, must be set to zero. Likewise, for i=2 and k=3, 1,4 is set to zero, and blue is not a possible label for Region

2. Finally,
For i=2 and k=2:
1y < Ly @[y DA 21y O D% Ay 22041, DA 2.3)]
0y, @ D% A (2,141 B ¥ A (2 204+, 0 1% A55(2,3)] (25)

Uy O DAY @ 1)+ O A 2 21415, A (2.3))

1 < 1*[1*1+0*0+0*0]
*[1*0+1*1+1*0]

UUCS-TR-008 Page 11

*[0*0+0*0+1*1]

1<1 which is true.

We see then that the value of I115 13, and Iy, are not affected by the change of I, and I3 to zero. In fact, the system
of equations stabilizes after the change of /,; and /,,, and the result is ly=ly= 153 = 1, while all other hypotheses
are zero. Thus, the only consistent labeling is to label Regions 1,2 and 3 the colors red, ‘green and blue, respectively.

2.3 The Hardware Implementation Problem for DRA

The problem of DRA Hardware Implementaiion 1 (DRAI) has been defined as finding out the labeling matrix L (n

=m):

(1 g 1)

121 N 122,..., lzn
L=, L,,..L,..L)} =l (26)

....................

Lot oo L

for the predefined computational model provided by the initial labeling matrix:

(111(0)’ 112(0)"“' IIn(O)\
. l 121(0), 122(0)5..., lzn(o) I
4 :(AI,Az,...,Al’) = ’ #vesesssesesesanccccasosnnrtsne - (27)

...............................

and unchanged label pairs' compatibility matrixes C;; and Cij in equation (8) for evefy iandj(ij=1, 2,.;., n).

3.Implementation of Discrete Relaxation Algorithm Using A Systolic Array
3.1 Complexity Analysis

A conventional design DRA1 for an 8-label 8-object DRA problem is presented in section 5.1 and [2]. The
computational strategy used in that design is to serially compute each intermediate clemgnt of matrixes A;i(p.q) and
Iij and periodically read and write L, A, Aij(p,q) and Cij from and into memories. Since the computation mechanism
imbedded in this design is purely an //O bounded computation, the upper bound of execution time is on the order of
hours for an NMOS process. Finally the complete system takes 3 separate chips (totally about 80,000 transistors).

This design has revealed the inherent computation complexity for DRA’s hardware implementation,

UUCS-TR-OOS Page 12

Referring to equations (14) to (22), in order to store the initial labels A, matrixes C;;, and the intermediate results of

ij?
all elements of matrixes Aij(p,q) (i,], p, q = 1,...,n), the space complexity is on the order of
0@n? + 3n%) = O(n%). \ (28)

For practical application, the label number could be 8, 16 or 32, thus the bit memory requirements for these different
cases are 12K, 48K and 192K, respectively. As shown in design [2], this has added to the circuit size and which has
been a bottleneck when n is large. | ’

The time complexityAcan be estimated from equations (23) to (25). During each iteration, at least 2 x4 x n? x nread
and writé memory operations will need to be performed. Assuming t_,4 =t = 500 ns for an NMOS process, the
compuiation time complexity bf each iteration is O(ns) (taking the assumption that the unit time is 500ns).
Multiplying the worst case ‘iteration times O(ea3) [12], which is on the order of O(n%) and is determined by the

feature of the computational model, the execution is terribly slow.

3.2 Two Considerations for DRA Hardware Design

Two considerations in designing DRA have become critical and challenging.
1. Concu.rrenkcy and Communication

It should be clear that any attempt to speed up an I/O-bound computation like design [2] must rely on an increase in
the memory bandwidth. Since the technoiogical trend clearly indicates a d.iminishing growth ra£e for device speed,
any major imbrovcment in computation speed must come from the concurrent use of many processing elements
[3,5,6]. The degree of concurrency in a special-purpose system is largely determined by the underlying algorithm.
Massive parallelism can be achieved if the algorithm is designed to mUOQuce a high degree of pipelining and
multiprocessing. 'When a large number of procéssing elements work simultaneously, coordination and
communication become significant - especially with VLSI technology where routing costs dominate the power,

time, and area required to implement a computation. The issue here for DRA is to design a hardware algorithm that

supports a high degree of concurrency, and in the mean time employs only simple, regular communication and

control to enable efficient implementation.

2. Simple and Regular Design

Cost-effective designs have also been a chief concern in designing special-purpose chips like DRA. Special-purpose
design costs can be reduced by the use of appropriate architectures. If DRA can truly be decomposed into a few

types of simple substructures or building blocks, which are used repetitively with simple interfaces, great savings in

UUCS-TR-008 Page 13

design cost can be achieved. To cope with the circuit design complexity, simple and regular designs, similar to
some of the techniques used in constructing large software systems, are essential. In addition, special-purpose
systems bascd on simple, regular designs are likely to be modular and therefore adjustable to various performance
goals - that is, system cost can be made prbportioné] to the performance required. This suggests that meeting the
architectural challenge for simple, rcgg‘ lar, modular designs vields a cost-effective DRA chip.

Systolic system [3,5,6] is an attempt to capture the concepts of parallelism, pipelining, and interconnection
structures in a unified framework of mathematics and VLSI engineeﬁng. They embody engineering techniques such
as multiprocessing and pipelining together with the more theoretical ideas of cellular automata and algorithms, and

therefore are excellent ideas for DRA hardware implementation.
3.3 A Highly Parallel Reformulation for DRA

The hardware parallel reformulation of DRA takes the following three steps in order to solve the complexity met in

the conventional DRA1 design.
1. Constructing the Parallel Computation Tree
When more effort is spent analyzing Eq. (2), we see that element Aij(k,p) can be decomposed as
A Dk py=t O ey (29)

which can form a leaf node like

sz(n-l) 1% (1&(0) ij(O) ck' P)

ljp(n-l) lik(o) ljp(O) Ck,p
Figure 1: Leaf Node for Computing IJ-p x A(k.p)

so that Eq. (2) can be hieraxt:hicall);"‘fbmied as a tree-like structure with each level imbedded in the parallel

computation for their leaves’ operands as shown in Figure 3.

2. Speeding Up the Iteration

UUCS-TR-008 ' Page 14

The node computation in Figure 1 can be speeded up by replacing 1©), and ij(°) with 1, @) and ljp(“'l). The
modified computation composed of the leaf node:

| ij(n-l)?((‘Iik(n-l)‘ Ck.p)

ij(n-l) Iik(n-l) Ck.p"

Figure 2: Modified Leaf Node Computation for [, X A;(k,p) -

The computation tree for I(“)ﬂ; is formed:

1. @

T

& 1,1

i= j=n
L

T

R R

Iy Iy Cy&k1) Iy Iy, Cykn) Ly Ly Cpk) &y Ly Cip(kon)

Figure 3: A Parallel Tree Structure for Computing n® I,

3. Introducing Time Dimension in Computation

To compute an n-label relaxation problem, the total number n? of I, ’s needs to be evaluated. This means at least 64
computation trees as shown in Figure 3 need to be‘built inside the circuit, which greatly increases the circuit size.
To inihimize this problem, each operand at the bottom of the tree has been cpnstructed in a time-dimension. As the
time changes, [(i = 1,..., n) can be generated. This computation phﬂosophy does not add more time corflplexity but
decreases the computation tree requirefnem to n [7). The introduction of time dimension constitutes the theoretical

basis for systolically circulation and interleaved processing.

UUCS-TR-008 Page 15

The hardware parallel reformulation for DRA1 eliminates three 4K memories from the design [2]; only a 64-bit shift
register is required to store all 64 intermediate label elements. Thus space complexity is decreased to O(n?). Since
each computation takes 64 cycles, assurrring a clock cycle is abdul 150 ns (NMOS process) and the maximum
iteration time is O(ea’), the execution time using this highly parallel computation is given in microseconds, at the

worst case in milliseconds.
3.4 Basic Principles and Implementations for DRA2 Circuit

1. System Architecture and Block Diagram

The block diagram of the DRA? circuit is illustrated in Figure 4. The chip consists of four functional blocks.

1. Compatibility Matrix Registers (CMR). CU Registers are a set of eight 8-bit shift registers in the
leftmost part of the circuit, they are used for storing each Cij matrix. Another set of C;; Registers in

the rightmost part of the circuit are for storing C;;.

2. 8 x 8 Systolic Array (SA). The systohc array is composed of 8 by 8 simple and regular cells. 8 simple
* and regular cells. They are predeﬁned 0 map the highly parallel computauon algorithm of Figure 3
into silicon. A number of horizontal and vertical communication wires are designed around the four

edges of the cells to make use of higher degrees of parallelism in the computation.

3. L-matrix Shift Register (LSR). It is used for (1) the input and output data paths for original and final
labeling matrices, (2) Lhe pxpehmng channel for tree-root operands broadcasung and plpehnmg, ,
forming a recursxve DRA computauonal wavefront and (3) performing temporanly the data stonng

and updatmg

4. Control Module (CM). This module includes four units. An 8-Bit Comparator is located on top of
the first 8-bit shift register of the LSR to sense the equality between the n'h output vector L ® of the
systolic array and the corresponding n- 1% row vector L@ inside the LSR. A Timer is served as both |
the systole pacer and tagged-bit signal generator for iteration control. An 8-Bit State Register is used
for collecting comparison results from the Comparator and monitoring iteration states. Finally a Finite
State Machine (FSM) is built for performing a self-timed synchronization among these functional

blocks and host computer.

UUCS-TR-008

Cohtrol Module

A Matrix L Matrix
~————a 64-Bit Shift Register —
{64 84

8 ,
C.. 8 8-Bit | 8x8 8 &-Bit
U™ srs [SIMD Array Srs = Cj;
('
L

Figure 4: Circuit Block Diagram for DRA2

Page 16

This diagram of four functional blocks is also served as the PPL layout floorplan for efficient layout (in section 3.5)

and testing blocks to imbed the module testing strategy (in section 4).

2. Systolic Cells and Array Design

~ The basxc pnncxple of the systohc archltecture for DRA is illustrated i in Figure 5. By replacmg a single Processing

Element w1th an array of 8 by 8 PEs, a higher computanon throughput can be achieved without i mcreasmg memory

bandwidth. The function of the memory (i.e., the L matrix shift registers) in the diagram is to "pulse” data (), p=

12,..., n) through the array of cells. Then new data I (i, k = 1,2,..., n) are returned to memory in a rhythmic

fashion. "TheAcrux of this approach is to ensure that once the data are brought out from the memory they can be used

effectively at each cell they pass while being "pumped” from cell to cell along the array.

UUCS-TR-008 Page 17

v {
. Memory
ljp 0, py= 1,2,..., 8)]u
e

I

8x8
SIMD Array

Figure 5: Basic Principle of the Systolic DRA2 System

To perform parallel DRA computation, two cells (as illustrated in Figure 6 (a) and (b)) with almost identical logic
and structure were used in constructing the systolic array. The only difference is that the first cell is in charge of

generating broadcasting signals for each row array. The construction of the systolic array using these two cells is

illustrated in Figure 7.
Iis Lk L1
by b
Cell-A
‘——;8-—— Cii(k,p)
|
ljs Lk In
0ut(i,k)j =1

Page 18

UUCS-TR-008
Out(jk) ;= T, (<A k)T gy (pXlaCifkp) = Ty (70 XCilkp)EL, DTy (31)
‘ lj' ‘jl
bk"'—__ PR e bk
Cell-B
8 o
Cu(k,p)-f-ﬂ‘—-— ———-sk—-» Cij(ksp)

L 1

lig Iy
Outﬁ&k)j #1

Baginy= Doy @ cOlumns j# 1. (32)
J——
‘ (33)

Outlj)y = Xy (XA jkp)=E,_; (L} ¥Cikp))= 3o (b XCifkp)=S_) (ToBETy).

(b) Cell-B
Figure 6: Two Cells in DRA2 Systolic Array

According to Figure 3 and Eq. (30) to (33), these two cells can be implemented in two levels of NOR gate

combinational logic. Their PPL layouts were shown in Figure 13.

UUCS-TR-008 Page 19

=
8-Bit
- I
B N IR '
Y i e =
kzl —e - g o] e bl - .-Ciu P 1
e = - - - i2
c | 1 [AN
k=2 42 - ---°° b - Cix T
‘ e — _— w2
Y T]
| | | | ! [
| I I] !] :
| I ! | I I :
| - | | } | | :
' [| 1 | | i
| | I | [| :
Lo . Lo i |l
H { 1] l H
o J___y____ _______ 1t ',._.ﬁ { S
k=8 28 S - | bg ! C: ﬁ/
s - ! —-i8 \
| SO — U - il
Js J2 1

Figure 7: Construction of Systolic Array Using Cell-A and Cell-B
3. Circuit Features and Design Techniques

In addition to designing the simple and regular cells, several efficient techniques, such as interleaved processing,
multiple signal broadcasting, and self-timed synchronization, were applied to the implementation of the systolic

DRAZ2 architecture.

Recursive Systolic Computation and Interleaved Processing

Since the introduction of the time dimension in section 3, the systolic array in Figure 7 possesses a time-varying
characteristic, which makes recursive systolic computation and interleaved processing possible. Let’s focus on the
first column (j = 1) array. It is clearly indicated that the first input vector, which is the it" row vector of L, the

labeling matrix, at the n-1" iteration, is fed into the first column of DRA2 array as

(TR F—.

UUCS-TR-008 Page 20

where j = 1,...,n. The corresponding output vector L; of the systolic array, which is the i™ row vector of L labeling

matrix at the n' iteration, is generated:

(Iil’liz’lﬁ""""lin),

where i is fixed at a time t=i. As time moves forward, the elements in the L shift register have shifted from the left
to the righf in an 8-clock-pace fashion. The time-varying feature of the entire DRA2 array can best be described by

following two Topological Index Equations:

i< i+tmodn ‘ (34)
je jtmodn (35)

For example, in the DRA2 system, at time t =i = 1, vector L,
(iphalizhadishiehsdis)

is generated.

Iy

=l

g — — canp—}

s

and at time t=i=2, vector L, ,
(hyda2:dp3:lagdas bagilarlag)

is generated, etc.

UUCS-TR-008 B Page 21

lyg| ceevesevmens I | PP p——— 133

]

——lg

Figure 8: Computational Wavefront Pipelining and Circulation for Interleaved Processing

Each L; vector is computed based on the interleaved utilization of the systolic array, whereas eight L; vectors form
an entire computational wavefront of the L labeling matrix, of the n relaxation iteration. Note that we use the
number of n computing treés for generating n? I’s in on?) t.ix"xme, we may also use n by n computing trees to
compute the same number of /s in O(n) time, provided that the latter has a uniformly progressing wavefront in

time and in space but the former doesn’t.

Multiple Signal Broadcasting

The broadcasting technique is probably one of the most obvious ways to make multiple use of each input element. It
plays an important role in making the parallel computation tree of Figure 3 implementable. Two multiple
broadcasting schemes are used in DRA2 architecture. In the first, n? vertical broadcasting lines from each
pipelining operand are connected to the bottom most leaves’ node of each parallel computing tree. Secondly, as
depicted in Figures 6 and 9, Cell-A at column j (=1) is used to jog signal /™1 (which is the n'® I,)) and then
propagate it horizontally from right to left through the entire row array. Thus, the output vector of the systolic array,
ie., (hyliplizdiglisdigdinodig)s can be generated simultaneously in a highly concurrent manner. For the sake of
simplifying the analysis in fast DRA3 and DRA4 architectures, we define the second multiple data routing patiern

for jogging by as J-Pattern generation in Figure 9.

UUCS-TR-008 Page 22

g2l
by ¢ i
b2 y n

4
> s

Figure 9: Broadcasting Scheme for b, Signal

Self-Timed Synchronization and Tagged-Bit Control

By using recursive systolic computation and interleaved processing, the computationai task has been decomposed
into the smallest computing piece, Ll To compute each vector L;, the globally synchronized systolic array of Figure
7 is used. For completing the entire relaxation computation, this synchronous array is imbeddéd into a self-timed
syétem. The self-timed asynchronous scheme may be costly in terms of extra hardwarevand delay in each elémeht,
but it has the advantage that the time required for a communication event between two elements is independent of
the size of the entire system [14]. Also, it is easy to design and validate a self-timed state machine in PPL

methodology [16].

Among the 64-bit L shift rcgistérs, the rightmost first 8-bit SR is one which is able to parallel load in the nt output
vector from the systolic array in order to update the current n-1% L, row vector. This iteration and updating process
is the core of the relaxation pfbccss described in Eq. (8). To sense the completion of computation, a Comparator is
built on top of the first 8-bit SR. If two vectors are equal, a row-eq signal of 1 is produced and stored into 8-bit
States SR of the Control Module; otherwise a 0 signal is sent. As soon as the State Register gets eight 1’s, which
means the equality of Eq. (8) is reached, an all-eq signal is issued to the FSM. Since the control processes in this
system are based on the data validity of a control data flow, a reliable and fast execution in a data-driven

environment is created. The control mechanism used in the parallel DRA?2 architecture is shown in Figure 10.

UUCS-TR-008 Page 23

To ensure that the iteration cycle completes at the end of n X n cycles, a tagged-bit is derived from an ANDed term

of both the I, bit and the 64th-count of the Timer, which has served as a reliable alignment signal for computation
in the control flow.

all-eq ‘
r___] TOW-eq | ~eessemeeee 'R
Timer FSM States SR [Comparator
L] }
64-Bit SR T I

V 1

Figure 10: Self-Timed Synchronization

In Figure 11 the state graph of the FSM is illustrated.

UUCS-TR-008 . Page 24

Iteration
Entran i
Completion

i ,
Waiting Systolic
@ @ Shifting

) Updating

Figure 11: State Graph of the Finite State Machine

3.5 PPL Layout

The DRA2 chip was built by assembling the four functional blocks in Figure 4 using PPL (Path Programmable
Logic) tools at the University of Utah [16,17]. Since parallel computation and the systolic array greatly simplify the
design difficulties, the PPL layout is very simple and straightforward. An overview of the complete PPL layout,
which is a PPL mapping of the block floor plan in Figure 4, is shown in Figure 12. PPL programs for Cell-A,
Cell-B, Timer, Finite State Machine, State Register, and Coinparator are shown in Figure 13. A new PPL layout
scheme which is appﬁed with a full-custom designed Cell-A and Cell-B is shown in Figure 14.

diy) uonexejoy] 9101051(JO IN0KeT Tdd YL :Z] d4ndiy

M r.ﬁ ".w.;r e b dois P Lok f Keie) s i b fisde i

H da H 1. . :. .
.:rﬁ._?p.:n,mcf.: _ i

i

x...m Lol g _P:E. s 3

e ide W ke A r ol
¥

m.m .r-t. .P.F.»..P.F.. »P.F. m.m »..F. .a Pc.r- xP. .“ r-.r. .m r.l.. m_w...* ..

. 1. 1.
-..F. =g s i »_. -.n P-.P.

b z r..ﬁ fisisy A ks Hica it Hist Hisss z indy ~_w it Harts Harse Hitely Aris Hus HE

b ey 0l

Sesicessessmecsosapossiey

01234567

55

54

53
52

51:

50:
49:
48

47

46:
45

44
43
42
41:
40:

39:

- —
oa
L]
© «
T«
- -]
-

38
37:
36:
35

34

33:
32:
31

Cell-A

Cell-B

30

29:
28:
27

N L R L L R L R L R L I T L B T R T T

*ulll

L A R R R I R R R T
LR R T T I I R T R T P BT N

0
LRI T
LECRC T
|" e omy

0
LA
[LIEILELIY)

0

0u

—“ln wiw Wy
o owgn oy

* 0
nowowow
FoFpw

F®"F™®
u
s
u
1

IR R B |

N T o LN
[y "
LR
L} L)

L

r
r
r

L

LR T

3T
r
r

ISR I T T T T S)
aae L] L]

Mo o 1)
ana CC NN

LR LR

LN I N NN N

LR

R T T

@ ot Bt ot Bt ol B

WP WNFWEFSRA N RN AN R W

o MO R MO O MM
LR LR
oo HNODOoOoOCO LR

LR RN R
oooPe© HO WM
LES] LX)

LMOCOO HOOOOO HD N
~»ococccn0CO0~

Lk d

—~ 300~~~ ©
—mooODOCODCOOO00~
- COmmMO -
p3383328252323

o
- O

© ottt © o

EE]
-l ©
"‘F':-"' z 8
S 2ETE REDHN
-4’1;.. .—I L 38 1
5 EEE kEDN
~eTETEETER
T EE k¥ DM
~ETEEEE
TEE B DM
";—' I-' L 38 3
ST B R ORME DM
F“_t ;-: T3
t_' ?_h“ =

26:
25:
24:
23:
22:
19:
18:
17:
16:
15:
14:
13:
12:

21
20

State Register

Timer

11

—— 2

——

ux-®"és

——t B

r—--i:

ux-"é

—t

ux-"e

——1 2

r—‘-it

ux" g

——T

r—«l

uXx ™ @

Comparator

u'x " @

Finite State Machine
1

——T

r—«:

——t
r—-dt

.I.

ux®" g

@ el &

r—-il

[P L]

NEeMN-O

10

Page 26

it Modules

ircut

The PPL Layouts for Several C

Figure 13

0123836709

Page 27

o Ll 2]
&) o o
o & :-l.‘ r
> 2 Sisee :
a o :l&i) A
. s Siaes p
" p @ o £ 2
- . z Eises .
Fev : aa]
erve o T i
o . Eg'
IR Mt St T T T T — =
ervieo w2 | { P . ! =
R | % | P ; i
Sttt kDO i H !
o 7 ' i [<|
L S [—
T T T 5
. Coor O
] 2 3
e e e E v A M &
. ‘ ;c5> El c
Te i . : ‘@
s X A
b o e == Lo V?l""i Foms —mee £
ihees mwe eemen I L
TaTh e . i l ‘ l P j=t
R ! oo o 4
LT 1 S I U S
cerm ; l_ to T Ly
Tl N I z
EO% IR o L s
sere [_ R [T SO o (%)
T ememmamm am Q. e : =
ssieone o wwBOLL s) | Vol il =
Tete eme- Py H ‘ o P!
1iieoo wopocc en ! : . | i . L : :)
T ileeee IS e Lol e =
Ter s -~ .—a | i . i ‘ N : (I o
\iiicocoresscarer ! b e
-~ Zsoocc60000- vl l t | [| : =
T Tleemmn o I A | Pl P =
P Ommmem Omm=O= i i : \ :
T Cliliiessosen- g r"—E r*'“; i A i g:
- - OO ~=O -~ H N i 1 1 N v
- amzas== | ' H
EEEEFEEEREES | i Lo kv S oy z
v “ | c . (23
. I S T T AU Z2
terieme <

. 2 1eseyDe . .Q‘
ry @ a2 - s e s o . w—
F Srors Brsro Er s s r s 3
a Er 0.0 Sr00 0 @& s ® & s St
o Sioes Bvavs & - - F =
o Siovc arov: & o » = e
» Sv 5% 8 ®rmr B Besr s = 2 omm
r = &2 a1 o0 s = B
» Sv o0 o = s
tHH] 28 é

UUCS-TR-008
3.6 Pin Descriptions and Interfacing with CPU
1. Pin descriptions
The pin out diagram is shown in Figure 15.
Sub ‘ -
Gndl:: — Lu
[— L,
Cin M L,
Ciz L,
1]
Eﬁs 4 3 L
Cn4 : — Li6
iis ‘ '
Ciis 1 j:] L
Cin] Lis
Ciig | {— L-in
Cijl 1 [L-out
Cij2 [Jc8
Cijs T [all-eq
Cijs T [data-ok -
CUG : ‘ to-épu)
Cy T ¢
Cys T vdd
Figure 15: Pinout Diagram

A brief description of each pin and its function is outlined below:

Page 28

1. Cjj»sCyjg: These 8 pins are used for data input and testing. The data of the C;; elements can be

shifted in from pins Cy;, Cyi3, Cyjs and Gy, then the entire vector can be tested from all 8 pins.
2. CIJI"“’CUB: Same function as last 8 pins but they are for inputting matrix Cij elements.

3. Ljjseslg: Therearea total of 8 pins for testing the output vector L; of the systolic array.

4. L-in and L-out: Input and output pins for L matrix shift register.

UUCS-TR-008 Page 29

5.c8: The 8-cycle flag for detecting systolic pace and control bit signal in testing mode. When every

8-clock is sensed, c8 is set to 1.

6. all-eq: State signal for monitoring the ending of the iteration process. When all 1's of all-eq appears,

the iteration is done.

7.ready: When relaxation computation is demanded and data (C;, C;;, and L©)) are ready, CPU sets

ij
ready as 0, which resets all states of the Finite State Machine in the control module.

8. data-ok: Upon the completion of the relaxation computation, DRA1 issues data-ok by signaling a 1
to notify the CPU that the output of computation is pending for transfer. '

9. to-cpu: Once the CPU finishes the preparation for receiving the data giving the result, a to-cpu
command of 1’s is acknowledged by the DRA1 chip, then a data transfer from DRA1 to CPU takes
place.

10. ¢: This clock is used to generate several 2-phases clocks with different signal polarity and delay.

11. Vdd, Gnd: For power supply.

2. Interfacing with CPU

Since th¢ DRAlr'ycﬁip is designed as a Microcomputer Peripheral Device, it can be easily interfaced with a CPU as
illustrated in Figure‘16. The data input pins of Cy;, CU’ and L-in, L-out are tied to the dzﬁa-bus. Pins like ready,
data-ok, and to-cpu are connected to control f:ins of the CPU. Since ready is designed as the chip initialization
signal it can be used as the Chip-Select signal preceded with a simple combinational circuit for a given address. To
initiate the DRA1, the processor first places the data onto the input pins and selects/resets chip using ready, then
DRA1 computes relaxation mﬁl data-ok is signalled to the CPU. Once the CPU is ready, data of the results can be
read back to CPU after DRA1 senses to-cpu high.

UUCS-TR-008 Page 30

!
CPU
. Data Bus ﬂﬂ t
- Address Bus Jl ' <
\;, 4
Control Signals
DRAL

Figure 16: Interfacing Block Diagram
3.7 Simulation
1. Functional Simulation

Functional simulation is aimed at the verification of the correctness of the algorithm and data structure, discovery of
limitations and problems which may occur during practical implementation.. Thus a number of high-level functional

simulations were performed during the formulation of DRA. '
2. Logical Simulation

Logic simulation for the DRA1 chip was performed for individual modules and the entire circuit using the PPL
topological circuit simulation tool SIMPPL. Simulation using SIMPPL is perfqrmed by assigning logical values to
evei'y node in the circuit. Input values are assigned and allowc;d to ripple through the circuit. 'Outpm values are Lhen
checked to ensure that the correct values are produced. For detailed functionah'ty and usage about PPL simulation
tools see [18]. | ' "

An 8-label 8-object coloring identification problem was selected for logical simulation as shown in the following.

The input to the circuit includes matrixes Cy, C;, and L. Matrixes C; and C;; are the inherent label pair’s

ij*
relationships. L(); are the raw data seen by a robot. The first seven initial labels (LyLy 3Ly LsLeLy) of L©
indicate seven distinct regions of color on an object, the 8th label (Lg=11111111) means the color in the 8th region

is a mixture of all 8 colors in these eight areas. We frequently meet such a situation. For example, suppose an

airplane is flying, its major parts are clear, but one area in its body is blurred due to the plane’s motion.

UUCS-TR-008 Page 31

(10000000
01000000
00100000
C,;=| 00010000 (36)
00001000
00000100
00000010
00000001
(01111111
10111111
c 11061111
= 11101111
111110111 (37)
11111011
11111101
(11111110
(10000000)
01000000
» ‘ 80100000 (38)
Leo=w,L, L, L, L LI, L) = 00010000
. tzlabelstelale = 00007000
00000100
00000010
11111111

—

After relaxation computation, the 8th color in that region has been identified as Lg=00000001 in matrix L®.The

- simulation file for these inputs is attached in Appendzx, the final labeling matrix soughtis:

~
J

L=, Ly Ll yLsLoloLe) = (33)

COO—OOOO
COMmMOOOOO
O~ OO0 O
—_OOOOOOO

..

CQOOCOOOO

co00OoOO
COoOCODO—O
cCoOCOoO—OO

P

4, Testing

Since parallel reformulation and systolic array implementation minimize the major difficulties in the design of the
DRALI circuit, this results in a straightforward testing procedure. The testing will be performed on a Tektronix DAS
9100.

Two main testing strategies are: (1) Dividing the entire chip into several functional blocks as shown in Figure 4,

testing each individual circuit inside the block for accurately locating the faults associated with the specific circuit

UUCS-TR-008 Page 32

units; (2) Since DRA1 is designed as a microcomputer peripheral device, it can be tested in a microcomputer-based

environment, as illustrated in Figure 16. These strategies can be imbedded in the following two steps.
4.1 Testing for Systolic Array

A total number of eight test pins (L;;.....L;g) were built in the chip for testing and monitoring the output vectors
generated during each systolic cycle. These pins mathematically répresem the n' iteration results of the parallel
computational trees. Since these results are predictable from high-level functional simulation or lower-level PPL
logic simulation. Errors inside each combinational cell can be detected very easily. The testing of systolic array
implies that shift registers for C, Cij and L need to be tested first. Testing for these registers have already been

taken into account and will be carried out by using pins l-in, l-out, C;;; to C;;¢, and Cijl to CijS'
4.2 Testing for Iteration Process and Control Module

After the systolic array has passed the test, the DRA1 chip will be tested for the relaxation computation. During this
stage only the iteration proécss of computation and control module need to be tested. In Figures 10 and 15 a number
of control pins which provide sufficient iteration flags and control information are packaged on the chip, such as c8,

all-eq, ready, to-cpix, and data-ok.

An advantage of designing the control module with a data-driven mechanism will be seen because of its
convenience in testing. Referring to state diagram of FSM in Figure 11, the entire computation has been divided
into several distinct peﬁods with each period initialized based on the availability of certain critical control signals,
for instance the most general indication signal for systolic shifting, updating, inputing, and outputting, the c8.
Another nice side-effect is gained through the implementation of the inierfacing pins with the CPU, which not only
makes the testing available in a microcomputer-based énvironmcm, also separates testing procedure with interactive
notification of testing states of these signals. Much of the time and effort saved during testing can be drawn from

these advantages.

5.Comparison with A Conventional Design
5.1 A Brief Description of the DRA1 Design

A conventional design for an 8-object, 8-label DRA problem, célled DRALI, is presented in [2]. The DRA1 system
consists of three chips. A DRA1 Chip performs DRA computation. An External RAM is used for storing, prior to
DRA computation, the matrices C;;, Cij, A, and Nei[i,j] elemems. A Bus Control Chip coordinates the interaction
between the DRA1 chip and the external RAM, under control of the host computer. The block diagram of the
DRA1 chip is shown in Figure 17. '

Address Loop Logic
Multiplexer
8 g
A RAM LRAM Loop State
Machine
o
]
Counter Control
Register
d—Init State | /Main| Done
3 ' State | | State
-
| Initialization Logic
Address i
Decoder .

Countér Bus
Figure 17: DRAI Functional Block Diagram

These functional blocks are: (1) An Internal RAM for holding matrices Aij(k,p). (2) An n by n Counter for
determining the number of the elements during data reloading. (3) An Initialization Logic Unit evaluates the

matrices Aij(k,p) elements and writes them into RAM. (4) A Loop Logic Unit reads matrices Aij(k,p) elements

UUCS-TR-008 Page 34

from RAM and iterates the labeling vectors L;s over these constraints, and writes the results into LRAM. (5) There
are four State Machines which were built The Main State Machine controls the three other state machines,
activating each successively. The Initialization State Machine controls the initialization logic unit and the internal

RAM, as indicated in Figure 18.

101

load
1

cess

1010
Pro
Read

Figure 18: Initialization State Diagram

The Loop State Machine controls the loop logic unit and LRAM. The state diagram is shown in Figure 19.

UUCS-TR-008 Page 35

Figure 19: Loop State Diagram

The Done State Machine loads back the results upon the computation compleu‘ony. The complete DRA1 chip was

implemented as illustrated in Figiﬁes 20 and 21.

For time and space analysis of DRAI1 circuit, see section 3.1 and [2].

Page 36

IR RO R HTHHG

] . ot uuu __ .
4 T i ,
i i .|_
P 1
: il .
3 .W.M_*L_ - -« ™ =

= R aeasast - e
= G Rl A n_
I IE i A : ‘
Himih 7 i bl
A N 1 Wy
Hin TRy VUUOUOR. | L
Wi SR ST B
m. ., .-“»..

\

]

]

= S

B

RS

|

|

........

jul

]

BA888800 NNEG——
ST kg
SRR v

Figure 20: PPL Layout for A Conventional DRA1 Circuit

UUCS-TR-008

"o~ COUNTERS [] 4 84 [DOUT ?
T 02 &30 1
Os 62
Oe 61
Os 60D
TEST < Os se
| m ss 0 |
$ Os s?[JDOUT O
COUNTERO] 9 56 [rD2
so [10 SS[RD4
R s1] 11 54 [] RDO
RDDR 9 [12 S3IIRS
T O3 52) MCS
g 1 51 [0 MR/D
01 sg [J Dt
O 16 ¢S
O 12 48 [iRQ
O 18 ¢? [Clock 4
O "46 [Clock 2
¢« [O2 €5 [J RESET
ADDR 0] 21 ¢4 I DIN?
~ A? 22 30 1
102 2]
1 O 2¢ 10
O a2s s0 [
TEST < 0 26 390
027 330 |
¢ [28 J320BIND
Aol 29 360
\ Arp/DR] 30 350
» 13 0
O 32 330

Figure 21: DRA1 Chip Pin Out Diagram

Page 37

5.2 Comparisons

UUCS-TR-008

Page 38

The conventional design DRA1 and DRA2 architectures are designed for the same DRA problem, a brief

comparison between both designs are summarized in the following Figures.

Computational Family

Hardware Algorith;'n
Memory Requirement
Computing Time
Layout
Control Strategy

Entire System

of Transistors

Algorithm Reformulation

PPL Design Time
Computer Time (in $)

Complexity Comparisdns

DRAZ2 Architecture

'Compute Bound
Highly Concurrent
None
Microseconds to Milliseconds
Regular and S impi;:
Simplé

One Chip

6,382

* Design and Cost Comparisons o

DRA2 Architecture

100 Hours
100 Hours
$300

DRAI1 System

1/O Bound
Serially Compﬁu’ng
12K
Hours
Irregular and Hard
Complicated
Three Chips

(DRA1 chip plus
External 4-K RAM
and Bus Cd Chip)

= 80,000

DRA1 System

No
450 Hours
$1500

UUCS-TR-008

DRA Chip Descriptions

DRA?2 Architecture
of Transistors 6382
Pins ' B - 35
Sizes ’ 181 x 249
(PPL row by column) | 75 %75

(Using Full-Custom Designed Cell-A
and Cell-B in Systolic Array, it is

currently under implementation)

Figure 22: The Comparisons with A Conventional Design

Page 39

DRA1 System

39,502

300 x 250

UUCS-TR-008 Page 40

6. Further Advanced Development

Further research in developing fast, high-performance discrete relaxation hardware algorithms and layout

implementations is really attractive and promising. The major issues related to this research are:

1. Using full-custom designed PPL cells in DRA circuit design which is able to greatly decrease the
layout area. Since just two cells need to be designed, almost no additional cost will be added.

2. The highest degree of flexibility in DRA design can be obtained by allowing programmability in cells
as well as reconfigurability of cell interconnections. Thus to implement a Programmable Systolic

Chip (PSC) [3] for more general or specific DRA problem seems necessary.

3. CMOS technology could be applied to give higher speed and lower power realization.

7.Conclusions

Several conclusions can be drawn from this extended summary:

1. The implementation of DRA has paved the way for developing various kinds of fast and high-
performance Discrete Relaxation Chip. ‘ ’

2. PPL design tools are really a cost-effective and high-speed design tool, which frees the Iabor—inteﬁsive
composite layout and many lower level logic design. Since eéch individual circuit unit can be layed
out and simulated separately, the hierarchical VLSI design can be carried out efficiently. A weak

| point of this methodology is the space-consuming of its wire cells. Since every row wire and all wire
connections take one cell space, a large amount of areas were wasted in wiring. In DRA circuit, for
example, 80 percent area is spent on wire connection. To adopt PPL being suitable for parallel design
in which generally a large numbers of parallel wiring are reqmred special wiring cells to perform

area-efficient layout are important.

3. Design of highly paralle] hardware algorithms is the key problem of logic design for fast, area-
efficient, high-performance, and less-device VLSI systems.” A considerable attention should be paied
on hardware algorithms analyses before implementing a circuit [8,9,10].

UUCS-TR-008 Page 41

8. Acknowledgement

We appreciate David C-L. Ku at Stanford University for his DRA1 system design.

UUCS-TR-008 Page 42

REFERENCES

v 1.W. Wang and J. Gu, An O(n?) Time Fast Discrete Relaxation Architecture, Project Report,
Department of Computer Science, University of Utah, March 1986.

2.D. Ku, DRAI Chip Implementation Report, Project Report, Department of Computer Science,
University of Utah, March 1986. ”

3. H. T. Kung, Putting Inner Loops Automatically in Silicon, Lecture Notes in Computer Science Vol.

163: VLSI Engineering, pp. 70-104, Edited by Tosiyasu L. Kunii, Springer-Verlag, 1985.

4.R. P. Brent and H. T. Kung, The Area-Time Complexity of Binary Multiplicatioh, Journal of The ACM
Vol. 28, No. 3. pp. 521-534, 1981.

S. H. T. Kung, Why Systolic Architectures? Computer Magazine 15(1):37-46, January, 1982.
6. C. E. Leiserson, Area-Eﬁcient VLSI Compwation, The MIT Press, 1983.
7. K. Hwang and F. A. briggs, Computer Architecture and Parallel Processing, Mchaw-Hill, 1984.

8.]. E. Savage and J. S. Vitter, Parallelism in Space-Time Tradeoffs, VLSIL. Algorithms and
Architectures, Edited by P. Bertolazzi and F. Luccio, North-Holland, 1985.

9. Z. Galil, Optimal Parallel Algorilhm.é - invited paper, VLSI: Algorithms and Architectures, Edited by
P. Bertolazzi and F. Luccio, North-Holland, 1985.

10. H. Yasuura and S. Yajima, Hardware Algorithms for VLSI System, Lecture Notes in Corﬁputer Science
Vol. 163: VLSI Engineering, pp. 70-104, Edited by Tosiyasu L. Kunii, Springer-Verlag, 1985.

11.R. V. Southwell, Relaxation Methods in Engineering Science, Oxfo D. Waltz, Understanding Line
DraWings of Scenes with Shadows, In Psﬁ'chology of Computer Vision, Edited by P. H. Winston, pp.
19-91, McGraw-Hill, 1975.

12. T. C. Henderson and O. D. Faugeras, Relaxation Techniques in Computer Vision, Oxford University
Press, London, To Appear.

13. P. H. Winston, Artificial Intelligence, Addison Wesley, 1984.

14. Dv. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Inc., 1982.

UUCS-TR-008 Page 43

15. IEEE/ACM, Proceedings of International Conference on Computer-Aided Design, 1984 and 1985.

16. K. F. Smith, T. M. Carter and C. E. Hunt, Structured Logic Design of Integrated Circuits Using the
StoragelLogic Array (SLA), IEEE Trans. on Electron Devices, Vol. ED-29, No. 4, April 1982. :

17. PPL Manual, VLSI Group, University of Utah.

UUCS-TR-008

APPENDIX

PPL Simulation File for Region Coloring Problem

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>

clock phi: 0100

Page 44

We We Wo Se %o

(DRA

PPL Logic Simulation for an 8-Label 8-Object Coloring Problem

.out)

Se %o ws e W

set ready:0

Ne We s We we Se “o

; As soon as CPU gets a ready = 0, it enables/resets DRA2 chip, and starts
; to input Cii (=rc) and Cij (=1lc), and Lij (=1l-in) elements.

cy
1:4> l-out=X l-in=X
set ready:1l to-cpu:0

ey 1

set l-in:1 ,
set 1cl:0 lc2:1 lc3
set rcl:1l rec2:0 rec3
cy

2:4> l-out=X l-in=1

.
r

jcy 2
set l1l-in:0
set lcl:1l 1¢2:0 1lc3
set rcl:0 re2:1 zec3
cy

3:4> l-out=X l-in=0

.
4

;ey 3
set 1l-in:0
set lecl:l le2:1 le3
set rcl:0 rc2:0 xe3
cy

4:4> l-out=X l-in=0

o
e

ey 4

set l1l-in:0

set lcl:1 le2:1 1lce3
set recl:0 rc2:0 ze3

cy

5:4> l-out=X l-in=0
;ey 5

set 1l-in:0

set lel:1 lec2:1 1c3

Li=X30000K ¢8=X all-egq=X ready=0 data-ok=0 to-cpu=X

:1 1lcéd:1 lchs
:0 rcd:0 rcS

Li=3c00ooox

:1 lc4:1 1lch
:0 rcd4:0 rch

11 1e6:1 1e7:1
:0 rc6:0 xc7:0

c8=0 all-eg=X

:1 lec6:1 1le7:1
:0 rc6:0 xc7:0

Li=3Xo0000XX ¢8=0 all-egq=X

:0 lecd:1 le5
:1l zc4:0 xzch

Li=xxxxxxxx

:1 1cé:0 1leB5
:0 red:1 xrch

Li=3300000X

:1 lc4:1 1le5

:1 le6:1 1le7:1
:0 zc6:0 re7:0

c8=0 ill-eq?x

:1 le6:1 1le7:1
:0 rc6:0 rc7:0

c8=0 all-eg=X

:0 1lec6:1 1c7:1

lc8:1
rc8:0

ready=1 data-ok=0 to-cpu=0

lc8:1
rc8:0

ready=1 data—ok=0 to-cpu=0

1c8:1
rc8:0

ready=1 data-ok=0 to-cpu=0

lc8:1
rc8:0

ready=1 data-ok=0 to-cpu=0

1c8:1

>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>

>>

- 11:4> l-out=X

- UUCS-TR-008

set rcl:0 rc2:0 xc3:0 rcd:0 xrch

cy . . i) ;
6:4> l-out=X l-in=0 Li=3000OX
;cy 6

set 1-in:0

set. lcl:1l le2:1 1c3:1 lc4:1 1lc5

set rcl:0 rc2:0 zc3:0 rcd:0 res
cy

7:4> l=-out=X l-in=0 Li=XSODOOOXX
ey 7. .
set 1l-in:0

set lcl:1 1c2:1 lc3:1 lc4é:1 lc5

set xcl:0 rc2:0 xrc3:0 zc4:0 xzc5:

cy

8:4> l-out=X l-in=0 Li=XOOOXXXX
ey 8

set 1l-in:0

set lcl:1l lc2:1 1c3:1 1lcé:1 lc5:
set rcl:0 re2:0 rc3:0 rc4:0 rc5:

cy
9:4> l-out=X l-in=0 Li=03XC00OIXXX

.
.’

ey 9

set 1-in:0

cy

10:4> l-out=X l-in=0 Li=00000000
;ey 10

set l-in:1

cy

l-in=1 Li=X3000OXX0

ey 11

set 1-in:0

cY

;ey 12

set 1l-in:0

cy

13:4> l-out=X l-in=0 Li=30OXX0XX

;ey 13

set l-in:0.
cy

14:4> l-out=X l-in=0 Li=XOOX0XXX
ey 14

set 1-in:0

cy

15:4> l-out=X

;ey 15
set l-in:0

1-in=0 Li=XXX03C0X

12:4> l-out=X l-in=0 Li=JOOOXXO0X ¢

1 rc6:0 rc7:0

c8$0 all-eg=X

:1 1c6:0 1c7:1
:0 rc6:1 xc7:0

c8=0 all-eq¥x

:1 lec6:1 1le7:0
0 rc6:0 xc7:1

c8=0 all-eq=X

1 1c6:1 1c7:1
c8=1 all-eg=X
all-eg=X
c8=0 all-eg=X
all-egq=X
c8=0rall-éq;x
all—eésx

c8=0

c8=0 all-eg=X

0‘:q6;0 rec7:0

rc8:0

réady=1

lc8:1
rc8:0

ready=1

1c8:1
rc8:0

ready=1

1c8:0
rc8:1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

data-ok=0

data-ok=0.

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

Page 45

to-cpu=0

to-cpu=0

to-é?u=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=d

to-cpuéb

to-cpu=0

to-cpu=0

>>

>>
- >>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>
>>

>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

cy

16:4> l-ocut=X
;ey 16

cy ,
17:4> l-out=X
ey 17 o
set l1-in:0

cy

18:4> l-out=X
;CY i8

cy

19:45 l-out=X
iCY 19

set l-in:1

cy

20:4> l-out=X
;cy 20

set l-in:0

cy

21:4> l-out=X
jey 21

set 1-in:0

cy

22:4> l-out=X
ey 22

cy

FE=3'¢ 23.”

set 1l-in:0

cy

24:4> l-out=X
;oy 24

set 1-in:0

cy

25:4> l-out=X
jcy 25

set l1l-in:0

cy

26:4> l-out=X
ey 26

set 1-in:0

cy

27:4> l-out=X

1-in=0

1"in=o

1-in=0

1-in=

1-in=0

1-in=0

1-in=0

1-in=0

1-in=0

1-in=0

UUCS-TR-008

Li=XX0X00X
Li=0 030000
L1=00000000

1i=00000000

Li=xxxx°0xx

Li=X3000 0300

1.4 =3X0 03000

Li=00 03000

Li=00000000

Li=00000000

c8=0

c§=1

c8=0

c8=0
c8=1
c8=0

c8=0

all-eq=X

alibeq=x

lll-eq;x

all-eq=X

A ali—éq=x

all-eq=X
a;l-eq=x
all-eg=X
all-eqg=X
all;gqFx
all-eg=X

all-eqzx

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

réady=1

ready=1

ready=1

ready=1

ready=1

data-ok=0

data;0k=0”

data-ok=0

data-ok=0"

‘data-ok=0"

data-ok=0"

daﬁa—okgo

data-ok=0"

data-ok=0

data4ok=o

data-ok=0

data-ok=0

Page 46
to—ééﬁ=o,
Eg'?éu:éy
o-cpus0
t6¥cpﬁfpﬂ

to'CPu:G

to-cpu=o

to—gpu=0

to;e?u=o
t°‘¢Pu=q
to-cpu=0
£°;épuf0

tO;cpu=0

P

>>
>>

S>>

>>

>>
>>

>>

>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>

°
H -

ey 27)
set 1-in:0
cy

28:4> l-out=X
;cy 28

set l-in:1
cy

29:4> l-out=X
ey 29

set 1-in:0

cy

30:4> l-out=X
;cy 30

set 1-in:0

cy

31:4> l-out=X
;ey 31

set l-in:0

cy

32:4> l-out=X
;jcy 32

set l-in:0

cy

33:4> l-out=X
;cy 33

set l1-in:0

cy

34:4> l-out=X
;cy 34

set 1-in:0

cy

35:4> l-out=X
;cy 35

set 1l-in:0

cy

36:4> l-out=X
;ey 36

‘set 1-in:0

cy

37:4> l-out=X
;cy 37

set l-in:1
cy

38:4> l-out=X

;ey 38

1-in=0

l-in=1

1-in=0

l-in=0

l-in=0

1-in=0

1l-in=0

1-in=0

1-in=0

1-in=0

l1-in=1

UUCS-TR-008

Li=00000000

Li=XXxXxXx000

Li=)X30XX000X

Li=XxXX000xX

Li=XX0003XxXX

Li=000 030X

Li=00000000

Li=00000000

Li=00000000

Li=00000000

Li=XXXX0000

c8=0

c8=1

c8=0

c8=0

c8=0

all-egq=X

all-egq=X

all-eg=X

all-eg=X

all-eg=X

all-eg=X

all-eg=X

all-eg=X

all-egq=X

all-eg=X

ali-eq=x

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

ready=1

data-ok=0

data-ok=0

d;ta—ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

data-ok=0

Page 47

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

to-cpu=0

>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

UUCS-TR-008

;cy 61

set l-in:1

cy

62:4> l-out=X l-in=1 Li=00000000 c8=0 all-eg=X ready=1 data-ok=0
;cy 62

set l-in:1

cy :

63:4> l-out=X l-in=1 Li=00000000 c8=0 all-eg=X ready=1 data-ok=0
;cy 63 :

set l-in:1

cy .

64:4> l-out=X l-in=1 Li=X1000000 c8=0 all-eq=X ready=1 data-ok=0
;ey 64

set l-in:1

cy 150

; A row wvector Ll is generated at cy 65 after inputing necessary
; Since c8 gets 1, FSM stops counting, in that c8 remains 1, and
; computation enters iteration entrance at cy 65. The new vector
; the current L1 vector at cy 66. '

all-eg=X

65:4> l-out=1 l-in=1 Li=10000000 c8=1 ready=1 data-ok=0
66:4> l-out=1 l-in=1 Li=10000000 c8=1 all-eg=X ready=1 data-ok=0
67:4> l-out=1 l-in=1 Li=10000000 c8=1 all-eq=X ready=1 data-ok=0
68:4> l-out=0 1l-in=1 Li=00000000 c8=0 all-eg=X ready=1 data-ok=0
69:4> l-out=0 l-in=1 Li=00000000 c8=0 all-eg=X ready=1 data-ok=0
70:4> l-out=0 l-in=1 Li=00000000 c8=0 all-egq=X ready=1 data-ok=0
71:4> l-out=0 l-in=1 Li=00000000 c8=0 all-egq=X ready=1 data-ok=0
72:4> l-out=0 1l-in=1 Li=00000000 c8=0 all-eq=X ready=1 data-ok=0
73:4> l-out=0 l-in=1 Li=00000000 c8=0 all-egq=X ready=1 data-ok=0
74:4> l-out=0 l-in=1 Li=00100000 c8=0 all-eg=X ready=1 data-ok=0
75:4> l-out=0 l-in=1 Li=01000000 c8=1 all-egq=X ready=1 data-ok=0
76:4> l-out=0 l-in=1 Li=01000000 c8=1 all-eq=X ready=1 data-ok=0

Page 50

to-cpu#o

to-cpu=0

to-cpu=0

data.
the
updates

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0

to-cpu=0

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0

Same situation as above, once c8 gets an 1, FSM stops (at cy 75) counting

; of c8 and updating current vector L2 (at cy 76). The
; keeps going on in such way as shown in the fillowing file.
77:4>
78:4>
79:4>
80:4>
81:4>
82:4>
83:4>
84:4>
85:4>
86:4>
87:4>
88:4>
89:4>
90:4>
91:4>
92:4>

l-in=1
l-in=1
l-in=1
1-in=1
l-in=1
l-in=1
l-in=1
l-in=1
l=-in=1
l-in=1
l-in=1
l-in=1
l-in=1
l-in=1
1-in=1
1-in=1

Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00010000
Li=00100000
Li=00100000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00001000

c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0

l-out=1
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
1-out=0
l-out=0
1-out=0
l-out=1
l-out=0
l-out=0
l-out=0
l-out=0
1-out=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

all-egq=X
all-eq=X
all-eg=X
all-ec=X
all-eg=X
all-eqg=X
all-eg=X
all-eq=X
all-eg=X
all-eqg=X
all-eq=X
all-eg=X
‘all-eg=X
all-eg=X
all-eq=X
all-eq=X

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

relaxation iteration

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0

93

97
98
$9
100
101

104

107
108
109
110

118
120

122

130

®e “e “o

131:
14>
14>
134:
135:
~136:
137:
138:
- 139:
140:
141:
142:
- 143:
144:

132
133

14>
94:
95:
96:
4>
4>
4>
4>
4>
102:
103:
14>
105:
106:
14>
4>
4>
4>
111:
112:
113:
114:
115:
116:
117:
14>
119:
4>
121:
14>
123:
124:
125
126:
127:
128:
129:
14>

4>
4>
4>

4>
4>

4>
4>

4>
4>
4>
4>
4>
4>
4>

4>
4>

4>
4>
4>
4>
4>
4>
4>

The
to 8 definite data. The iteration still keeps going on for an all-eg =1
is appeared.

4>

4>
4>
4>
4>
4>
4>
4>
4>
4>
4>
4>

l-out=0
l-out=0
l-out=0
l-out=0
l-ocut=1
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0

l-out=0

l-out=0
l-out=0
l-out=0
l-out=1
l-out=0
l-out=0
1-out=0
l-out=0
l-out=0
l-out=0
1-out=0
l-out=0
l-out=0
l-out=1l
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=1
l-out=0
l-out=1
1-out=0

!

| oad

o
Inon

L

EEEE

[| (]
(VRN VRNV
Ll gl el
TR
PHRERERRPEBEP

i
P b P
-]
o
e

el el

-1 =1
l-in=1
l-in=1
l-in=1
l-in=1
l-in=1
l-in=1
l-in=1
I-in=1
l-in=1
l-in=1
l-in=1
l-in=1
l-in=1
l-in=1

=

UUCS-TR-008

Li=00010000
Li=00010000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000100
Li=00001000

Li=00001000

Li=00000000
Li=00000000
Li=00000000

Li=00000000

Li=00000000
Li=00000000
Li=00000010
Li=00000100
Li=00000100
Li=00000000
Li=00000000
L1=00000000
1i=00000000
Li=00000000
Li=00000000
Li=00000001
Li=00000010
Li=00000010
Li=00000000
Li=00000000
1i=00000000
1L1=00000000
Li=00000000
Li=00000000
1i=01000000
Li=00000001
Li=00000001

c8=1
c8=1
c8=0
c8=0
c8=0

c8=0

c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1

all-eq signal is set to 0 since

l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=1
1-out=1
1-out=1
l-out=0
l-out=0
l-out=0
1-out=0
l-out=0

l-in=1
l-in=1
l-in=1
l-in=1
1-in=1
1l-in=1
l1-in=1
l-in=1

Li=00000000
Li=00000000
1i=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=10000000

- Li=10000000

Li=00000000
Li=00000000
Li=00000000
Li=00000000
Li=00000000

c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0

all-eg=X
all-eg=X
all-eq=X
all-egq=X
all-eg=X
all-eg=X
all-eq=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-ex=X
all-eg=X
all-eg=X
all-eg=X
all-eg=X
all-eqg=X
all-eg=X
all-eg=X
all-eq=X
all-eq=X
all-eg=X
all-eq=X
all-eg=X
all-eg=X
all-eg=X
all-eq=X
all-eq=X
all-eq=X
all-eg=0

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

ready=1

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1l
ready=1
ready=1
ready=1
ready=1
ready=1

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

data-ok=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

Page 51 -

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to~-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0

‘to-cpu=0

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0"
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0

8-bit state register have loaded in

all-eq=0
all-eg=0
all-eg=0
all-eg=0
all-eq=0
all-eg=0
all-eq=0
all-eq=0
all-eg=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eqg=0

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ck=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to=-cpu=0
to-cpu=0

145:4>
146:4>
147:4>
148:4>
149:4>
150:4>
151:4>
152:4>
153:4>
154:4>
155:4>
156:4>
157:4>
158:4>
159:4>
160:4>
161:4>
162:4>
163:4>
164:4>
165:4>
166:4>
167:4>
168:4>
169:4>
170:4>
171:4>
172:4>
173:4>
174:4>
175:4>
176:4>
177:4>
178:4>
179:4>
- 180:4>
- 181:4>
- 182:4>
183:4>
184:4>
185:4>
'186:4>
187:4>
188:4>
189:4>
190:4>
191:4>
192:4>
193:4>
194:4>
195:4>
196:4>
197:4>
198:4>
199:4>
200:4>
201:4>

l-out=0
1-out=0
l-out=0
l-out=0
l-out=1
1-out=0
l-out=0
1-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=1
l-out=0
l-out=0
l-ocut=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=1
l-out=0
l-out=0
l-out=0
1-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=0
l-out=1
l-out=0

1-out=0

l-out=0
l-out=0
l-out=0
1-out=0
l-out=0
l-out=0
l-out=0

l-out=1

l-out=0
1-out=0
l-out=0
1-out=0
1l-out=0
1-out=0
1l-ocut=0
1-out=0
l-out=0
l-out=1
l-out=0
l-out=0

|

U
b
nouwnnn

EEEE

1
P
o

b

e e e e e R)

o)

RNy

EEELEE
wowowunnnnnn
e R]

EEEEE

UUCS-TR-008

Li=00000000
Li=00000000
14=01000000
L4=01000000
1i=00000000
L4=00000000
L4=00000000
L1=00000000
Li=00000000
24=00000000
14=00000000
Li=00100000
14=00100000
1.4=00000000
1i=00000000
1i=00000000
1i=00000000
1i=00000000
14=00000000
Li=00000000
£i=00010000
Li=00010000
1L4=00000000
1i=00000000
1L4=00000000
1Li=00000000
1i=00000000
1i=00000000
Li=00000000
Li=00001000
1i=00001000
L4=00000000
1i=00000000
1Li=00000000
14=00000000
14=00000000
14=00000000
11=00000000
Li=00000100
1i=00000100
1i=00000000
1i=00000000
1Li=00000000
1.4=00000000
1.4=00000000
14=00000000
14=00000000
L1=00000010
11=00000010
14=00000000
14=00000000
14=00000000
14=00000000
Li=00000000
Li=00000000
1.4=00000000
1Li=00000001

c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1

c8=0

c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1
c8=1
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=0
c8=1

all-eg=0
all-eg=0
all-eq=0
all-eg=0
all-eq=0
all-eg=0
all-eg=0
all-eg=0
all-ec=0
all-egq=0
all-eqg=0
all-eq=0
all-eq=0
all-eg=0
all-eq=0
all-eg=0
all-eg=0
all-egq=0
all-eqg=0
all-eg=0
all-eg=0
all-eq=0
all-eg=0
all-eg=0
all-eq=0
all-eq=0
all-egq=0
all-eg=0

all-eq=0

all-eg=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eg=0
all-eg=0
all-eq=0
all-eg=0
all-eg=0
all-eqg=0
all-eq=0
all-eg=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eqg=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0
all-eq=0

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

ready=1

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

‘data-ok=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

Page 52

to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to~-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0
to-cpu=0

to-gpu=0

202:4> l-out=0
203:4> l-out=0
204:4> l-out=0
205:4> l-out=0
206:4> l-out=0
207:4> l-out=0
208:4> l-out=0
208:4> l-out=1l
210:4> l-out=l

s wg

UUCS-TR-008

1-in=1 Li=00000001 c8=1 all-eg=1
1-in=1 Li=00000000 c8=0 all-eg=1l
1-in=1 Li=00000000 c8=0 all-eg=1l
1-in=1 Li=00000000 c8=0 all-eg=1
1-in=1 Li=00000000 c8=0 all-eq=1
1-in=1 Li=00000000 c8=0 all-eqg=1
l-in=1 Li=0000Q000 c8=0 all-eq=1
1-in=1 Li=00000000 c8=0 all-eg=1l
1-in=1 Li=10000000 c8=1 all-eg=1l

Ok, now an 1 of all-eq is éeached at cy 210.
and then waits for a signal from CPU. '

211:4> l-out=1l
212:4> l-out=l
213:4> l-out=1l
214:4> l-out=l

>>
sim>

Ne We mp

set to-cpu:l

‘A to-cpu is
to CPU. The
row vectors

sim> cy 8
215:4> l-out=l
216:4> l-out=0
217:4> l-out=0
218:4> l-out=0
219:4> l-out=0
220:4> l-out=0
221:4> l-out=0
222:4> l-out=0

.

¢

This result

sim> cy 8
223:4> l-out=0
224:4> l-out=1
225:4> l-out=0
226:4> l-out=0
227:4> l-out=0
228:4> l-out=0
229:4> l-out=0
230:4> l-out=0

14

1-in=1 Li=10000000 c8=1 all-eg=1
1-in=1 Li=10000000 c8=1 all-eg=1l
l-in=1 Li=10000000 c8=1 all-eq=1l
1-in=1 Li=10000000 c8=1 all-eq=1l

sent to DAR2 which initiates the
following eight 8 cycles are the
of L matrix. Look at l-out: ‘

1-in=1 Li=10000000 cB8=1 all-eg=1
1-in=1 Li=00000000 c8=0 all-eg=1
1-in=1 Li=00000000 c8=0 all-eg=l
1l-in=1 Li=00000000 c8=0 .all-eg=1
1-in=1 Li=00000000 c8=0 all-eq=1
1-in=1 Li=00000000 c8=0 all-eg=1
1-in=1 Li=00000000 c8=0 all-eg=1
1-in=1 Li=00000000 c8=0 all-eg=1

Page 53

ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=0 to-cpu=0
ready=1 data-ok=1 to-cpu=0

DRA2 sends a data-ok to CPU

ready=1 data-ok=1 to-cpu=0
ready=1 data-ok=1 to-cpu=0
ready=1 data-ok=1l to-cpu=0
ready=1 data-ok=1 to-cpu=0

data transfering from DRA2
process to output the 8 °

ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=1l

means that the first row vector of L matrix is 1L1=10000000.

Li=01000000 c8=1 all-eg=1l
Li=10000000 c8=0 all-eg=1l
Li=00000000 c8=0 all-eg=1l
.Li=00000000 c8=0 all-eg=1
Li=00000000 c8=0 all-eq=1
Li=00000000 c8=0 all-eq=1
Li=00000000 c8=0 all-eq=1
Li=00000000 c8=0 all-eg=1

HFHEHBEHHKHMR
EEEERELEE

The second row vector is 12=01000000.

sim> cy 8
231:4> l-out=0
232:4> l-out=0
233:4> l-out=1l
234:4> l-out=0
235:4> l-out=0

236:4> l-out=0.

237:4> l-out=0
238:4> l-out=0

1-in=1 Li=00100000 c8=1 all-eqg=1
1-in=1 Li=01000000 c8=0 all-eq=1
1-in=1 Li=10000000 c8=0 all-egq=1
1-in=1 Li=00000000 c8=0 all-eg=1
Li=00000000 c8=0 all-eg=1
Li=00000000 c8=0 all-eq=1
Li=00000000 c8=0 all-eg=1
Li=00000000 c8=0 all-eg=1

1
P-
o}

wouwnn

=R g

6

ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=1l
ready=1 data-ck=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l

ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=1l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l
ready=1 data-ok=0 to-cpu=l

; The third row vector is L3=00100000.

sim> cy 8
239:4>
240:4>
241:4>
242:4>
243:4>
244 :4>

- 245:4
246:4>

~; L4=0

sim> cy 8
247 :4>
248 :4>
249:4>
250:4>
251:4>
252:4>
253:4>
254:4>

; L5=0

sim> cy 8
255:4>
256:4>
257:4>
258:4>
259:4>
260:4>
261:4>
262:4>

; L6=0

sim> cy 8
263:4>
264:4>
265:4>
266:4>
267:4>
268:4>
269:4>
270:4>

s L7=0

sim> cy 8
271:4>
272:4>
273:4>
274:4>
275:4>
276:4>

l-out=0 l-in=1
l-out=0 l-in=1
l-out=0 l-in=1
l-out=1 1l-in=1

l-out=0 l-in=1 Li=

l-out=0 l-in=1

> . 1l-out=0 l-in=1 Li=

l-out=0 l-in=1

0010000.

l-out=0 l-in=1
1-out=0 l-in=1
l-out=0 l-in=1
l-out=0 l-in=1

l-out=1 l-in=1

l-out=0 lfin=1
l-out=0 l-in=1
l-out=0 l-in=1

0001000.

l-out=0 l-in=1
l-out=0 l-in=1
l-out=0 l-in
l-out=0 1l-in
l-out=0 1-
l-out=1
l-out=0
l-out=0

S'E'E

1-
1-
1-

:

0000100.

l-out=0 l-in=1
l-out=0 1l-in=1
l-out=0 l-in=1 L
l-out=0 1-

W nn
Hl‘k‘H!ﬂ

FFFFE

1-
1-
1-
1-

0000010.

EEEEEE

e w R

UUCS-TR-008

1i=00010000
1Li=00100000
1i=01000000
Li=10000000
00000000
Li=00000000
00000000
Li=00000000

Li=00001000
Li=00010000
Li=00100000
Li=01000000
Li=10000000
Li=00000000
Li=00000000
Li=00000000

Li=00000100
1i=00001000
Li=00010000
Li=00100000
Li=01000000
Li=10000000
Li=00000000
Li=00000000

Li=00000010
£i=00000100
Li=00001000
Li=00010000
| Li=00100000
Li=01000000
Li=10000000
14=00000000

Li=00000001
Li=00000011
Li=00000111

i=00001111
Li=00011111
Li=00111111

c8=1

c8=0
c8=0

c8=0

c8=0
c8=0
c8=0
c8=0

c8=1
c8=0

c8=0
c8=0
c8=0

c8=0"

c8=0
c8=0

c8=1

c8=0

c8=0
c8=0
c8=0

c8=0

c8=0
c8=0

c8=1
c8=0
c8=0
c8=0
c8=

c8=0
c8=0
c8=0

cB8=1
¢8=0
c8=0
c8=(
c8=0
c8=0

all-eg=1
all-eq=1

all-eg=1

all-eq=1

all-eq=1

all-eg=1
all-eq=1
all-eg=1

all-eg=1
all-eq=1
all-eqg=1
all-eg=1l
all-eqg=1
all-eg=1
all-eg=1
all-eg=1

all-eg=1
all-eg=1
all-eg=1l
all-eg=1
all-eg=1
all-eg=1
all-eqg=1l
all-eq=1

all-eq=1
all-eg=1
all-eq=l
all-eg=1
all-eqg=1

all-eq=1

all-eg=1
all-eg=1

all-eq=1
0 all-eg=1
all-eg=1
all-eg=1

all-eg=1

all-eg=1l

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

ready=1
ready=1
ready=1
ready=1
ready=1
ready=1

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

‘data-ok=0

data-ok=0
data-ok=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0
data-ok=0

Page 54

to-cpu=l
to-cpu=1
to-cpu=1
to-cpu=1l
to-cpu=1
to-cpu=1
to-cpu=1l
to-cpu=1l

to-cpu=1
to-cpu=1l
to-cpu=l"
to-cpu=1l -
to-cpu=1l
to-cpu=1
to-cpu=1l
to-cpu=1

to-cpu=1l
to-cpu=1l
to-cpu=1l
to-cpu=1
to-cpu=1l
to-cpu=l
to-cpu=1
to-cpu=1

to-cpu=1
to-cpu=1
to-cpu=1
to-cpu=1l
to-cpu=1l
to-cpu=1
to-cpu=1
to-cpu=1

to-cpu=l
to-cpu=1
to-cpu=1l
to-cpu=1
to-cpu=1l
to-cpu=1l

UUCS-TR-008 Page 55
277:4> l-out=0 l-in=1 Li=01111111 c8=0 all-eg=l ready=l data-ok=0 to-cpu=l
278:4> l-out=1 l-in=1 Li=11111111 c8=0 all-eg=1 ready=1 data-ok=0 to-cpu=l

; L8=00000001.

sim> g

