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 ABSTRACT

A major application of syntactic pattern recognition
is the analysis of two dimensional shape. This paper
describes a new syntactic shape analysis technique which
- combines the constraint propagation techniques which have
been so successful in computer vision with the syntactic
representation techniques which have been successfully
applied to a wide variety of shape analysis problems.
Shapes are modeled by stratified shape grammars. These grammars
are designed so that local constraints can be compiled from the
grammar describing the appearance of pieces of shape at
various levels of description. Applications to the analysis
of airplane shapes are presented.
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1. INTRODUCTION

A major application of syntactic ‘pattern recognition is
the analysis of‘two—dimensional shape. 1In order to adopt the
syntactic approach, the shapes to be analyzed must be segmented
into pieces which .cofrespond to the terminal symbolsvof some
grammar, and these pieces must subsequently be analyzed by a
parsiﬁg mechanism.’ Many syntactic methods assume that the
pieces can be found easily (top-down methods provide a wide
class of exceptions, e.g., see Stockman [1]). However, in most
real problems, the design of a segmentation brocedure that can
find (almost) all of the pieces will require the acceptance of
a high false alarm rate - i.e., many of the hypothesized pieces
may not, in fact, be part of a "grammatical" description of the

shape.

This paper discusses a general parsing procedure which has
been designed specifically to overcome this problem. Shapes
ére modeled by hierarchical, or stratified grammars. These
grammars are designed in such a way that local céntextual
constraints on the appearance of a shape can be automatically
compiled from the grammar at all levels of description of the
shépe. These constraints can then be iteratively applied to an
initial set of hypotheses by a relaxation procedure (see Davis
[2] or Davis and Rosenfeld [3]). In what follows, we will
describe algorithms designed to compile these constraints and

to employ the constraints to analyze shapes.
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The main thrust of this paper is to wunite syntactic
techniques and constraint propagation methods into one
technique éir analyzing two-dimensional shapes based on their
boundaries.  The terminal symbols of the stratified grammar
will correspond to segments of the shapes being modeled. To

analyze an actual shape, its boundary must be segmented into

primitives which, ideally, correspond unambiguously and

syntactically to particular terminal symbols of the grammar.
In general, more primitives must be constructed than are
actually required to parse the shape. Moreover, deciding which
terminal symbols of the grammar correspond to a particular
primitive 1is an ambiguous process -,i.e., there may be several
such choices for each primitive. In principie, every possible
set sf‘ choices must be considered as a description of the
shape. The number of hypotheses can be effectively reduced by
constraint analysis; e.g., even though a terminal symbol may be
a possible label for a particular primitive, there may not Dbe
any adjoining primitive whose hypotheses give the appropriate
context for_such a hypothesis. Suchjcontextual constraints can
be derived (or "compiied") automatically from a stratified

grammar and used in the subsequent analysis.

The remainder of this paper discusses how this is achieved
and 1is organized as follows: Section 2 reviews previsus
research relevant to the design of automatic shape analysis
systems. In Section 3, we introduce a class of shape grammars,
called stfatified'context-free shape grammars, which provide a

strict hierarchical structure for vocabulary symbols. Both
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syntactic and semantic contextual constraints for all the
vocabulary symbols can be generated automatically from such
grammars. The contextual constraints provided by the shape
.grammars can be exploited‘by avhierarchical constraint process.
Such a pfocess constitutes a bottom-up constraint-based parsing
method and attempts to overcome the combinatorial explosion in
parsing the shape implied by the segmentation. Examples of the
application of this hierarchical systém to airplane»recognition
are described in Section 4. Performance criteria for a
hierarchical constraint process are defined, and several shapes
are analyzed‘and‘the hierarchiqal constraint process evaluated
according to the criteria. Section 5 discusses how
hierafchicalvconstraint processes can be used with uncertain

hypotheses. Finally, Section 6 contains a brief summary.
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2. Related Research

Visual ,recognition of shape 1is an aspecﬁ of shape
perceptionv which has been widelyvinvestigated. The collection
of psychological and psychophysical data is extensive and quite
complicated and will not be treated here. However, it should
be noted that 1in attempting to analyze or describe the
structure of a shape, it may be convenient té extract parts of
the shape ih a manner similar to the way humans do. Extensive
feviews of human shape perception include Zusne [4], Cornsweet
- [51, and Haber [6]. The reéder is referred to them for a
comprehensive introduction to the area. There is psychological
evidenée—that the solidityvof a figure is due essentiaily to
the contour, and that transference of a learned task from a
filled-in form to an outline figure and vice versa is excellent
for most species [7]. Thus, shape analysis involves extracting
information at various levels of detail. It is this informatdn
ﬁhat will ‘be orgahized‘insteadbéf the raw image data itself.
For example, Marf [8] has proposed»using filtering operators to
obtain a»priﬁal sketch. Recognition can then proceed'in terms

of this account of the image.

The solution to a shape analysis problem generally
requires the design of shape modeling techniques and procedures
for organizing unknown shapes according to such models. Once a
shape modeling mechaniSm has been chosen, specific models for
the classes of shapes to be analyzed can be constructed. This
might involve simply determining values for specific shape

features or, more generally, detailing the spatial organization
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of a shape.

The process of choosing a modeling mechanism and then
éonstructing shape models 1is complicated by a Variety of
factors that influence both the appearance of specific shapes
in 1images and the segmentation of shapes of individual objects
from images. These factofs include:

(1) Geometric  transformations including image plane
transformations of rotation, scale and transformations of the
object in 1its coordinate space which 1lead to perspective

distortions. A shape may be arbitrarily oriented in the image
plane, and, in general, this cannot be controlled.

(2) Partial information. Not only may a shape be
imperfectly segmented, but major parts of the shape may be
missing due to occlusion in the image, shadows, camouflage,
ete.

(3) Agglomeration. Another segmentation related problem
occurs when two or more shapes are segmented from an image as a
single shape. A shape model should provide a description (or
at least make such a description possible) for dissociating
multiple shape objects.

(4) Noise. Noise is usually a global effect in an image
and can influence the segmentation procedures. For example,
edges that are actually smooth may appear jagged due to
digitization noise.

Our discussion of shape models will be guided by the
following definition:

A shape model consists of:

(1) a spatial decomposition of the shape,

(2) a description of the parts of the shape, and

(3) a description of the relations between the parts of
the shape.

Shape models can be separated into two classes. When (1) 1is
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the trivial decomposition into a single part, the model will be

called a feature model. When (1) 1is non-trivial, the model

will Dbe called a structural model. A shortcoming of feature

models is‘that they cannot ordinarily be applied in situations
where only  partial information is available about the shape.
Feature models which have beenv extensively wused in shape
recognition include moment models [9] and Fourier modelsy
[10,11]. Structural, or syntactic models, on the other hand,
can be‘ used in situations where only partial information is
‘available, and can also be used to decompose an agglomeration

into several shapes.

Syntactic, or structural, pattern analysis consists of
three major steps [12]:
| (1) preprocessing - improving the quality of an 1image

containing the shape, e.g., filtering, enhancement, etc. to
facilitate segmentation,

(2) pattern representation - segmenting the shape and
assigning the segments to the 1lowest level parts in the
structural model, and

(3) syntax analysis - parsing the primitive shape pafts
according to the structural model.

Structural shape models describe the spatial decomposition
of a shape, and consequently, must describe the primitive parts
composing the shape.‘ There are no established guidelines for
choosing shape primitiveé;,however, there are several desirable
characteristics. Primitives should provide | a compact
descriptiqn of the shape‘with little or no loss of information,
and the exﬁraction of‘shape primitives from a shape should be

relatively simple using existing non-syntactic techniques.
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Several classes of shape primitives have been proposed
including chainlets [13] and more generally, boundary segments
determined by piecewise functional approximations [14], both of
which describe the boundary of a shape, and convex polygon

decompositions [15-17] of the area of the shape.

The choice of primitives determines, to a large extent,
the relations computed between the primitives. For piecewise
linear approximations, relations- such as adjaéency?
collinearity and symmetry may be computed. The exact relations
computed are determined by the form of the structural model.
There are; in practice, two kinds of structural model, one a
special case of the other: single-level grammars, which are
relational networks, and multi-level grammars. If relational
networks are adopted as a representation, then shape analysis
involves graph matching. Multi-level models require a parsing

procedure.

This paper combines syntactic shape analysis with the
constraint analysis tools used extensively in computer vision.
In computer vision, constraint networks can be used in labeling
a set of objects in such a way that a given set of constraints

is satisfied [18-20].

Given a segmentation of a scene, the objects produced by
bthe segmentation may  not have obvious interpretations.
Constraint analysis can be used to disambiguate the object
interpretations. More precisely, a class of scenes can be

modeled by specifying constraints (for example, on relative



Page 8

position) between objects in such scenes. These constraints
caﬁ be used to disambiguate objects in }an unknown scene by
ruling out interpfetatfons which do not satisfy all (of some)
of ﬁhe required constrainté with the assumed interpretations of
other objects in the scene. Finding only the interpretations

satisfying the constraints is the scene labeling problen. In

[18], Rosenfeld et al introduce parallel, iterative algorithms,
(both discrete and continuous) called relaxation procedures for

enforcing local constraints.

Mackworth [21] discusses 1issues ‘relating to  search
efficiency  using constraint analysis. Gaschnig [22]> has
described a generall constraint satisfaction method ‘and has
shown how it «can be wused to solve certain classes of state
Space search problems. For sufficiently constrained problems,
‘the method can eliminate locally inconsistent assignments and
évoid searéh‘redundancy. ~ Variations of discrete relaxation
have been proposed by Ullmann [23,24] for finding subgraph

isomorphisms and for pattern association.

It is hoped thaf using constraint reduction analysis will
increase the speed and efficiency of problem solving. Claims
have been made that network*cénsistency algorithms are better
than more standard procédures, e.g., backtracking. However,
Gaschnig [25] presents experimental 'ease studies comparing
several aigorithms, including network consistency algorithms
and backtrack algorithms, and concludes that for tbe particular
problem studied (the :N ‘queens problem), the backtracking

algorithm was the most efficient in terms of the performance
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criteria chosen. Somewhat different results are reported by

Haralick and Gordon [26].

Davis [3] has described a method for incorporating the use
of constraint analysis with a hiekarcﬁical representation of
objects. In particulér, he suggested that a hierarchical
relaxation process be designed which could apply the
constraints implicit in a layered network of relational models.
The process was demonstrated in the context of simple
one-dimensional waveform analysis. The present paper is an
extension of that work (see also [27]) to two-dimensional shape

analysis.
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3. Hierarchical Constraint Processes

This sectioﬁ discﬁsses hierarchical constraint processes.
They represeht a union of structural techniques and constraint
~analysis techniques. Ih order to apply a hierarchical
constraint process to the analysis of shape, a stratified shape
grammar must be defined for the <class of shapes under
consideration (Secﬁionv 3.?).: Once a shape grammar has been
specified, the syntactic and semantic constraints which are
implicit> in the grammar are compiled from the grammar (Section
3.2). Then, thekhierarchical constraint process can be applied
to the vanalysis of unknown shapes (Section 3.3). The
hierarchical cohstraint process takes as input the compiled
version of the Vgrammar and the primitives obtained from the
segmentation of an unknown shape and produces as output a
layered network of hypotheses. The network may be empty,
representing‘the assertion that the unknown shape was not from
the class of shapes defined by the grammar, or may contain

alternative parses of the shape.

In the following subsections, a grammar for a simple house
shape will be used to illustrate the hierarchical constraint
process. Section U4 desecribes an application to airplane

recognition.
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3.1 The Grammatical Shape Model

With some simple modifications, syntactic shape models can
be integrated with constraint analysis techniques. The shape
grammars which we will consider are an extension of the

geometrical grammars suggested by Vamos [28] and Gallo [29].

We define a stratified context-free grammar, G, as a

4-tuple ( T, N, P,'S ), where

T is the set of terminal symbols,
N is the set of non-terminal symbols,
P is the set of productions, and

S is the set of start symbols.
Let V2 ( NUT ) be the set of vocabulary symbols.

Associated with every symbol v € V is a 1level number,
In(v). For each terminal symbol v, 1n(v) = 0. The set of
terminal symbols corresponds to the smallest segments of the
shapes modeled by- the grammar, e.g., short straight-edges of

the shape boundary.

Each non-terminal symbol has a level number from 1 to n
associated with it. A start symbol has level number n, and for

any rule v = vqv,...v if In(v) = k, 1 < k < n, then In(vy) =

r?
k-1, i = 1,...,r. Unlike conventional string grammars,
vocabulary symbols have a non-trivial structure. A vocabulary
symbol v is composed of a <name part>, {attachment part} and a

[semantic'part], where

a) <name part> is a unique name by which the



Page 12

symbol v is known,

b) {attachment part} is a set of attachment
points of the symbol, which are required to specify how the
symbol can be combined with other symbols to form higher level
symbols, and

c¢) [semantic part] is a set of predicates which
describe certain properties of the symbol, such as its axis,
length, etc.

Each production in the grammar 1is of the form (
VizVyvs...v.,A,C,G,,G4), where

a) v:i=vVqv,...v. is the rewrite part which indicates
that  the symbol v 1is constructed from the group of symbols

V1V2. s oV

b) A is an applicability condition on the syntactic
arrangement of the v:. A specifies how the various endpoints
of the v. must be attached in order to produce a v.

i
c) C contains semantic constraints on the . and

consists of various predicates descrlblng geometric ané other
properties and relations of the v; which must be satisfied 1in

order to produce a v.

d) Ga contains rules for generating the attachment
part for v, and

e) Gg contains rules for generating the semantic part
of wv.
As an example of a production, consider how engines are
formed (see Figure 1) in a grammar for an airplane.
< engine > { e1,e2 } [ a,span ] :=
engine side > { el',e2" } [ a' ] +

<
< engine front > { el1*",e2'* } [ a'' ] +
< engine side > { elfrr,e2ttt } [ gftt ]

A : [ Join(el' or e2',e1'') ‘and Join(el''' or e2''' e2'")
or Join(el''' or e2''',e1'') and Join(el1' or e2',e2'') ]

C : [ Parallel(a',a''') and Length(a')=Length(a''")
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and Perpéndicular(a',a")
and Parallel(a'',Vector(Midpt(a'),Midpt(at''))) 1]

G, : [ Set(el, Unjoined(ei',e2')) and
Set(e2, Unjoined(el''',e2''')) or
Set(el, Unjoined(el1''',e2''")) and
Set(e2, Unjoined(el',e2')) ]

Go ¢ [ a := (a' + a''')/2 and span := a'']

This rule specifies that an ﬁengine" is composed of two
"engine side" symbols and an "engine front" symbol. A, C, Ga,
and G5 can be viewed‘as a program for producing "engine" from
symbols,’on the right-hand side of the rewrite rule. A
specifies the physical connections of the symbols on the
right-hand side, i.e., that each end of the "engine front" has
an "engine side" attached to it, but the "engine side" symbols
are not connected to each other (see Figure 1). The predicate
Join(x,y) is true if x and y correspond to the same point 1in
the shape. C indicates that the two "engine side" symbols
should be parallel, of the same length, perpendicular to the
"engine front™ symbol, and on _the same side of the "engine
front." G, and Gg describe the aeriQation of the attachment
points and semantic features for "engine"; the unjoined end
points of the‘ "engine side" symbols can be given either
atﬁachment point name due to the symmetry of the symbol. The
function Unjoined(x,y) computeé the endpoint which did not
satisfy the Join condition in the applicébility condition of
the producﬁioh. The function Set(x,y) assigns the physical
attributes of the existing endpoint y to the endpoint x of the

symbol being constructed. The main axis is the average of
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Figure 1 : ‘Example of a Production

roof roof

wall - wall

floor

Figure 2: Typical House Shape
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those of the "engine side" symbols, and the span is exactly

that of "engine froht".

As a simple example of a complete grammar, consider a

house grammar G = (T,N,S,P), where

T = { roof, wall, floor 1},
N = { top, bottom, house },
S = { house }, and

P = {

(production 1)

<top> {e1,e2} [a] :=
<roof> {el1',e2'} [a'] +
Kroof> {el1",e2"} [a"]

a : [ Join(e1',e1") or Join(el',e2") or
Join(e2',e1") or Join(e2',e2") ]

¢ : [ Perpendicular(a',a") and
Equal( Length(a'),Length(a™) ) 1]
G, : [ Set(el,Unjoined(el',e2')) and

Set(e2,Unjoined(e1™,e2")) or
Set(el1,Unjoined(e1",e2")) and
Set(e2,Unjoined(e1',e2')) 1

G, : [Set(a,Vector(el,e2)]

(production 2)

<bottom> {el1,e2} [a] :=
<wall> {el',e2'} [a'] +
“<floor> {e1",e2"} [a"] +
<wall> {ei"',e2"'} [a"']

a : [ Joined(el',e1") and Joined(e2",el1"') or
Joined(el1',e1") and Joined{ecz™,e2""') or
Joined(el1',e2") and Joined(el1",ei"') or
Joined(el1',e2") and Joined{el1",e2"') or
Joined(e2',e1") and Joined(e2",el"') or
Joined(e2',e1") and Joined(e2%",e2"') or
Joined(e2',e2") and Joined(ei",el1" ') or
Joined(e2',e2") and Joined(ei",e2" ') ]

¢ : [ Parallel(a',a"') and Perpendicular(a',a™)"and
Equal( Length(a'),Length(a”),Length(am') ) ]

G, : [Set(el,Unjoined(el',e2')) and
Set(e2,Unjoined(ei"',e2" ")) or
Set(el,Unjoined(e1"',e2"')) and
Set(e2,Unjoined(el1',e2')) ]

G ¢ [Set(a,a")]
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(production 3)

<house> { } [a] :=
<top> {el1',e2'} [a'] +
- <bottom> {e1",e2"} [a"]
a : [ Joined(el1',e1") and Joined(e2',e2") or
Joined(el',e2") and Joined(e2',el1") ]
c: [ Equal(a',a") and Parallel(a',a") 1]
G a * [ ] ’ ' ,

Gg : [Set(a,a')1}.

Figure 2 shows a typical example of the shapes described by G.

Stratified grammars contain a large set of “implicit
contextual constraints on the organization of a shape. It is
these constraints which = the hierarchical constraint process

will utilize to analyze unknown shapes.
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3.2 Compilation of Constraints

Two types of constraints, syntactic and semantic, can be
compiled from a stratified shape grammar. - Syntactic
- constraints describe the possible neighbors a symbol may have
at a specific attachment point. If v is a symbol in a grammar,
G, then let Nei(v,a) denote the set of ordered pairs of symbols_
and attachment points which can Be attached to v at attachment
point a in some sentential form of iG. That is, (v',a') €
Nei(v,a) if and only if v can be attached to v' using point a
of v and'a'lof v'. Now, suppose during the analysis of an
actual shape, a shape segment s 1is hypothesized to be an
instance of wv. Then some actual point of s, say p, 1is
associated with a by the hypothesis. Of course, other segments
have been hypothesized as corresponding to other vocabulary
symbols. A necessary condition for the hypothesis relating v
to s to be part of a grammatical description of the shape 1is
that some other hypothesis relates symbol v' to a segment s'
and a point p' in s' to attachment point a' of v' such that

1) (v',a') &€ Nei(v,a), and

2) p' is actually attached to p in the shape.

The sets Nei(v,a) represent the syntactic constraints, and they
can be utilized to discard extraneous hypotheses. If these
constraints are not applied to the anélysis of a shape, then
several levels of voéabulary symbols might be built before it
is discovered that some hypothesis lacks appropriate context.
The wuse of ‘such constraints, however, makes it possible to

detect the lack of appropriate context much earlier.
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Semantic constraints correspond to relations between the
semantic features of vocabulary symbols. For example, it can
be determined frbm the grammar for airplanes that the main axis
of a <plane> 1is parallel to the main axis of an <engine)>.
Semantic constraints facilitate the incorporation of high level
information into the analysis of a shape - e.g., if the
orientation of the fuselage of a plane is known’( possibly due‘
to prior 1image analysis which hés discovered runways), then
this information can be automatically compiied into constréints
on the ofientation of the wings through thevproductions of the

‘grammar.
3.2.1 Compiling Syntactic Constraints

Let G = (T,N,P,S), and let v, w and x € V. Let at(v)
denote the set of attachment points of v, and let av € at(v).

We define the three binary relations:

1) v ancestor:av,aw w iff there exists a production p such
that the rewrite rule of p is v := ...w... and there exists an
aw € at(w) such that aw is identified with av in G_ of p. That
is, the attachment point aw of the right-hand 518e symbol, w,
becomes the attachment point av of the left-hand side symbol v.
For example, 1in Figure 1 the attachment points for the symbol
"engine" are associated with the unjoined attachment points of
the "engine side" symbols.

2) w descendent:aw,av v iff v ancestor:av,aw w.

3) v neighbor:av,aw w iff

a) there exists a production p such that the rewrite
rule of p is x := ...v...w... and aw is specified as being
301ned to av in the appllcablllty conditions, A, of p, or

b) there exists x € V with ax € at(x), and y € V with
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ay € at(y) such that x ancestor:ax,av v, and y neighbor:ay,ax
x, and w descendent:aw,ay y. Note that computing the neighbor
relation for 1level k symbols assumes knowing the neighbor
relation for all levels greater than k. ‘

Using matrix representations for these relations, the
descendents and neighbors of a symbol at a particular
attachment point can be computed ( see Gries [3¢] for an
introduction to Dbinary relations, their representation using
matrices and their manipulation ). The notation w R:aw,av v
indicates that w is in relation R to v through endpoint aw of w
and av of v. Given k attachment points per vocabulary symbol,
the neighbor:i,j relation (which 1is equivalent to the sets

Nei(v,a) discussed above) 1is computed by iterating the

following computation n-1 times:
neighbor:i,j := neighbor:i,j +z:{descendent:i,m *

[ z:(neighbor:m,l ¥ ancestor:1,j)1}.
As an example, consider the house grammar given in Section 3.1.
An ancestor matrix Mij is a square matrix whose order‘is the
number of vocabulary symbols in‘the grammar, and for which i
specifies the attachment point of the vocabulary symbol of the
row, and j specifies the attachment point of the vocabulary
symbol of the column. Since there are two attachment, points
for each symbol of the grammar, there shouldrbe four matrices
specifying the ancestor relation; however, as the attachment
conditions and the attachment part generator are symmetric, all

four ancestor matrices are equal:
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0000O0O
where the rows and columns 1 through 6 ‘correspond to the
vocabulary symbols <roof>, <wall>, <floor>, <top>, <bottom> and
<house>, respectively. Note that the <h§use> symbol c¢ould ‘be
left out as it has no attachment points. The descendént matrix
Dij is just the transpose of Aij‘ |
000100
000010

000

(W)
i
o
——d
—
"
v
—
no
!
o
N
—
"
o
no
no
i
(o
o
o

0000O00O
0000O00O0
Finally, the explicit neighbor relation is given as:
| 100000
001000
N =Nyy =N = Nyy =Ny, = 010000 ,
000100
000000
which is determined by the grammar. The full neighbor relation
is computed as: | |
110000
101000
N=N+DNA= 010000
000100
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001000

000000
The full neighbor relation includes the relation between <roof>
and <wall> which was not directly represented in the grammar.
Each row gives the set of vocabulary symbols which can possibly

neighbor the symbol associated with that row.
3.2.2‘ Compiling Semantic Constraints

Semantic constraints can be generated in exactly the same
way  as syntactic constraints, 1i.e., by defining binary
relations and compiling their transitive closure. This
approach 1is analagous to the syntactic neighbor case; now a
relation is defined between every two symbols whose” semantic
features are related and thevclosure contains relations not

explicitly mentioned in the grammar.

As an example, consider the parallel relation. The
parallel relation can occur between the axes of two vocabulary
symbols in a variety of ways:

1) they can be explicitly defined as parallel 1in the
semantic consistency part of a production, or

2) the semantic generation part of a production may set an
axis of the new vocabulary symbol equal to an axis of one of
the vocabulary symbols being used to produce the new symbol, or

, 3) they may may be indirectly parallel if there exists a
third vocabulary symbol to which they are both parallel.
These relations are computed using a binary-valued matrix,

whose rows and columns correspond to the axes of the vocabulary

symbols.
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Again consider the grammar for the simple house shape.
Let the matrix P denote the barallel relation between the axes
of the vocabulary symbols (Ordered as in Séction 3.2.1). Since
only one axis exists per vocabulary symbol, only one matrix is
necessary to défine the parallel relation. The  matrix given
directly by the grammar is:
| 0000O0O
010000
P* = 000010
000011
001100
000100
The transitive closure of P' is:
000O0O0O
010000
P= 000111,
| 70 01011
001101
00 11 f d
except that elements on the diagonal of P! remain unaltered,
where P = (P' v ™I) A P'!, where I is the Boolean identity
matrix and P'! is the transitive closure of P'. This must be
done since by transitivity a vocabulary symbol would be
parallel to itself through any other element to which it is
parallel. For example, any <wall> hypothesis must have a
distinct <wall> hypothesis parallel to it. However, this
constraint was already explicit in the productions; a less

obvious constraint is that any <top> symbol must be parallel to
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a <floor> symbol. Since <floor> is a lower level symbol, all
{floor> symbols will already have been built by the time <top>
symbols are being built, and this can be used to delete <top>

hypotheses which are not parallel to any <floor> hypotheses.

In order to add other semantic constraints, a matrix to
represent the constraints 1is needed. The matrix can be
computed from the grammar once the relation has been defined in
terms of the predicates which appear in the productions.
Parallel 1is a transitive relation, and other  transitive
relations can be computed in much the same way. Relations
which are not transitive, e.g., perpendicular, require special

procedures for their computation.

Some applications may prohibit the pre-compilation of all
constraints, e.g., due to the size of the grammar. in such
cases a possible alternative is to compute relations only when
necessary. Of course, once the relations between the features
of two vocabulary symbols have been computed, they can be

stored for future reference and need not be recomputed every

time.
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3.3 The Hierarchical Constraint Process

As discussed previously, a major problem: associated with
applying syntactic techniques to shape analysis is segmenting a
shape into pieces which correspond to the terminal symbols of
the grammar required to parse the shape. 1In general, in order
to obtain all the required segments, the segmentation
procedures must have a high false aiarm rate. This results in
a large search space for parses of the shape. To overcome this

problem, a hierarchical constraint process (HCP) uses

hierarchical models of objects and model derived constraints to
eliminate inconsistent hypotheses at each level of the model.
In ‘particular, using the stratified context-free grammars
already described, syntactic (e.g., spatial concatenation) and
semantic (e.g., symmetry, collinearity, etc.) constraints can

be automatically generated to guide the analysis of the shape.

The hierarchical constraint process computes a bottom-up
parse of the shape by applying the constraints to a network of
low-level hypotheses about the pieces of the shape and
constructing a layered network of hypotheses containing
alternative parses of the shape. The processing of this
network can be easily described by specifying three simple
procedures and two sets which these procedures manipulate. The
three procedures are:

1) BUILD =~ given level k of the network, BUILD uses the
productions of the grammar to construct nodes corresponding to
level k+1 hypotheses. Any level k symbols which are wused to
generate a node at level k+1 are associated with that level k+1

node as supporting it, and it, in turn, 1is recorded as
supported by them. After all nodes are generated, node pairs

|
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corresponding to adjacent boundary segments are linked only if
the constraints allow the symbols hypothesized for that pair to
be adjacent. Building 1level = O involves applying the
segmentation strategy to the shape to generate the level 0

nodes.

2) CONSTRAIN - since each node corresponds to a single
hypothesis, and since nodes are only 1linked to compatible
nodes, the within layer application of syntactic constraints
simply 1involves removing a node if it has no neighbor at some
endpoint. Likewise, a node is removed if for any semantic
feature, no other node exists satisfying the semantic
constraints. :

3) COMPACT - given a node n at level k, if level k+1 has
been built and n does not support a level k+1 node, then n is
deleted from the network. If any of the nodes which produced n
have been deleted, then n is deleted, too.

These procedures operate on two sets of nodes, R, and R

X c?
~both of which are initially empty. When at level k with R, and
R, empty, BUILD produceskthe level k+1 hypotheses (or stops if
k =n), and puts them into RX while4putting all level k nodes
into R,. CONSTRAIN examines nodes from Ry. Let n be a node
from Ry If n satisfies all syntactic and semantic
constraints, then CONSTRAIN simply deletes n from RX.
Otherwise,‘ CONSTRAIN deletes node n from the network and puts
its same level neighbors in Rx (since n might have been their
only neighbor at some attachment point) and its across level
neighbors in Rc‘ COMPACT removes nodes from Ro, taking no
action if all of the node's original supporting nodes still
exist at level k-1 and the node still supports at least one
level k+1 node (if 1level k+1 has been built); otherwise,

COMPACT deletes the node from the network and puts 1its same

level neighbors in RX and its across level neighbors in Rc’



Page 25

HCP does not eliminate any hypothesis which can be part of
a complete parse. This can be seen as follows: BUILD simply
generates the next level symbols, and if used without CONSTRAIN
and COMPACT, will produce all possible hypotheses at evefy
level. CONSTRAIN deletes a hypothesis h only if one end point
of h has no neighboring hypothesis which can be joined to it,
or if it fails to satisfy a semantic constraint. Thus, either
h cannot be used to build a higher level symbol, or any symbol
which h can be used to build will lack appropriate context at
the next higher level. As for COMPACT, there -are two cases to
consider. First, if a 1level k hypothesis 1is not wused to
produce any level k+1 hypothesis, then due to the
stratification, that level k hypothesis will never produce any
higher level hypothesis; thus, it cannot be part of a parse.
Finally, if a level k hypothesis h loses the support of one or
more of the hypotheses which produced it, then it cannot be
part of a complete parse because if it were, then 1its

supporting nodes would be, too.

To illustrate the application of HCP, consider once more
the house grammar. Suppose the level 0 hypotheses for the 7
primitives are as given in Figure 3a, where r, w, f, t, b, and
h stand for <roof>, <wall>, <floor>, <top>, <bottom> and
<house>, respectively, and every possible hypothesis has been
made for each primitive. The syntactic and semantic

constraints are as given in Sections 3.2 and 3.3.

Figure 3b shows the network of hypotheses as an adjacency

graph. The nodes correspond to level 0 hypotheses, and given
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two nodes, Ny and ny, nq is connected by a directed arc to no
if the primitive “corresponding to Ny in the shape "precedes"
and is adjacent to the primitive corresponding to n, (precedes
is well defined if we adopt'a specific sense for following the
shape boundary). The number next to each node is the number of
distinet paths (from 1left to rigﬁt) to that node from a
left-most node. This number is computed for nodes from left to
right‘ by assigning -the left-most nodes a value of 1, and
continuing to the right assigning to each node the sum of those
nodes ~immediately to the léft and adjacent to it. Each
right-most node cqnhects to each left-most node for a closed
shape. The goal of HCP is to find all the cycles in the
network tHat correspénd to shapes in the 1language defined by

the grammar.

HCP Dbegins by applying CONSTRAIN to the network of
hypotheses. ’All the syntactic constraints are satisfied since
all primitives have been labeled with all level 0 vocabulary
symbols. However, the <wall> hypotheses of pfimitives (1,3)
and (6,1) are deleted since neither of them has a parallel
<wall> hypothesis,  thus failing to satisfy a semantic
constraint. The result is shown in Figure 4, The syntactid
constraints now cause several hypotheses to be deleted: the
<floor> hypotheses are deleted from (1,2), (1,3), and (5,6)
Since one atﬁachment point fails to have a neighboring <wall>

hypothesis. Figure 5 shows the resulting network.

At this point, all syntactic and semantic constraints are

satisfied, and all possible level 1 vocabulary symbols can be
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built. Each hypothesis is checked against all applicable
productions in building the next level. For eiample, the
primitives in Figure 5 can be combined in the following way:
the (1,2) <roof> hypothesis can be joined with the (2,3) <roof>
hypothesis to‘form a <top> hypothesis; however, the axis of the
resulting <top> hypothesis has no <floor> hypothesis parallel
to it, and this <top> hypothesis is therefore discarded. The
(1,2) <roof> hypothesis and the (1,6)> <roof> hypothesis,
although connected properly, fail the semantic consistency part
of the production as they are not perpendicular. The other
level‘O hypotheses ére matched to productions in a similar
manner, »and the resulting level 1 hypotheses are shown in
Figure 6. COMPACT is now appliéd to the 1level O hypotheses,
and the result 1is shown in‘ Figure 7. At this point, all
incorrect hypotheses have been eliminated, and the 1level 2
start symbol <house> 1is diréctly built. Even this simple
example shows the advantage of wusing syntactic and semantic

constraints.
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4. Experiments

A set of PASCAL programs implementing HCP have been
developed at the University of Texas. Input to HCP consists of
a stratified shape grammar defining the class of shapes to be
analyzed and a set of primitives computed from a shape to be
analyzed. The primitives are a set of 1line segments whose
descriptions provide information including orientation, length
and endpoints. HCP produces a (possibly empty) network of}
hypotheses relating primitives to the vocabulary symbols at
each level of the grammar. Thus, any 1level n hypothesis

corresponds to a complete shape in the grammar.

A grammar describing the top view of airplane shapes (down
to the 1level of detail of engines) has been developed. The
_grammar consists of 37 produc;ions and has seven 1levels of
vocabulary symbols. Note that the grammar was not designed to
describe a particular airplane (such as a 747), but rather to

model a wide class of airplanes.

We will describe the application of HRP to the top view of
airplanes. The shapes wused in this study were obtained from
the literature (shape 1 [31]) and from model airplanes (shapes

2 through 4). Figures 8-11 display all of the shapes.

The split-and-merge algorithm [14]Jwas used to obtain
piecewise 1linear approximations to the shape. The algorithm
was applied at several thresholds of goodness of fit. For
these shapes two thresholds were used, i.e., both a close fit

and a loose fit were obtained. The close fit picks out small



Figure 88: Shape 1




Figure 8b: Segmentation of Shape 1



Figure 9a : Shape 2



Figure 9b : Segmentation of Shape 2



Figure 10a Shape 3



Figure l'Ob: Segmentation of Shape 3



Figure 1la: Shape 4




Figure 11b Segmentation of Shape 4
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pieces of the shape, while the loose fit picks out longer

pieces.

Once the primitives have been found, the initial
hypotheses for each primitive must be made. HCP was run with
two different numbers of hypotheses per primitive. When only
one hypothesis was associated with each primitive, the correct
one was associated with each primitive that formed part of a
grammatical description of the shape, and a '"reasonable"
hypothesis was chosen for each other primitive (e.g., if the
primitive were short, then it might be labeled as an engine
side). In the other experiment described, three hypotheses
were associated with each primitive. In general, every
terminal symbol should be associated with each primitive,
unless some prior information on size or orientation is

available which can eliminate some of those guesses.

For each of these sets of initial hypotheses; HCP was run
with full constraints and with no constraints. Running HCP
with novconstraints means that procedure CONSTRAIN is not
appliéd. A measure of efficiency was defined in terms of the
number of hypotheses produced at each level versus the number
of hypotheses actually necessary to parse the shape. Given a
shape and a level, i, there is some fixed number of hypotheses,
Na(i), which are required at that level to construct all parses
of the shape. Let No(i) be the ndmber of nodes produced at
level i when no constraints were used, and let N1(i) be the
number of nodes produced at level i when the constraints were

used. Then the efficiency of each process can be given as:
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ep(i) = N,(1)/Ny(i) and eq (i) = Na(i)/NT(i).

These measures reflect the efficiency of the processes in terms
of storage space used, where a value of 1 means that only as
many nodes were used at level i as were needed. Tables 1-2

give the results for the experiments.

Tables 1-2 gives a comparison of the node efficiency of
HCP for each shape at‘each level.b The first row gives the node
efficiency when no constraints are applied to eliminate
hypotheses. The second row gives the node efficiency of HCP
with all constraints applied. For several shapes, the node
efficiency remains fairly constant over the first three levels.
This is due to the fact that the first two levels are involved
in the description of airplane engines, and if the shape has no
engines, then each symbol usually}gives rise to a single higher
level counterpart. It should ‘be observed that HCP is
consistently more node efficient at all 1levels and converges

much more rapidly to the correct solution. As a matter of

fact, HCP always found the correct solution by level 5.



Table 1 - Node Efficiency with 1 Hypothesis per Primitive

Node Level
Shape 0 1 2 3 4 5 6
1 .91 .94 .92 .93 .56 .83 1 (No constraints)
.95 .94 .92 1 1 1 1 (All constraints)
2 .50 .50 .50 .45 .32 .50 1

.63 .63 .63 .90 1 1 1

3 .59 .59 .59 .6 .5 .5 1
(.70 .70 .70 .75 .75 1 1

4 .76 .76 .76 .80 .60 1 1
.89 .89 .89 1 1 1 1

Average |.69 .69 .69 .69 .49 .71 1
.79 .79 .79 .91 .94 1 1




Table 2 - Node Efficiency with 3 Hypotheses Per Primitive

Node Level
Shape 0 1 2 3 4 5
1 .30 .26 .21 .21 .30 .50 (No constraints)

.50 .44 .39 50 .75 1 (All constraints)

2 .17 .25 .50 .45 .32 .50

.18 .63 .63 .90 1 1

3 .22 .33 .64 85 .75 1

.33 .33 .78 92 1 1

4 .25 .25 .25 .22 .24 1

.30 .30 .30 .29 1 1

Average .24 .27 .40 .43 .40 .75

.33 .42 .52 .65 .95 1
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5. Using HCP with Uncertain Hypotheses

In the preceding discuséions, all hypotheses of vocabulary
symbols for Shape segments were considered to be equally
likely. "In many situations though, some hypotheses should @e
regarded with more confidence than others. In what follows, we
present a generalization of the discrete HCP described above to
an HCP which associates likelihoods with hypotheses and applies
continuous relaxation-like operators to update the likelihoods.
Wev also discuss embedding HCP into a state-space search

procedure for finding the most likely parse of a shape.

Let G = (P,N,T,S) be a stratified context free grammar,
and let V = NU T. A hypothesis consists of a vocabulary
symbol and a likelihood. For hypothesis h, 1let L(h) be the
likelihood of h. If h is a level k+1 hypothesis formed from
the level k hypotheses hy,...,h,, then the likelihood of h is

obtained as follows:
L(h) = min{ L(hy) }, i = 1,...,n.

Hypotheses relating terminal symbols to primitives are
constructed 1if certain features of the primitive satisfy
numerical constraints specified in the definition of the
terminal symbol. For example, the length of a primitive might
be measﬁred, and if the length is found to be 1less than some
value, then it may be possible for that primitive to play the
role of an <engine side> in the current shape being processed.
The degree to which these numerical constraints are satisfied

determine the likelihood of the associated hypothesis.
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If only the most 1likely start symbol hypothesis 1is
desired, then HCP can be embedded in a search algorithm in such
a way as to find the best (i.e., most 1likely) start symbol
hypothesis firsi. The search algorithm employed here is a
modified versidn of the state-space search algorithm {(called
M*¥) described by Barrow and Tennenbaum [32]. The state space
search is organized as a tree. Let T(r) be a finite tree with
root node r. For every n € T(r), let T(n) designate the
sub-tree with root node n. If t is a terminal node of T(r),
then v(t) denotes the value of t. A best terminal node t is a
terminal node such that v(t) > v(n) for every n € terminal
nodes. If n is a non-terminal node, let v(n) be the value of
the best terminal node in T(n). Finding the best parse can now
be formulated as finding the best terminal node in a search
tree, T(r), and can be accomplished by the A+ algorithm [32].

This is Jjust one form of the ordered search algorithm.

Algorithm A+.

Let f be an evaluation function for estimating the value
of nodes in T(r). That is, f(n) is an estimate of v(n) and
v(n) is bounded by f(n). Search algorithm A+ is defined as
follows:

(1) Put node r in a set called OPEN.

(2) Select n € OPEN such that f(n, > f(m), for any m

distinet from n in OPEN. Break ties arbitrarily, but in favor
of terminal nodes.

(3) If n is a terminal node, then terminate; else
continue.
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(4) Expand n. Put the successors of n on OPEN. Remove n
from OPEN.

(5) Go to 2.

It is shown in [32] that A+ is admissible and optimal.

We next describe how HCP can be embedded in the A+
algorithm. The nodes (or states) of the tree represent
multi-layer networks of hypotheses. Nodes having start symbol

hypotheses are terminal nodes. Each non-terminal node has

either

1) one successor corresponding to the result of applying
BUILD to the highest level hypotheses of that node, or

2) two successors: one representing the assertion of the
most 1likely hypothesis (called the instantiation hypothesis)

for a previously ambiguous piece of the boundary, and the other
representing the denial of that assertion.

A level k hypothesis 1is asserted for a piece of the
boundary if no other 1level k hypothesis which concerns that
piece of the boundary is allowed_ to remain in the network.
Likewise, a hypothesis 1is denied by being deleted from the
network. The evaluation function used to order OPEN, f, is the
maximum of the likelihoods of the highest level hypotheses of a

state.

The constraints between pieces of a shape are no longer
used simply to delete a hypothesis, but rather to change its
likelihood. The likelihood of a hypothesis is dependent not

only on the hypotheses which produced it, but also on the
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likelihoods of its neighboring hypotheses. For a hypothesis to
contribute to a complete parse, it must be joined to a
neighboring hypothesis at each endpoint. Thus, given a
hypothesis h, an upper bound on the likelihood of any
hypothesis produced from h is the minimum of L(h) and the
maximum likelihood of any neighboring hypothesis. Then, in
addition to applying CONSTRAIN and COMPACT to sets of
hypotheses, we define a constraint operator (called CONSTRAIN*)
to Dbe applied to the 1likelihood of a hypothesis. The

constraint operator assigns likelihoods as follows:

LY*T(h) := min{ LY(h), max{ Lb(hy) : n; € Nei(n) } 3,

where Lt(h) is the likelihood of hypothesis h after the tth
iteration of éONSTRAIN*, and Nei(h) is the set of hypotheses
which neighbor h. LO(h) is the initial likelihood of
hypothesis h computed when the level containing h is built.
This operator 1is applied iteratively until no changes in
likelihood occur. The M* algorithm of Barrow and Tennenbaum
[32] can be modified to perform search in conjunction with HCP.
We call this new algorithm HCP¥.

Algorithm HcP¥

(0) Generate the initial set of hypotheses and compute thg
corresponding 1likelihood of each hypoth:zsis. Apply CONSTRAIN
and CONSTRAIN to the network. Save the tesult on OPEN.

(1) Select the current globally best node, s, from OPEN,
and remove s from OPEN. 1In case of a tie, choose any terminal
node ; 1if none, choose the node with the highest 1level
hypotheses. 1If s is a terminal node, then halt.

(2) If s has no ambiguous pieces of boundary, then:
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(a) build the next level of the network for s, put
the resulting node on OPEN and go to (3), otherwise

(b) disambiguate a piece of the boundary by
instantiating the best hypothesis of s, i.e., generate a branch
corresponding to asserting and denying of the instantiation
hypothesis, setting up a new node for each. -

(3) Apply CONSTRAIN, COMPACT and CONSTRAIN*® to the new
nodes.

(4) Evaluate the global score of each node by computing f,
the maximum 1likelihood of the highest level hypotheses in the
network for the node. (If all possible primitive hypotheses
are deleted, set the score to 0).

(5) Update the likelihoods of the hypotheses associated
with new nodes, and put the new nodes on OPEN.
(6) Go to (1).

HCP is the above algorithm with (2b) removed, and with

likelihoods {0,1}.

We will now show that the application of such an operator
during the search is admissible, 1i.e., the start symbol
produced using HCP* is the same as the start symbol which is

produced by wusing HCP and then choosing the most likely start

symbol.

Let H = {hgypy, hgy, ..., hp,} be the level 0 hypotheses for
some shape, and let S = {S1, Soy ven, Sm} be the start symbol
hypotheses which can be constructed from H according to G.
That is,

S2 => hpqhpp. . hppp
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Sm -> hm1hm2"'hr‘m’
and let L(Si) = min{ L(hj) : 1< j<ri}. Suppose that Sp is
the best start symbol hypothesis, i.e., L(Sb) > L(Si) for i ¢ b
and 1 < i< m. We first show that if hki is a level k
hypothesis wused 1in the production of any S, then even if the

constraint operator is applied, L(hk.) > L(S).
i

Lemma: Let h, be a level k hypothesis used in the
i

production of a start symbol Sc. Then L(hki) is never lowered
below L(Sc) by CONSTRAIN®,

Proof: For k = 0, it is true, since initially L(hci) >
L(S,), for 1 < i < re, by definition. Suppose Lt(Hci) > L(Sg)

for all i, 1 < i <re. Then L¥*'(h_ ) = min{ LY(h,. ), max{
_ i i
L%hy) ¢ hy € Neilhg ) }3; but L¥(h, ) > L(S.) by assumption,
j j ¢y c;’ 2 c
and since h € Nei(h, ) and L%(n ) D L(S.) b
Ci41 ¢y Cis1 - ¢ y
assumption, then Lt+1(hc.) > L(Sy).
i’ =
Now suppose that for k < j, L(h, ) > L(Sg), for all
i
hypotheses in 1level 0, ..., j=1 used to produce Sc. Then,

initially, all level j hypotheses, h have L(hj.) > L(S;)
;7 2

ji’
since they are produced from 1level j-1 hypotheses whose
likelihoods are greater than or equal to L(Sc)' But then, by

an induction similar to above, Lt(hj.) 2 L(S,), for all t.
i

Thus, CONSTRAIN® never lowers the likelihood of any

hypothesis used to construct Sc below L(Se).

Proposition 1: If L(Sb) > L(8,), ¢ # b, then Sp, 1is the

first start symbol hypothesis produced by HCP*.

Proof: Suppose not. Let v be the first node removed
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from OPEN containing a start symbol hypothesis Sc # Sbf Then
there must be some node, m, on OPEN containing all of the
hypotheses required to construct Sb up to level k < n (node m
could not yet contain Sb, since otherwise m would have been
“picked from OPEN). But from the Lemma, the likelihood of those
hypotheses must be greater than or equal to L(Sb), and thus,
f(m)‘.z L(Sy). But f(v) = L(S,) because S, is the only level n
hypothesis in the network of node v. Thus, L(SC) = f(v) > f(m)

= L(Sy), contradicting the assumption that L(Sp) > L(S,).
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6. Conclusions

This paper has discussed the design of hierarchical
constraint processes, and discussed their application to shape
recognition. The particular class of shape considered was the
silhouettes of airplanes viewed from above. We have not
considered the more general problem of recognizing é
three-dimensional object based on an arbitrary two-dimensional

projection.

There are a variety of issues concerning the design of a
generally useful shape analysis system which this paper has not
addressed. For example, the constructon of the airplane
grammar was a painful, time consuming process. Here, it would
have been useful to have an interactive tool for cOnstruéting
such models. Completely automatic grammatical inference
mechanisms do exist, but they tend to produce unweildy and

unnatural grammars.

Another important question which deserves further
consideration 1is the way in which hypothesis formation is
integrated into the constraint application system. This will
have a major impact on the efficiency and performance of the
system. For example, instead of assuming that only 1level 0
symbols of the grammar have semantic descriptions which can be
directly compared with the descriptions of the primitives, it
may be that there are several levels of the grammar at which
this i; possible. HCP would now begin by detecting primitives

at some suitably‘ high 1level in the grammar, and applying
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CONSTRAIN, COMPACT, and BUILD to the resulting layered network.
Once HCP has stabilized on this network (all higher levels
constructed and all constraints satisfied), the surviving
lowest level hypotheses can serve to guide the search for still
lower level, and probably even less reliably detected, pieces

of the shape.

Many claims have been made [19-21] about the relative
efficiency of constraint processes when compared with
conventional search strategies, but very little effort has been
devoted to substantiating or invalidating these c¢laims
(exceptions include Gaschnig[25] and Haraliek and Gordoh{26]).‘
As another research goal, the computational complexity of HCP
needs to be investigated by both analytical and empirical
(e.g., simulation) studies on abstractions of the pattern
analysis problem. Only through such studies can we hope to
assess the real significance and practical importance of such

systems.
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