—

2-D Scene Analysis
Using
- Split-Level Relaxation
~ Tom Henderson and Asho\k Samal
M Computer Science Department

 University of Utah
Salt Lake City, Utah 84112 USA

UuCS-85-113

26 November 1985

~ Abstract

We present a new method for applying multiple semantic constraints based on
discrete relaxation. A separate graph is maintained for each constraint relation
and used in parallel to achieve a consisient labeling. This permits both local and
global analysis without recourse to complete graphs. Here local means with
respect to a pariculgr constraint graph, and thus actually includes global spatial
relations on the features; e.g., parallel edges on an object will be neighbors in the
parallel constraint graph even though they are far apart in Euclidean space.
Another major result is a technique for handling occlusion by incorporating the
use of spatially local feature sets in the relaxation-type updating method.

“ This work was supported in part by NSF Grants ECS-8307483,
MCS-82-21750, DCR-8506393 and DMC-8502115.

1. Introduction _

One of the problems in computer vision is to identify th_e set of objects present in a given image. This
is, in essence, the Scene Labelling Problem. The problem can be mapped into what has been variously
called the Consistent Labelling Problem[13], the Satisfying Assignment Problem[10], the Constraint
Satisfaction Problem [17], Waltz Filtering [24], etc. We will refer to it as the Consistent Labelling Problem
(CLP). It has been shown this problem i is NP-complete. There have been several approaches to solving
the problem, including: backtracking, graph matching, relaxation, etc.

The approach used here is based on discrete relaxation. However, there are some major philosophical
differences. As explained later, we distinguish between different types of constraints during the process
of relaxation. Many approaches based on relaxation make use of only the local constraints as opposed to '
global constraints. They tend to ignore the global constraints because occlusion sometimes prevents
their use. We argue that they can be useful, and under certain circumstances they may be extremely
advantageous. The model proposed in this paper uses both types of constraints. Also, with the advent of
parallel computers it is imperative to look at the problem again and see if the approaches are suitable for
~ parallel processing or not. This is especially impodant in Ilg‘ht of the fact that the problem at hand has an
exponential growth rate. For an example of the use of multiple semantic constraints with stochastic
relaxation, see Faugeras and Proce [9]. | ’

We gnve a formalism to describe the 2-d scene analysis problem asa Consrstent Labelling Problem.
We also explore the suitability of the approach for parallel processmg \

1.1. The Consistent Labelling Problem (CLP)
Although there are several variations, the CLP can be formulated as follows. Given,
o A set of items or units, U = {uy, Uy, ..., Up}.

~ o Each unit u;, has a domain D, which is the set of acceptable labels. Often the units all have
the same domain. Inthatcase D; = D, =.....= D, =D. Also,D = {Dy, D5,, O}.

A labelling L = (Ly, Ly, ..., L), where k< n, Ly = (u,), yye Uand ;e D L's are called unit-labels.
Without loss of generality, we can assume that all u/'s are distinct. If k < n, then the labelling is a partial
labelling and if k = n, then it is called a complete labelling. '

A unit can have any label whrch is in its domain. Usually, however, there are restrictions on the labels
a set of units can have simultaneously in order to be consistent. These constraints are expressed by a
Constraint Relation R. Potentially R can be an n-ary relation. :

‘, A pair of unit-labels L; = (u 'l) are consistent if and only if (u;, I, up | e R. A grven labelling
=(Ly, Ly ..., Ly is consrstent rf umt labels L; and Ly, are consistent for all i, j < k.

The goal of the labelling problem is to find a complete consistent labellmg, glven a set of units U, the
domains of these units D, and the constraint relation R.

<CLP> = (U,D,R).

Other formulations of the problem ask for all solutions, but it doesn't change the nature of the problem.
If a complete consistent labelling can not be obtained, then the largest (or "best") partial labelling should
be found. . : -

1.2. Solutions to CLP :

The consistent labelling problem can be solved in many ways. The most straightforward method is
what is called the Generate and Test method. Here we enumerate all the possible configurations and
then select those which are consistent. It should be obvious that this method is going to be extremely
slow for problems with large U and D. For example, if |U| = 10, and |D|. = 10, then the number of possible
configurations is 1010, In many cases the labels assigned to the first few units make the whole labeliing
inconsistent and this can be detected early, during the configuration process. This observation could
save a lot computation. ’ '

A better method, which takes advantage of the above observation is standard backtracking. Here, we
start with a single unit and assign a label to it from its domain. Then we select another unit from the rest
of the units, and assign a label to it, from its domain such that the partial labelling built so far is consistent.
If at any point we can't find such a label, then we back up one step and give the next possible label to the
unit which was last assigned a consistent label and continue the process. If we manage to assign labels
to all the units consistently ihen we have found a solution,‘and if we run out of labels then there is no
solution. :

Although standard backtracking is more efficient than the generate and test method, it is still not good
enough for many practical applications. There have been several approaches to overcome this problem.
Gashnig [10] attempted to solve this within the backtracking framework and géve two new backtrack-type

~ algorithms: o .
¢ BACKMARK - where all redundant pair-tests are eliminated.

« BACKJUMP - where it is possible to backtrack across multiple levels, instead of just on
level. :

These two algorithms do indeed show better performance than the standard backtrack algorithm, as
shown by Gaschnig. Haralick and Elliot [11] gave another algorithm called Forward Checking to improve
backtracking, which performs better than these in some cases. However, these results are only known to
hold on problems where the labeling of each unit is constrained by all the other units.

Haralick et al. [12] have described two look-ahead operators ®, ¥ to reduce the computation during the
- backtracking process. Haralick and Shapiro [13, 14] generalized these operators to have arbitrary look
aheads.

Waltz [24] took another approach to solve the problem. The basic idea is to initially assign all possible
labels to all the units and remove a label from the label-set of a unit if it is found that the label is not
compatible with any of the labels of the others. Removing a label from a unit in turn makes some labels

of some other units inconsistent. - This process continues until there is no label of any unit can be
removed or the label set of one unit becomes empty. In the former case, it is still necessary to search for
an unambiguous solution, while in the latter situation, no solution exists. Convergence to a consistent set

“of labels depends on the nature of the problem and the constraint set R. Rosenfeld et al. [23] have -
described a modified version of Waltz's filtering algorithm which is a parallel, iterative procedure and was
also generalized to allow probabilities to be asociated with the labels. : B

Mackworth [17] and others use yet another approach to reduce the computation during the
backtracking process. For binary constraints, the problem can be nicely formulated using graphs, where
the nodes correspond to the units and the arcs represent the constraints between the units. Each node
also has an associated label-set, which gives the possible labels for the unit. Montanari [19] explores the
fundamental properties of such networks and their applications. Mackworth [17] gives three consistency
tests, Node Consistency, Arc Consistency, and Path Consistency, which prevent the thrashing behavior
of the backtrack algorithms. He also gives several algorithms to achieve the above three consistencies in
networks. These consistency checks are done first and then the backtracking process is applied.

~Recently Mohr and Henderson have given an optimal algorithm for arc consistency and an improved
algorithm for path consistency [18]. '

1.3. Complexity of CLP

In this section we analyze the corhplexity of the CLP. As Knuth [16] points out, it is difficult to analyze
the backtracking algorithms without actually running programs. Even then the results are not very
convincing, since it is not obvious why and if they should hold in a totally different problem domain.
Gaschnig [10] took the experimental approach to study the complexity of different algorithms. '

Since it is known that CLP is NP-Complete [19], it is not so important to find the complexity of the
various algorithms used to solve the CLP, since the worst case complexity is going to be exponential
anyway. What is more important is-to‘ determine if a particular algorithm is consistently better than the
others. Even this is not a straightforward problem. Gaschnié [10] and Haralick and Elliot'[11] have
experimental results for the efficiency o; some of these algorithms.

1.4. Application of Relaxation to Scene Analysis

Relaxation techniques have been successfully applied to several problems. Gaschnig investigated the
application of relaxation to the n-queens problem, criptarithmatic problems, the Soma Cube and Instant
Insanity. Henderson and Davis used it for syntactic shape analysis [8, 15]. The application with which we
are concerned here is Scene Analysis. The problem is to locate and identify all the objects in a given
scene. There are several methods to locate the objects. If we locate the boundary of the object then it
unambiguously determines the object. Also sometimes a set of features, if located in the right
configuration, can determine the location and orientation of the object. So, in order to locate the objects,
we must locate the various features (or the boundary edges). Once these features are obtained from the
image, they can be assigned a set of possible labels depending on the problem at hand. Then the

relaxation procedure can be applied to produce a consistent set of labels and backtrécking is used to find
a solution.

1.5. Parallel Relaxation
Since the worst case execution time for the problem at hand is exponential, it might be worthwhile to

explore if the problem lends itself to a parallel execution model. Also, now that multiprocessors are
available we can actually test these models, not just theoretically analyze them. In this paper, we
describe a model which exploits the parallelism in the relaxation process.

1.6. Local vs Global Constramts

One of the first steps in locating an ob;ect is to locate its features. We can recognize objects on the
basis of global features, like number of holes, size of various segments, total area of the segments,
perimeter, etc. Alternatively we can also use local features to locate objects. Here we use local features
like corners, holes, etc. We look for certain structure with respect to these local features in the image,
and if we can find such a structure then we can locate the ob;ect

Both methods have their advantages and disadvantages. A system based on global feature matchmg
is prone to mistakes, particularly when the object is occluded or even pamally defectlve On the other
hand, if the object is completely isolated in the scene under consideration then the method is very
straightforward and efficient. A system using local features is probably more sophisticated and is more
robust in a general scene. But it is also very time consuming. o

A method based on local features can use only the local constraints, i.e., constraints between nearby
features. This is useful in many circumstances, when the object is partially occluded and chances are
that some of the features would be visible and they can be used to identify the object. However, there are
instances when it would be very useful to have global constraints also. And in certain instances it is
necessary to use global constraints to tdent:fy an object. For example, the object in Figure 1(a), as seen
in Figure 1(b) can never be identified using local features alone since all the holes are occluded.
However, by using global constraints like the parallelism and perpendicularity of sides, we can easily

identify the object. | ' |

1.7. Scene Analy5|s Using Local Features .

Recently several successful 2-D scene analysis systems have been proposed based on the use of
local features [2], [6), [3]. Of course, many of the very first systems proposed were based on global
features; for example, Fourier coefficients and moment invariants. In order to give a basis of comparison,
we briefly describe a system which uses local features to recognize objects in a scene. It is described in
detail in [5]. Most of the terms used in this section are from the above reference. Then we analyse the
algorithm for its complexity.

N s PN ;
]I | rn
OO O ISP
. 1 N7 N N |
] ! — (
| /7 N\ [
! () l
: '- /
| \ o |
| PN L <
| ~\ <N |
O O ! '\/l '\»’ [

(a) | - o (b)
Figure 1. An object and a scene with the object

1.7.1. LFF Method

The Local Feature Focus (LFF) method has two major compohents: a training system and a run-time
system. During the training phase, the object models are fed into the system and the system comes up
_ with a set of strategies for recognition of each type of object. For each object it gives a list of features,
which are termed focus features along with a set of neighboring features. - The idea is that if the focus
feature is found in the image along with the neighboring features in the right configuration, with respect to
the distance and orientation, then the object's location and orientation can be unambiguously determined.

The steps during the run-time can be summarized as follows:
1.Locate potentially all useful local features in the image.
2. Locate a Focus Feature. If there are none available in the image, then Quit.
3. Get the set of near-by features for the focus feature.

- 4 Select those features which satisfy certain criteria, i.e., those features which have a
corresponding occurrence in the actual image.

5. Make Object-feature to Image-feature assignments and transform it into a graph.
" 6. Find all the maximal cliques of the graph and hypothesize the object using them.

7. Verify the hypotheses. If the hypothesis succeeds, mark all the visible features of the object
in the image as explained: Go to 2. ’

1.7.2. Analysis of the LFF method
Let, . :
The total number of features in the image be N,.
The number of line segments defining the boundary of the object be N ;
The total number of features in the object be N¢.
The number of focus features for the object be Ng.
The average number of nearby features for each focus feature be N,..
~ The average number of possible labels for a nearby feature in the image be N,.
Now we analyze the algorithm defined in the previous section, step by step. We are ignoring the
complexity of step 1, since the time it takes is proportional to the size of the image and is (most often)

mdependent of the scheme used.
: Step 1: O(image size), since features must be extracted from the entire 1mage

Step 2: O(constant), since the list of focus features can be built when the local features are
being extracted from the image.

Step 3: O(constant), since the nearby features can be put in some kind of property list of the
focus feature. An indexing scheme could also be used, with the same effect. - \

Step 4: O(N,'N)), since we essentially have to go through the whole list of the image features
for each nearby feature, which takes on th_e average takes (N, 'N) / 2 steps.

Step 5: O(N,N,)2, since the number of vertexes in the graph is (N,'N,) and for building the
graph we have to check for compatibility of each pair of vertexes of the graph. ‘

Step 6: This is a slightly complex step to analyie. The general problem of finding maximal
cliques of a graph is known to be NP-complete [1, 4]. However, if the graph is planar then it
can be done in linear time with respect to the number vertexes [21]. Using Kuratowski's

~ theorem|(7], a planar graph cannot have Ks or K33 as a subgraph. This reduces the
problem to finding only K,s, and Kjs in the graph, which can be done in linear time. So, the
best case for this step is O(N'N,) and the worst case complexity is O(kfX)), where x is
(N,N,) and k is a constant .

' Step 7: O(Ng + Ny), since we have to loop over the list of segments of the object and then we
also have to loop over the list of the features for that object. -

~ So, the total complexity for each of iteration through steps 2 to 7 is the sum of all the above
complexities. And the complexity of the whole algorithm is Ng times the above factor, since we have to
loop over the list of focus features.

Since step 6 m the worst case takes exponential time, the worst case complexity of the algonthm is
also exponential. '

. 2.4. Network Model for Relaxation

In this section we briefly describe a graph/network model which is the underlying basis for the
relaxation process explained in section 2.6. This is similar to the network model used by Mackworth [17]
" and others in the sense that the nodes represent the units to be labelled and the constraints are
represented by the arcs in the graph. However, there are several differences. What we have here is
conceptually closer to a set of graphs than a single graph. l

Instead of one graph, we have a set of gra'phs‘, one for each of the relations in the image. We also
have a set of graphs, corresponding to the object models. This set of graphs is used to represent the
constraints in the model. Let G™, be the composite graph to represent the set of model graphs and G®,
denote the same for the image graph.

2.4.1. Model Graphs
M _{GT, G,, Gy }, where n is the number of models being considered. Each of the G also
consists of a set of graphs _corresponding to the various relations in the constraints.

G[" = { G}, Giz, - Gi }, where k; is the number of relations in cr.

Each G is a graph and can be represented by: G‘ j=< F"' Ei] >, where edge (xy) isin Eu' iff (x y) €

: C,'j. The nodes of the graph are the features in the image which need to be labelled and the arcs
represent a relation.

2.4.2. Image Graphs

Unlike the model graphs, we have only one composnte image graph, since we are concerned about
only one image at a time. However, the composnte image graph, G®,is again composed of a set of
graphs, one for each of the relations in the image. So, ~

G*={G, G5, ..., Gy }, where k is the number of relations used in the image graphs.
-1 .
Each of these graphs corresponds to a relation in the image. So,
G; = < F°, E] >, where edge (x,y) isin E;, iff (xy) € R}
2.5. An Example
Before proceeding any further, we present an example to make things clearer. The example is simpler
than the scenes one would normally find in actual cases. But it is only used to explain the concepts.

Figure 2 shows two simple industrial parts, taken from [20]. We would refer to it as Part, and Part?_,'
respectively. The set of features for each part consists of only its boundary edges.

5 B2
A4 = X1 ‘ _x2
" 00 O
s e
, X4 — X3
A2 B7
e s I

Figure 2. Part, and Part,

M = { Part,, Part, }. |
Part, = (F], CT), Party = (F5,C3).

C’1“ = { paraliel. perpendicular, longer-than, equal-length}.

Fj = { X1X2, X2X3, X3X4,X4X1 }. |
Cf: = {parallel, perpendicular, longer-than, equal-length).

We have four relations to express.the constraints in the model for F’an‘,. These four relations are given

* in Figure 3. The relations are not complete. It just gives an idea of what these relations looks like. Part,
has similar relations. '

10

Paralle/ Perpendicular

(A3B4 A1B8) (B1B2 B2B3)-

(A1B8 A2B7) (B2B3 A4B3)

(A2B7 B5B6) (A4B3 A3A4)
(B1B6 A3A4) (A3A4 A3B4)
Longer-than Equal-Length

(B1B6 B1B2) (B1B2 B5B6) -

(B1B6 A3A4) (ABA4 A1A2)

(B1B2 B2B3) (A4B3 A3B4)

(A3A4 B2B3) (A1B8 A2B7)

Figure 3. Consiraint Relations in Part,

2.6. The Relaxation Process

In this section we describe how the actual relaxation process is executed and how it f|ts in a parallel
processing framework. The first step is to build all the graphs, i.e., all the model graphs and the image
graphs. With each node in the image graph we associate a set of labels, which represents the set of
features it could be. It should be pointed out that, although we treated the graphs separately in the
previous sections, they need not be really disjoint in actual implementation. Since the node set of all the
~ image graphs is the same, they could be shared. The same applies to the model graphs, too. The
topology of all these graphs remains unchanged during the relaxation process. What changes is the label
set attached to each of the nodes.in the image graph. The model graphs remain completely unchanged.

Once the graphs are constructed, the next step is to enforce the Node Arc, and Path consistencies in
the image graphs. This is where the system lends itself to parallel execution. We have these graphs v
which are independent in the sense that they represent totally different types of constraints. We may
have one graph to incorporate the size constraints, e.g., Edge, is longer than Edge,. We may also have
~ another graph to represent the directional constraints, e.g., Edge, is parallelto Edge,, etc. The size and
directional constraints are independent. However, they share the same set of nodes. To exploit
parallelism we create a process for each of the constraint types. So, in the above example, we will have
four processes, trying to enforce consistencies in the parallel, perpendicular, longer-than and equal-length
graphs. Hence the relaxation process is now distributed or split into sub- -processes or /evels which work
on individual constraint types. The sub-processes structure is given in Figure 4. The controlling process '
is described in Figure 5. :

After the consistencies are enforced, we find all the solutions using standard backtracking or one of
modified schemes described in section 1.2. Hopefully, the amount of backtrackmg would be much less
now that the networks are arc and path consistent.

11

type _ .
state = (changed, unchanged, working),

process relaxGi : mteger)
begin :
repeat
Status[i] := working;
Enforce Arc, Node and Path consistencies in the it graph;
If there is change in the label-set of any node then
Status[i] := Changed
Else
Status[i] := UnChanged,
until terminate;
end;

Figure 4. Subprocesses Structure
var :
m :integer; (* number of graph types *)
n :integer; (* number of models *)
k :integer; (* number of features in the image *)
process relaxS(scene, models);
begin
vari, temp : integer;
Count :integer; ,
" status :array [1 .. m]of state; -
N : Set of nodes;
L, :Setof Features;

N :=F% (" Features in image are nodes *)
Ly =iy F

build the image and model graphs;
fori:=1tokdo Label-setof node N; =L ;
fori:=1to mdo Status[i] := changed,

Count :=0;
fori:=1tomdo fork-process(relaxG i);

while (Count=m) do
begin

temp = 0;

fori=1tomdo

if (Statusi] = unchanged) then
temp :=temp + 1;

Count := temp;

end; '

terminate := true;

find-solutions();
end;

Figure 5. Controlling Process

12 o .

In order to prove the correctness of the of the algorithms in the previous section, we state the following
proposition. - o ‘ '

Proposition. If a label L is removed from the label set of a node N in any graph, then the node N can't
have the label L in any complete consistent labelling.

The proof is fairly obvious. For a labelling to be consistent it must be consistent in all the underlying
graphs types. Once a label in a node is removed by a process relaxG working on graph i, it is not
consistent with respect to constraint type i. That means, it cannot be part of a globally consistent.
Iabellmg So, we don't lose any solutions by the above procedure. -

The correctness of the algorithm is also obvious. After consistency checks are enforced, we use
backtracking to find all the solutions and reject all those labels which don't lead to complete consistent
solutions. '

S 27. Efflcaency Considerations

In section 2.6 we described an algorithm to solve the scene analysis problem In section 2.6 we proved
that it is both correct and complete. However, the performance of the algorithm given is very poor. In this
- section we analyze its efficiency and give some improvements to make it more efﬁcient.

2741. Complexity

The inefficiency of the above algorithm can be seen very clearly at the step where we assign the initial
label-set to each of the nodes in the image graph. We assign L, to label-sets of all the nodes. L, is the
union of all the all the features of all the models which can be in the scene. '

m
La“ unu ‘F

Clearly, this is a very large set. Even though many of the labels would be removed during the first f'ewk
iterations of the relaxation process, this is definitely a major source of inefficiency. '

2.7.2. Improvements

One simple and obvious improvement to the algorithm can be made by deleting those labels from the
label-set of a feature which are not of the same type. For example if the feature in the image is a hole, it -
‘makes little sense in assigning a label which is a corner or a boundary edge. Although this is a very ‘
simple modification, it should considerably reduce the initial size of the label-set of the nodes.

However, it doesn’t solve the problem entirely. One of the reasons the above method is so inefficient is
because we are trying to do too many things at the same time. Although we are enforcing the constraints
in different graphs in parallel, which is obviously a great help, we are still in essence trying to label all the
features of the image at the same time. Since this in general, is going to be a very tough problem to
handle (a scene may have a hundred features), it might be worthwhile to break the problem into smaller
problems and try to solve them (Divide and Conguer paradigm). We should perhaps note here again that

13

we are dealing with a NP-complete problem. Since in the worst case it is going to take exponential time
anyway, all we are trying to do is to gain speed-up wherever possible.

One way' to break the problem into smaller (hopefully simpler) ones, is to divide the scene into a set of
smaller sub-scenes and try to do the analysis on these. Afthough it might sound very simple, there are
problems with this scheme. The most obvious one is how are we going to do the subdivision?

One simple way is to divide it into an m by n rectangular grid. Here again the problem is how would
‘one go about choosing optimal values for m and n. Also, there might be duplication of effort since, an
object may be spread over more than one rectangle. ‘

The problem with the rectangular grid scheme is that we have no basis for perféfﬁwing the subdivision.
We are essentially using heuristics to choose the values of m and n. Instead we should be using the
image and the models to guide our sub-division process. In the next section we propose a method which
is based on the understanding of the models and the image. ‘

2.8. New Model
As mentioned in the previous section, the basic idea is to let the models and the image direct the

- process of dividing the scene into sub-scenes. There are two key observations which should be noted.

1. A feature instance in the image can belong to only a few objects. For example, if the
feature under consideration is a hole, then it can only belong to objects which have holes.

2. If a feature instance in the image is hypothesized to belong to a particular object, then the |
other features of the object should be located within a certain distance of it.

What the first observation means is that, a feature can belong to only certain objects and it should have
only the labels corresponding to the features of these objects. The second implies that it is useless to
consider the the portion of scene which could not have any features of the object under consideration.
The above two observations form the basis of the subdivision of the scene into»sub-s‘ce'nes. o

~ The algorithm which uses these ideas is given in Figures 6 and 7. The process relaxM is the top level
process which spawns processes to work on sub-scenes. The process relaxSS works on the subscene
and for each possible object it tries to perform relaxation and find if the hypothesis is true. :

process relaxM;
" begin
while (there is an unmarked feature in the image) do
begin
f := first unmarked feature; : «_
O := find-objects(f; (* find objects it can be a part of *)
for (every object O, in O) do
fork-process(relaxSS, O;, f);
end; ‘
end;

~ Figure 6. Top Level Process

14

process relaxSS(O : object, f : feature);
begin
S := features-in-bounding-circle(O, f) -
for each feature f in S do mark(f);
relaxS(S, 0);
if object O is confirmed then
mark all its features as explained;
T := all there features in S;
If T is not empty then
begin '
unmark every feature in set T;
restart process relaxM;
end;
end;

Figure 7. Process for working on a sub-scene

Process relaxM controls the top level division of the scene into sub-scenes. Function find-objects
returns all the objects which can have a particular feature. A very simple indexing scheme can be used
(See section 2.8.1) to do this. Once a feature is chosen and the objects it can belong to are associated
with it, process relaxSS works to see if any of the objects actually are in the scene. This could be done in
parallel as shown in the processes relaxS and relaxG. The process finds all the features in the bounding
circle of the feature. The radius of the bounding circle is determined beforehand and is available, see
section 2.8.2. The process then marks off these features, since they potentially could be explained.
Then actual relaxation is done on this sub-scene using the object’s model. If it turns out that indeed the
object is in the sub-scene, then all the features which have been labelled by the relaxation process are

~marked as explained and all the other features are unmarked. This process also restarts the main
process if necessary. ' ‘

2.8.1. A Simple Indexing Scheme
~ Function find-objects in the process relaxM takes a feature and returns a set of objects it can be a part
of. This can be done by a brute force method, by searching each object for its feature-list and checking if
it has fhe given feature as a member. Itis a simple but a very inefficient method. To make it faster, a
simple indexing scheme is very effective. The objects are indexed using the features as the keys and
when we need the obijects for a given feature, it is a one step operation. The computation needed for
making the index tables is done before run-time and is a one time step. Also, new objects can be added
to the list incrementally, without totally reconstructing the index tables.

Figure 8 shows a hypothetical set of objects and their features. From it we construct the index tables
which are given in Figure 9. '

15

{ M, My, My, M,, Mg},

M=
Fy={ round-hole, square-hole}.
F = { square-hole, triangular-hole}.
F = { round-hole, square-hole, triangular-hole}.
F = { round-hole}.
F = { square-hole}.

Figure 8. A set of objects

triangular-hole :: { My, Mg }.
square-hole ::{ M,, M,, M,,, Ms }.
round-hole ::{ M,, My, M, }.

Figure 9. Index tables for the objects in»Figure 3

This mdexmg can be extended further on the basis of certain measures of the features. For example if
M1 has round-holes of only a certain size, which is different from those of M and M, then the round-holes
can be further indexed with the size as the key. However, not all features may have such a measure. '

.2.8.2. Bounding Clrcle _

l Here we describe a simple method to determine the bounding circle for a feature of an ob;ect This
fhelps in breaking up a scene into sub-scenes on which the relaxation is done. Like the index tables, this
is done before.run-time and is a one time computation. We associate with each feature of the object, a

position in two dimensions. So each pair of features f and f has a distance measure d associated with
it. We choose the Euclidean distance as the measure of dnstance The radius of the boundmg circle, r
for the feature f, is the maxlmum of the distances associated with it.

ri~=Max(le)Vj:tje F.o- o : ; -

Figure 10 describes the computation.

function BCircle(f, F) : real
- begin
_var max, dist : real;

max := 0.0;
for all features f, in F do
begin
dist := distance(, f);
©if (dist > max) then max := dist;
end; , :

BCircle := max;
end;

Figure 10. Procedure for computing the radius of the Bounding Circle

Function distance computes the Euclidean distance between the positions of the two features.

16

2.8.3. Comments

The approach we have proposed in this section works better in certain situations than others. Here
some of those situations are described. Since our subdivision is based on the scene itself and for the
bounding circle we use the worst case estimate, if the objects are very close together, we would use
features of both objects for the relaxation process and it would slow down the process. On the other
‘hand if the two objects are close together, then the chances are that many features of one (or some of
both) would not be visible. So, the number of features we have to deal with may not be as bad as it may
seem.

If however, the objects are spread out without much overlap, the relaxation process would reach a
solution really fast. Also, even if the objects are overlapping in the physical space, but fairly disjoint in the
~ feature space, then also, the convergence to the solution is fast, since those features which can't belong
to the object under consideration are ignored, thereby effectively reducing the number of initial labels the
" node in the graph can have. For example, if one object has only square holes and another has only
round holes, then even if the square and the round holes may lie close to each other in the image, we
would not include the round holes in the list of features in the bounding circle for a squafe hole.

3. Extending Relaxation for Occluded Scenes

So far we have not given the detanls of how the relaxation process actually works for occluded scenes.
- In this section, it is described in detanl since it has been transformed into a very different form. Although
the relaxation process works fine for non-occluded scenes, it doesn't work well if the scene is occluded.
The basic reason is that if a constraint is missing in the image, it doesn’'t mean that the constraint actually
doesn't hold. It is possible that a constraint is not satisfied because some or all of the associated units
are occluded. So the constraints don't have the same discriminating power in occluded scenes. In
" unoccluded scenes, we use the boundary edges directly to describe the constraints, but this can't be
done in occluded scenes.

Also, some of the constraints have to be used or interpreted differently. For example, if a boundary
edge X is longer than another edge Y in the model, it doesn't follow that the corresponding edge for X in
the image will be longer than the corresponding edge for Y. In fact, if a boundary edge W is longer than
another boundary edge Z in an image, no definite conclusion can be made about them from this
information alone.

However some of these constraints can be used under certain circumstances. For example, if there
are only a few boundary edges which are longer than some absolute amount and we find an edge in the
image which is longer than this threshold, then it has to be one of the above edges But this doesnt
constrain the problem enough to reduce the solution set of the other labels.

One way to get around this problem, is to use only local features like holes, corners, etc. and
constraints between them. Instead of using constraints between the sides (or boundary edges), we use
constraints between the lines between the locations of features. Wae refer to these vectors as

17

inter-feature vectors (or iv's). The advantage of using these iv's instead of the sides is that, unlike the

sides, they are either present or absent; i.e., they cannot be partially missing or broken up into different
parts because of occlusion. If both the features constituting an iv are present in the image, then the iv is
defined, otherwise it is not. We can use the same constraints as before, but now they are between these
iv's instead of the sides. Before they were binary constraints, but now they are essentially 4-ary

constraints.

However, the constraints still don't have the discriminating power to drive the relaxation process, since
the constraint set in the image is incomplete. Initially each unit has all the labels of the model in the

" label-set. We delete a label at a node if a certain constraint is not satisfied. But now we are not sure if

the constraint is unsatisfiable, or is just not satisfied because of occlusion. So, in order to drive the
relaxation process we need to seed the label-set of some units and then let relaxation take over. The
goal is to get some positive information from the scene and then propagate it. The next two subsections
describe how the iv's are created and how the initial seeding is done. |

3.1. Creation of Inter-Feature Vectors
An inter-feature vector is defined to be the vector between two feature locations. The magnitude of the
vector is the distance between the two feature locations. If there are N features under consideration, then

* there could be as many as N * (N-1) iv's. This could be too large to be manageable, particularly in an
~ image where there could be a large number of features. To avoid this problem, we connect only the

features which are within a certain distance of each other. This distance is not arbitrarily chosen, rather it
is computed for each model separately so as to keep the number of iv’s small. For example, for the
object in Figure 9, there are 28 iv's for a distance threshold of 2.1. o :

3.2. Initial Seeding of Label Sets :

The goal of the seeding process is to reduce the label- sets of some units, drastically lf possible so that
it will the drive the relaxation engine. This means we need to find the peculiar properties of some
features, their locations or their relationships. Since we are using the iv's as the basis for the constraints,
we look for using the iv's as the basis for our constraints, we decided to look for peculiarities among these
iv's. Two such quantities are used here and we found them very useful for the seeding process. They

are:
« The magnitude of the inter-feature vector (or the distance between the corresponding two
feature locations).

e The angle between two inter-feature vectors. The two iv's are chosen such that they have
exactly one common end point, i.e., they share one feature.

" We group these quantities and try to find quantities which are very unique. In our case we say a
quantity is unique, if it doesnt occur more than a certain number times in the above groups. We
determine this by histogramming. Figure 11 gives a brief outline of how this process works. It should be
noted that all these things (threshold-distance, inter-feature vectors, histogramming, etc.) are done for the
models beforehand. This computation is performed only once. | —

18

procedure ComputeSpecialDistances;
begin
Compute the threshold-distance;
for i:= 1 to No-of-Features do
for j:=i+1to No-of-Features do
If distance(feature[i], feature(j]) <= threshold-distance then
iv = Make-inter-feature-vector(feature[i], featurefj]);
Append(IVs, iv)
endif;)
size = GetSize(IVs, error)
H := Make-histogram(IVs,size)
fori:=1 to size do ‘
if H[i] <= Nunique then
Append(Special-Length-List, details(i)):
endif; -
Store the Special-Length-List in Model;
end;

Figure 11. Computation of Special Distances

Function details collects some more information about the inter-feature vectors which correspond to the
i'th histogram entry (for example, the associated features, etc.). Function GetSize computes the size of
the histogram. It is computed such that two consecutive entries in the histogram are at least error apart.
All the special distances are collected in a list and become a part of the model. Special angles are also
computed by a similar procedure and are stored in the model. A special-distance is actually not a single
quantity, but it has a range associated with it. The idea is that if the distance between two units in the
image is in this range, then the two units should correspond to the two features in the medel.

In the case of the objects given in section 4.1, we found that there are a few special lengths and angles
for each of the models, that are fairly unique in the sense that, there is practically no other quantity which
is close to these special quantities in terms of their magnitude. This information can be used to seed the
label-set of units in the image.

3.3. Labelling Process

The process of labelling starts with type-checking. Initially each unit (primitive) in the image is given all
the labels of the desired model. Then, if the types of the unit and any of its labels are not consistent then
those labels are removed from the label-set (see section 2.8.1). The next step is the seeding process.‘
Before the actual seeding can be done, the inter-feature vectors and the angles are constructed for the
image. The distance used is the threshold-distance used by the model. After the lengths and the angles
are constructed, they are searched for the special angles and lengths. If any of the distances (or angles)

19

match a special distance (or angle) for the model, then the label-sets of the associated units are updated.

Then the control IS passed on to the relaxation process, and finally to the backtracking operator. Due
the changed nature of the problem, the structure of the relaxation process has been changed
considerably, too. In the next section, we give the motivation and the structure of the new version of the

relaxation process.

3.4. Spht-Level Relaxation Process

The main reason to change the structure of the relaxation process is that there is no way to use
positive information in relaxation. For example, if during the seeding process we infer that the primitive X
can be either A or B, then we really can't use this information in any way more than if the label-set of X
had A and B without seeding. Relaxation treats all the nodes equally and is not able to use the
information from seeding, which is very powerful and positive information. As a matter of fact, it is
possible for node X to lose all its labels, during relaxation just because it lacks support at some other
primitive which may not even belong to the model.

We divide the nodes (pnmmves) into two groups. The nodes whose labels are fixed during the seeding
process, are called the strong nodes and others are called weak nodes. The strong nodes signify positive
information. The strong nodes, always remain strong, while the weak nodes may be elevated to strong
status. During relaxation, a strong node can affect the label-set of another (either strong or weak) node.
This prevents the nodes which are not really a part of the model from affecting the label-sets of other
nodes. Those units which survive the first iteration, i.e., whose label-set is not empty at the end of the

iteration, are then changed to strong nodes. Those nodes which do not survive the first iteration, are not ’
- considered further and are not considered to be not part of the model. After that, the relaxation process
works as usual. : ’

3.4.1. A Second Approach :

Another way to solve the problem of weak nodes deleting the labels of strong nodes is to allow a label
at a néde to remain, if there is at least one support for it from any one other node. (In standard discrete
relaxation, a label remains iff it has support from all neighboring nodes.) This is motivated by the fact that
some of the constraints may be unsatisfied due to occlusion. It should be noted however that, there has
to be support for the label in each of the possible graph types. This is fairly effective, but takes more time,
since the labels are deleted after all the constraints are processed. The effect of change can only be
perceived during the next iteration. In split- -level relaxation, we delete a label once it is determined that
there is no support, and the change can be used by the next constraint during the same iteration.

- 3.5. Discussion

In this section we point out some of the advantages and disadvantages of this approach Clearly the
success of the method depends on the special-lengths and angles. If they are occluded, then the method
may take a longer time than usual. During the process, it might lose all the labels in which case it would

20

not recognize the object. Or it may reduce the label-sets of some nodes and leave the rest of the work to
the backtracking procedure, which can be expensive.

However, if there are enough special distances and angles, then even if some are missing, the method
will work very well. Our experience is that this will work fine, if we can reduce the label-sets of two or
three nodes to about 2 or 3. Also, it is not unusual to find about 4 or 5 special distances and angles. If
they are not enough, we could increase the threshold distance (for connection) to inclqde more inter-
feature vectors, thereby increasing the possibility of finding more special distances and angles. Of
-course, this increases the cost of computation, both for the model and the image. The positive side of
this is the fact that, these computations can be done ahead of time, more than once if necessary to arrive
at an optimal set of special distances and angles. Once this is done, it is a part of the model of the object
- and need not be recomputed. : '

Also, this takes care of a certain amount of error in both the model and the image. As pointed out
before, the special distances have a range associated with them. So, if there is any error the initial
seeding is not affected. This makes the system more robust. : ‘

4. Implementation and Results

Most of the above ideas were implemented in PSL (Portable Standard Lisp) [22]. The compiled code
was run on a VAX-8600. The actual runtimes can be vastly improved if implemented on a lisp machine
* like the Symbolics 3600.

The system works in two phases. In the first phase, all the models are input and the threshold
disiance. special lengths and angles are determined and stored in the model structure. This is only a
one-time cost and is similar to the training phase of Local Feature Focus [5]. The input is at a somewhat
intermediate level of description. What is input to the program‘ is a list of local features, their locations and
the constraints between them. The different types of constraints used are parallel, perpendicular,
adjacent, longer-than, etc. '

In the second phase, an image description is given along with the set of constraints associated with the

local features in it. We also give a model to be searched for in the image. We only check for node and
arc consistency. The AC-3 algorithm as defined by Mackworth [17] is used for enforcing the consistency.

Although, we look for a single object in an image, it would be be a straight-forward extension to look for

multiple objects in the same image. We essentially follow the model given in section . The image
description is similar to that for the models.

At the end of relaxation process, control is passed on to a backtracking procedure which does further
consistency checks and lists out all the solutions. The output is a listing of local features in the image and
the corresponding features in the object. If the label-set of a primitive is empty, it is labelled as unknown. '

21

4.1. Unoccluded Object Recognition
We now present some results obtained using the algonthms described. First, we give the run-times for
recognizing unoccluded objects. Next we give the same for some occluded scenes.

Figure 12 gives the time taken to recognize three parts shown in Figures 13, 14, 15 in unoccluded
scenes. It also, gives the number of different types of constraints and total number of constraints used. It
should be noted hers, that the number of constraints and the constraint types are not optimized (See
section 5 for further discussion). Here only the boundary edges are used for recognition.

Object RunTime Constraint ~ Total Number
No. (msec) types of constraints
1 . . 357 5 ~- 43 (
2 476 6 33
3 8 4 | 15

Figure 12. Table showing results for unoccluded scenes

O

Figure 13. Object No 1.

22

. Figure 14. ObjectNo2

R - 8 O\O

O

O -

Ne§ o

Figure 15. Object No 3

24

Figure 18. Occluded Scene No 2

23 -

4.2. Occluded Object Recognition »

Next we present some results for occluded scenes. Figures 17, 18, 19 show three scenes where some
pa'ns are occluded. These scenes were searched for occurrence of objects 1, 2 and 3 respectively.
Figure 16 gives the time taken to recognize these parts in the corresponding scene. There aré two run
times in the table, corresponding to the two schemes used (see section 3.4).

" Scene “hunTime(ﬂA N RunTime(2)
, No (msec) (msec)
1 1360 8307
2 st 2074
3 3791 26452

Figure 16. Table showing results for occluded scenes

Fighre 17. Occluded Scene No 1

25

Figure 19, Occluded Scene No 3

26

5. Conclusions and Extensions

In this paper we have formulated the scene analysis (SA) problem as a consistent labelling problem
(CLP). We also gave a solution to the problem within the framework of discrete relaxation methods.
However, the approach is based on a different perspective in order to exploit the inherent parallelism in
the problem and to account for occlusion. We have also recommended several variations to improve the
efficiency of the computation. Also, unlike many other works we have used constraints of arity greater
than 2. Infact, we effectively handle unary, binary, ternary and 4-ary constraints.

Although the approach sounds attractive, particularly if a multi-processor is accessible, it by no means
solves all the problems. First, we are still dealing with 2-D models. Extending it to 3-D has its obvious
challenges. Although we do take into account a certain amount of error, both in the models and during
the low level processing, the error measurements are not based on any sound theory to analytically
determine them. ‘ ‘

We have also shown that global constraints can be Useful and we can effectively use them with local
constraints. Another problem we have not considered is the optimality of the constraint set. We have
used the constraints which were obvious in the models and the image. However, some of them are -
redundant and there should be a systematic way to elemmate the redundancy.

(1]

3]
(4]

5]
18]
71
8]
1]

(10]

(111

(12]

(13]

[14]

27

References

Alfred V. Aho, John E. Hopcroft and Jeffrey D. Uliman.
The Design and Analysis of Computer Algorithms.
Addision-Wesley Publishing Company, 1974.

N. Ayeche and O. D. Faugeras.
A new method for the recognition and positioning of 2 D objects.
In ICPR, pages 1274-1280. August, 1984.

Bir Bhanu, O. D. Faugeras.

Shape Matching of Two-Dimensional Objects.

IEEE Transactions On Pattern Ana/ys:s And Machine Intelllgence PAMI 6(2) 137-156, march,
1984.

Robert C. Bolles.

Robust feature matching through maximal cliques.

Proc. SPIE Tech."Symp. Imaging Appl. Automated Industnal Inspect Assembly, Belingham,
Wash , 1979.

Robert C. Bolles and Ronald A. Cain.
Recognizing and Locating Partially Visible Objects : The Local-Feature-Focus Method
The International Journal of Robotics Research 1(3) 57-82, Fall, 1982.

Robert C. Bolles and Ronald A. Cain.
Recognizing and Locating Partially Visible Workpieces.
PRIP :498-503, June, 1982.

Robert G. Busacker and Thomas L. Satty.
International Series in Pure and Applied Mathematics: F' nite Graphs and Networks
McGraw-Hill Book Company, 1965.

Larry S. Davis and Thomas C. Henderson.
Hierarchical Constraint Processes for Shape Analysis.
IEEE Transactions On Pattern Analys;s And Machine Intelligence PAMI-3(3) 265-277, May, 1981

Faugeras, Olivier and Keith Pnce
Semantic Description of Aerial Images Using Stochastuc Iabehng
IEEE Transactions on Pattern Analysis and Machine Intelligence :633-642, November 1981.

John Gaschnig.
Performance Measurement and Analysis of Certa/n Search Algorithms.
PhD thesis, Carnegie-Mellon University, May, 1979.

Robert M. Haralick and Gordon Elliot.

~ Increasing Tree Search Efficiency for Constraint Satisfaction Problems.

Technical Report , Virginia Polytechnic Institute and State University, Department of Electrical
Engineering, VPISU, Blacksburg, Virginia 24061, March, 1979.

Robert M. Haralick, Larry S. Davis, Azriel Rosenfeld, and David Milgram.
Reduction Operations for Constraint Satisfaction.
Information Sciences 14():199-219, , 1978.

Robert M. Haralick and Linda G. Shapiro.

The Consistent Labelling Problem: Part |. ' o

IEEE Transactions On Pattern Analysis And Machine Intelligence PAMI-1(2) 173-184, April,
1979.

_Robert M. Haralick and Linda G. Shapiro.

\

The Consistent Labelling Problem: Part Il.
IEEE Transactions On Pattern Analysis And Machine Intelligence PAMI-2(3):193-203, May, 1980.

28

[15] Thomas C. Henderson and Larry S. Davis.
Hierarchical Models and Analysis of Shape.
Pattern Recognition 14(1-6):197-204, 1981.

[16] Donald E. Knuth.
Estimating the Efficiency of Backtrack Programs.
Mathematics of Computation 29(129):121-136, January, 1975.

[17] Alan K. Mackworth.
Consistency in Network of Relations.
Artificial Inte/ligence 8:99-118, 1977.

[18] Roger Mohr and Thomas C. Henderson.
Arc and Path Consistency Revisited.
Technical Report UUCS-85-101, The Umversnty of Utah, August, 1985

[19] Ugo Montanari.
_Networks of Constraints: Fundamental Properties and Apphcauons to Pacture Processnng.
Information Sciences 7:95-132, 1974.

[20] D. Nitzan et al.
Machine Intelligence Research Applied to Industrial Autmation.
Technical Report, SRI International, January, 1982.

[21] Christos H. Papadimitriou and Mihalis Yannakakis.
The Clique Problem for Planer Graphs.
Information Processing Letters 13(4,5):131-33, End, 1981

[22] The Utah Symbolic Computation Group.
. The Portable Standard LISP users Manual
Department of Computer Science, 1983.

[23] Azrel Rosenfeld, Robert A. Hummel and Steven W. Zucker
: . Scene Labelling by Relaxation Operations.
IEEE Transactions On Systems, Man, And Cybernetrcs SMC-6(6):420-433, June, 1976.

[24] David Waltz.
Understanding Line Drawings of Scenes with Shadows.
In Patrick Henry Winston (editor), The Psychology of Computer VISIOﬂ pages 19-92 McGraw-Hill
Book Company, 1975.

