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Classical relaxation techniques have been studied for many years, but only recently have
researchers realized the potential for such methods in solving machine vision problems. The
carliest applications of symbolic relaxation methods involved a “discrete” relaxation which is
shown to be a restriction of the general relaxation process to systems of Boolean inequalities
which take values over the two element set {0,1}. © 1984 Academic Press, Inc.

1. INTRODUCTION

Classical relaxation techniques were introduced by Southwell over fifty years ago
as a practical aid to the engineer in computing stresses in braced frameworks [7]. As
investigation proceeded, it was shown that the method had a much wider range of
application than the original domain for which it was designed. Likewise, the
symbolic (as opposed to numeric) version of relaxation introduced by Waltz [9] as a
method for labeling edges in line drawings has been shown to be a powerful
technique of much wider significance. Qur main goal is to present a unified view of
relaxation, both as a numerical and as a symbolic technique. In doing so, we will try
to demonstrate the range and power of this approach. For a review of the numerous
applications of symbolic relaxation processes in computer vision, see Davis and

Rosenfeld [1].

The classical relaxation problem typically involves a spatial arrangement of grid
elements (here a square grid) such as that shown in Fig. 1. The goal is to determine a
simultaneous assignment of values to the u;’s such that some constraint function,
e.g., Laplace’s equation, is satisfied. Such a function is transformed from a global
expression, e.g., 82x/ 8x2 + 8%y /8y? = 0 to a set of local finite difference equations,
g, u; — (U + Uy + Uy + up)/4=0, where element u; is expressed in terms of
its neighbors defined by the ki’s. Thus, each of the finite difference equations can be
expressed as one row of a coefficient matrix which represents the relation of one
particular unknown. That is, for u;,

m; u; + Zm,.,juj= v;. (1)
J#i

(If the value of u; is known, then m, ; = 0 for j not equal i, m; ; = 1, and v, is the
known value.) Thus, for » unknowns, an n by n matrix of coefficients is generated,
and the ith row has nonzero elements at the positions of unknowns related to the i th
unknown. The set of simultaneous linear difference equations can be written

Mu=v, ' (2)
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F1G. 1. Typical grid layout for classical relaxation.

where M is the matrix of coefficients of the equations, u is the column vector of
unknowns, and v is the column vector of known constants. The matrix M is
assumed nonsingular and the diagonal entries nonzero. In the classical case, various
methods exist for solving such a system, usually involving an iterative scheme when
inversion of M is too expensive or impractical (see Varga [8]).

2. BOOLEAN FORMULATION OF DISCRETE RELAXATION

Suppose now that a real number solution at each unknown is no longer sought,
but rather that the solution to be found involves the assignment of a set of labels at
each unknown such that some constraint relation among the labels is satisfied by
neighboring unknowns. Whereas the unknowns in (2) take on real number values,
the unknowns in a labeling problem take on a Boolean vector value with each
element in the vector corresponding to a possible label. Boolean vector operations
are denoted by ’, X, ¢, *, +, and - which represent complementation, vector
multiplication, transpose, Boolean “and,” Boolean “or,” and Boolean vector dot
product, respectively. Following Rosenfeld ez al. [5], let :

U= {uy...,u,} be the set of unknowns,

A ={X\,...,\,,} be the set of possible labels,

A, =(ly,...,1,)" be the column vector describing the set of labels (i.e., zero or
one) possible for u;, where /; = 1 if A, is compatible with u,; 0 otherwise,

C be an m by m compatibility matrix for label pairs, where C(7, j) = 1if A, is
compatible with A 5 0 otherwise,

A= (A; X A))*((Nei(i, j)’E) + C) be an m by m compatibility matrix for
u, and u;, where E is the m by m matrix of all 1’s, and Nei(/, j) = 1 if u; neighbors
u; 0 otherwise.

A, (k) denotes the kth row of A, ..

A labeling is a vector L = (L,,...,L,)", where L,= (l,,...,1,,,)" in A, is a
Boolean vector with /,; = 1 if label A; is a possible label for object u;; 0 otherwise.
A labeling is consistent if for every i and k,

n

Le<T1

m
Jj=1 p=1

(lik*ljp*Aij(k’p)) . (3)

Once a formal definition of local consistency such as (3) has been given, it is easy to
see that a situation very similar to that which led to (2) now holds. However, instead
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of having to manipulate (3) into a form amenable to iterative solution, we merely
note that (3) can be rewritten ’

m

e < Lyx T [ Y (ljp*AU.(k, p))] for every i and k, (4)
J=1]p=1

since the /;; on the right-hand side is independent of j and p. It is clear that if 4
does not hold it can be made to hold by setting /,, equal to the value on the
right-hand side. This is, in fact, equivalent to discarding label k for u; if at some
neighbor u; there does not exist a compatible label. If the /,,’s, k = 1, m are now
gathered together in vector form: :

i ] B T T m ] m ]
111 lzl Z (llp*Ail(l’ P)) ’_ Z (lnp*Ain(l’ P)) .
r=1 p=1
112 112 Z (llp*Ai1(2> p)) Z (lnp*Ain(Z’ P))

< *| p=1 : ¥.0%] p=1
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(llp*Ail(m’p)) (‘lnp*Ain(m’ p))_j
1
or
Iy 1y LixA,(1)" L,* A, (1)
lfz < ‘li.2 . Ll*{\il(z)t * * L, *‘f}ln(z)t
Lim Lim Lyi*xA,(m) L,*xAy,(m)’
or
il t
Li<Li» I_II({[L/] X[Au(l)t"'Au(’”)t]} ) (5)
J= -
Let
Fpl—
P,
P= P3 5
_I;nJ

where the column vector P =TI7_,({[L] X [A;Q) A ;(m)]}) in (5). Gathering
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together the L’s, i = 1, n, we have
L<Lx*P.

This formulation emphasizes the relation to classical relaxation.

3. DISCUSSION

“The parallel iterative discrete relaxation algorithm proposed in [5] is achieved by
repeating :

L=LxpP (7)

until L does not change value. The form of Eq. (7) brings out clearly:

The parallel iterative algorithm corresponds to the classical point Jacobi method of
relaxation; the Gauss-Seidel method can also be used by taking advantage of already
updated unknowns, i.e., asynchronous updating is possible.

This formulation of discrete relaxation permits greater insight into the nature and
use of discrete relaxation. Namely, one important insight gained by studying this
formulation is that a single underlying architecture can be used to perform both
classical and Boolean relaxation where the only essential difference is-at the lowest
level of the particular operations performed, that is, arithmetic or logical. Given that
many low-level vision operations can be performed in terms of classical relaxation,
and that certain symbolic processes can be set up as a symbolic relaxation process,
this could provide a possible underlying mechanism for both forms of processing.

In comparing classical relaxation to Boolean relaxation, we see that in classical
relaxation local constraints along with the boundary conditions are sufficient to
determine a unique global fixed point for the system. The initial vector affects the
speed of convergence, but not the final answer. On the other hand, in the Boolean
relaxation scheme, once a label is zero, it will stay zero. Moreover, the binary
constraints do not necessarily constrain the system to a unique fixed point. In fact,
the fixed point achieved by the algorithm is that consistent labeling which requires
the elimination of the fewest labels from the initial set, and even if nonempty, does
not in fact guarantee an unambiguous labeling. In general, the process does however,
significantly reduce the search space.

Since most of the classical theory developed by Varga is for real-valued solutions,
it is too general for direct application when the matrices under consideration are
Boolean valued. For a more appropriate theory for the solution of Boolean-valued
simultaneous equations, see Rudeanu [6].

It should be pointed out that Hummel and Zucker [3] have shown that the more
general stochastic relaxation labeling process can be nicely formulated in the
framework of variational calculus. They use the notion of consistency to tie together
discrete and stochastic relaxation. The definition they give counts the number of
supporting neighbors rather than simply determining in a yes/no manner whether
sufficient support exists as described here.

The generalization of discrete relaxation to €éncompass n-ary relations has been
studied by several authors [2, 4]. In the context of Eq. (3), this merely involves
anding all » labels and using an n-dimensional matrix for the consistency relation.
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