HIERARCHICAL CONSTRAINT PROCESSES
FOR SHAPE ANALYSIS

Larry S. Davis

Thomas C. Henderson

November 1979 TR-115

This research was supported in part by funds derived from
the National Science Foundation under Grant ENG-7904037.



ABSTRACT

A major application of syntactic pattern recognition
is the analysis of two dimensional shape. This paper
describes a new syntactic shape analysis technique which
combines the constraint propagation techniques which have
been so successful in computer vision with the syntactic
representation techniques which have been successfully
applied to a wide variety of shape analysis problems.
Shapes are modeled by stratified shape grammars. These grammars
are designed so that local constraints can be compiled from the
grammar describing the appearance of pieces of shape at
various levels of description. Applications to the analysis
of airplane shapes are presented.



1. INTRODUCTION

A major application of syntactic pattern recognition 1is
the analysis of two-dimensional shape. In order to adopt the
syntactic approach, the shapes to be analyzed must be segmented
into pieces which correspond to the terminal symbols of some
grammar, and these pieces must subsequently be analyzed by a
parsing mechanism. Many syntactic methods assume that the
pieces can be found easily (top-down methods provide a wide
class of exceptions, e.g., see Stockman [1]). However, in most
real problems, the design of a segmentation procedure that can
find (almost) all of the pieces will require the acceptance of
a high false alarm rate - i.e., many of the hypothesized pieces

may not, in fact, be part of a "grammatical™ description of the

shape.

This paper discusses a general parsing procedure which has
been designed specifically to overcome this problem. Shapes
are modeled by hierarchical, or stratified grammars. These
grammars are designed in such a way that local contextual
constraints on the appearance of a shape can be automatically
compiled from the grammar at all levels of description of the
shape. These constraints can then be iteratively applied to an
initial set of hypotheses by a relaxation procedure (see Davis
[2] or Davis and Rosenfeld [3]). In what follows, we will
describe algorithms designed to compile these constraints and

to employ the constraints to analyze shapes.
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syntactic and semantic contextual constraints for all the
vocabulary symbols can be generated automatically from such
grammars. The contextual constraints provided by the shape
grammars can be exploited by a hierarchical constraint process.
Such a process constitutes a bottom-up constraint-based parsing
method and attempts to overcome the combinatorial explosion in
parsing the shape implied by the segmentation. Examples of the
application of this hierarchical system to airplane recognition
are described in Section U4. Performance criteria for a
hierarchical constraint process are defined, and several shapes
are analyzed and the hierarchical constraint process evaluated
according to the criteria. Section 5 discusses how
hierarchical constraint processes can be used with uncertain

hypotheses. Finally, Section 6 contains a brief summary .
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and Perpendicular(a',a'"')
and Parallel(a'',Vector(Midpt(a'),Midpt(a’''))) ]

G, : [ Set(el, Unjoined(ei',e2')) and
Set(e2, Unjoined(el1''',e2''")) or
Set(el, Unjoined(e1''",e2''"')) and

Set(e2, Unjoined(el',e2')) ]

Go : [ a := (a' + a'"'')/2 and span := a'']

This rule specifies that an "engine" is composed of two
"engine side" symbols and an "engine front" symbol. A, C, Ga,
and Gy can be viewed as a program for producing "engine" from
symbols on the right-hand side of the rewrite rule. A
specifies the physical connections of the symbols on the
right-hand side, i.e., that each end of the "engine front" has
an "engine side" attached to it, but the "engine side" symbols
are not connected to each other (see Figure 1). The predicate
Join(x,y) is true if x and y correspond to the same point in
the shape. C indicates that the two '"engine side" symbols
should be parallel, of the same length, perpendicular to the
"engine front™ symbol, and on the same side of the "engine
front." G, and Gy describe the derivation of the attachment
points and semantic features for "engine"; the unjoined end
points of the T'"engine side" symbols can be given either
attachment point name due to the symmetry of the symbol. The
function Unjoined(x,y) computes the endpoint which did not
satisfy the Join condition in the applicability condition of
the productioh. The function Set(x,y) assigns the physical
attributes of the existing endpoint y to the endpoint x of the

symbol being constructed. The main axis is the average of
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those of the '"engine side" symbols, and the span is exactly

that of "engine front".

As a simple example of a complete grammar, consider a

house grammar G = (T,N,S,P), where
T = { roof, wall, floor },
N = { top, bottom, house 1},
S = { house }, and
P = {

(production 1)

<top> {e1,e2} [a] :=
<roof> {el1',e2'} [a']l +
<roof> {el1",e2"} [a"]
a : [ Join(el1',e1") or Join(el',e2") or
Join(e2',e1") or Join(e2',e2") ]
¢ : [ Perpendicular(a',a") and
Equal( Length(a'),Length(a") ) ]
G, : [ Set(etl,Unjoined(el1',e2')) and
Set(e2,Unjoined(e1",e2")) or
Set(el1,Unjoined(e1™,e2")) and
Set(e2,Unjoined(el',e2")) |
G, : [Set(a,Vector(el,e2)]

(production 2)

<bottom> {el1,e2} [a] :=
<wall> {et1',e2'} [a'] +
<floor> {el1",e2"} [a"] +
<wall> {et1m"' e2"'} [a"']

a : [ Joined(el',e1") and Joined(e2",e1"') or
Joined(el',el1") and Joined{ec2",e2"") or
Joined(el1',e2") and Joined(el",ei"') or
Joined(e1',e2") and Joined(ei",e2"') or
Joined(e2',e1") and Joined(e2",el1"') or
Joined(e2',e1") and Joined(e2",e2"') or
Joined(e2',e2") and Joined(el1",el" ') or

b

Joined(e2',e2") and Joined(ei",e2" ") ]
¢ : [ Parallel(a',a"') and Perpendicular(a’,a")"and
Equal( Length(a'),Length(a"),Length(am"') ) ]
G, : [Set(etl,Unjoined(et',e2')) and
Set(e2,Unjoined(e1"',e2" ")) or
Set(el,Unjoined(e1"',e2"')) and
Set(e2,Unjoined(el1',e2')) 1]
G, : [Set(a,a")]
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3.2 Compilation of Constraints

Two types of constraints, syntactic and semantic, can be
compiled from a stratified shape grammar. Syntactic
constraints describe the possible neighbors a symbol may have
at a specific attachment point. If v is a symbol in a grammar,
G, then let Nei(v,a) denote the set of ordered pairs of symbols
and attachment points which can be attached to v at attachment
point a in some sentential form of G. That is, (v',a') €
Nei(v,a) if and only if v can be attached to v' using point a
of v and a' of v'. Now, suppose during the analysis of an
actual shape, a shape segment s is hypothesized to be an
instance of v. Then some actual point of s, say p, 1is
associated with a by the hypothesis. O0Of course, other segments
have been hypothesized as corresponding to other vocabulary
symbols. A necessary condition for the hypothesis relating v
to s to be part of a grammatical description of the shape is
that some other hypothesis relates symbol v' to a segment s'
and a point p' in s' to attachment point a' of v' such that

1) (v',a') € Nei(v,a), and

2) p' is actually attached to p in the shape.

The sets Nei(v,a) represent the syntactic constraints, and they
can be wutilized to discard extraneous hypotheses. If these
constraints are not applied to the analysis of a shape, then
several levels of vocabulary symbols might be built before it
is discovered that some hypothesis lacks appropriate context.
The wuse of such constraints, however, makes it possible to

detect the lack of appropriate context much earlier.
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ay € at(y) such that x ancestor:ax,av v, and y neighbor:ay,ax
x, and w descendent:aw,ay y. Note that computing the neighbor
relation for level k symbols assumes knowing the neighbor
relation for all levels greater than k.

Using matrix representations for these relations, the
descendents and neighbors of a symbol at a particular
attachment point can be computed ( see Gries [3¢g] for an
introduction to binary relations, their representation using
matrices and their manipulation ). The notation w R:aw,av v
indicates that w is in relation R to v through endpoint aw of w
and av of v. Given k attachment points per vocabulary symbol,
the neighbor:i,j relation (which 1is equivalent to the sets

Nei(v,a) discussed above) 1is computed by iterating the

following computation n-1 times:
neighbor:i,j := neighbor:i,j +Z:{descendent:i,m *

[ 2:(neighbor:m,1 * ancestor:1,3)1}.
As an example, consider the house grammar given in Section 3.1.
An ancestor matrix Mij is a square matrix whose order is the
number of vocabulary symbols in the grammar, and for which i
specifies the attachment point of the vocabulary symbol of the
row, and J specifies the attachment point of the vocabulary
symbol of the column. Since there are two attachment points
for each symbol of the grammar, there should be four matrices
specifying the ancestor relation; however, as the attachment
conditions and the attachment part generator are symmetric, all

four ancestor matrices are equal:
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001000

0000O00O0
The full neighbor relation includes the relation between <roof>
and <wall> which was not directly represented in the grammar.
Each row gives the set of vocabulary symbols which can possibly

neighbor the symbol associated with that row.
3.2.2 Compiling Semantic Constraints

Semantic constraints can be generated in exactly the same
way as syntactic constraints, i.e., by defining binary
relations and compiling their transitive closure, This
approach 1is analagous to the syntactic neighbor case; now a
relation is defined between every two symbols whose semantic
features are related and the closure contains relations not

explicitly mentioned in the grammar.

As an example, consider the parallel relation. The
parallel relation can occur between the axes of two vocabulary
symbols in a variety of ways:

1) they can be explicitly defined as parallel in the
semantic consistency part of a production, or

2) the semantic generation part of a production may set an
axis of the new vocabulary symbol equal to an axis of one of
the vocabulary symbols being used to produce the new symbol, or

3) they may may be indirectly parallel if there exists a
third vocabulary symbol to which they are both parallel.

These relations are computed using a binary-valued matrix,

whose rows and columns correspond to the axes of the vocabulary

symbols.
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a <floor> symbol. Since <floor> is a lower level symbol, all
{floor> symbols will already have been built by the time {top>
symbols are being built, and this can be used to delete <top>

hypotheses which are not parallel to any <floor> hypotheses.

In order to add other semantic constraints, a matrix to
represent the constraints 1is needed. The matrix can be
computed from the grammar once the relation has been defined in
terms of the predicates which appear in the productions.
Parallel 1is a transitive relation, and other transitive
relations can be computed in much the same way. Relations
which are not transitive, e.g., perpendicular, require special

procedures for their computation.

Some applications may prohibit the pre-compilation of all
constraints, e.g., due to the size of the grammar. In such
cases a possible alternative is to compute relations only when
necessary. Of course, once the relations between the features
of two vocabulary symbols have been computed, they can be
stored for future reference and need not be recomputed every

time.
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corresponding to adjacent boundary segments are linked only if
the constraints allow the symbols hypothesized for that pair to
be adjacent. Building 1level 0 involves applying the
segmentation strategy to the shape to generate the level 0

nodes.

2) CONSTRAIN - since each node corresponds toc a single
hypothesis, and since nodes are only 1linked to compatible
nodes, the within layer application of syntactic constraints
simply involves removing a node if it has no neighbor at some
endpoint. Likewise, a node is removed if for any semantic
feature, no other node exists satisfying the semantic
constraints.

3) COMPACT - given a node n at level k, if level k+1 has
been Dbuilt and n does not support a level k+1 node, then n is
deleted from the network. If any of the nodes which produced n
have been deleted, then n is deleted, too.

These procedures operate on two sets of nodes, R, and R

X c’

both of which are initially empty. When at level k with Rx and
R, empty, BUILD produces the level k+1 hypotheses (or stops if
k =n), and puts them into RX while putting all level k nodes
into R,. CONSTRAIN examines nodes from Ry. Let n be a node
from RX. If n satisfies all syntactic and semantic
constraints, then CONSTRAIN simply deletes n from Rx

Otherwise, CONSTRAIN deletes node n from the network and puts
its same level neighbors in RX (since n might have been their
only neighbor at some attachment point) and its across level
neighbors in Ro.. COMPACT removes nodes from R., taking no
action 1if all of the node's original supporting nodes still
exist at level k-1 and the node still supports at least one
level k+1 node (if 1level k+1 has been built); otherwise,

COMPACT deletes the node from the network and puts 1its same

level neighbors in RX and its across level neighbors in Rco
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pieces of the shape, while the loose fit picks out longer

pieces.

Once the primitives have been found, the initial
hypotheses for each primitive must be made. HCP was run with
two different numbers of hypotheses per primitive. When only
one hypothesis was associated with each primitive, the cbrrect
one was associated with each primitive that formed part of a
grammatical description of the shape, and a ‘'reasonable"®
hypothesis was chosen for each other primitive (e.g., if the
primitive were short; then it might be labeled as an engine
side). In the other experiment described, three hypotheses
were associated with each primitive. In general, every
terminal symbol should be associated with each primitive,
unless some prior information on size or orientation is

available which can eliminate some of those guesses.

For each of these sets of initial hypotheses, HCP was run
with full constraints and with no constraints. Running HCP
with no constraints means that procedure CONSTRAIN is not
appliéd. A measure of efficiency was defined in terms of the
number of hypotheses produced at each level versus the number
of hypotheses actually necessary to parse the shape. Given a
shape and a level, i, there is some fixed number of hypotheses,
N_(i), which are required at that level to construct all parses
of the shape. Let NO(i) be the number of nodes produced at
level 1 when no constraints were used, and let NT(i) be the
number of nodes produced at level i when the constraints were

used. Then the efficiency of each process can be given as:



Table 1 - Node Efficiency with 1 Hypothesis per Primitive

Node Level

Shape 0 1 2 3 4 5 6
1 .91 .94 .92 .93 .56 .83 1 (No constraints)
.95 .94 .92 1 1 1 1 (A1l constraints)

2 .50 .50 .50 .45 .32 .50 1
.63 .63 .63 .90 1 1 1

3 .59 .59 .59 .6 .5 .5 1
.70 .70 .70 .75 .75 1 1

4 .76 .76 .76 .80 .60 1 1
.89 .89 .89 1 1 1 1

Average [.69 .69 .69 .69 .49 .71 1
.79 .79 .79 .91 .94 1 1
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5. Using HCP with Uncertain Hypotheses

In the preceding discussions, all hypotheses of vocabulary
symbols for shape segments were considered to be equally
likely. 1In many situations though, some hypotheses should be

regarded with more confidence than others. In what follows, we

-

present a generalization of the discrete HCP described above to
an HCP which associates likelihoods with hypotheses and applies
continuous relaxation-like operators to update the likelihoods.
We’ also discuss embedding HCP into a state-space search

procedure for finding the most likely parse of a shape.

Let G = (P,N,T,S) be a stratified context free grammar,
and let V = NU T. A hypothesis consists of a vocabulary
symbol and a likelihood. For hypothesis h, 1let L(h) be the
likelihood of h. If h is a level k+1 hypothesis formed from

-shy,

the level k hypotheses hT"‘ h then the likelihood of h is

obtained as follows:
L(h) = min{ Lthy) }, i = 1,...,n.

Hypotheses relating terminal symbols to primitives are
constructed 1if certain features of the primitive satisfy
numerical constraints specified in the definition of the
terminal symbol. For example, the length of a primitive might
be measured, and if the length is found to be 1less than some
value, then it may be possible for that primitive to play the
role of an <engine side> in the current shape being processed.
The degree to which these numerical constraints are satisfied

determine the likelihood of the associated hypothesis.
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(4) Expand n. Put the successors of n on OPEN. Remove n
from OPEN.

(5) Go to 2.

It is shown in [32] that A+ is admissible and optimal.

A

We next describe how HCP can be embedded 1in the A+
algorithm. The nodes (or states) of the tree represent
multi-layer networks of hypotheses. Nodes having start symbol

hypotheses are terminal nodes. Each non-terminal node has

either

1) one successor corresponding to the result of applying
BUILD to the highest level hypotheses of that node, or

2) two successors: one representing the assertion of the
most 1likely hypothesis (called the instantiation hypothesis)

for a previously ambiguous piece of the boundary, and the other
representing the denial of that assertion.

A level k hypothesis 1is asserted for a piece of the
boundary if no other 1level k hypothesis which concerns that
piece of the boundary is allowed to remain in the network.
Likewise, a hypothesis 1is denied by being deleted from the
network. The evaluation function used to order OPEN, f, is the
méximum of the likelihoods of the highest level hypotheses of a

state.

The constraints between pieces of a shape are no longer
used simply to delete a hypothesis, but rather to change its
likelihood. The likelihood of a hypothesis is dependent not

only on the hypotheses which produced it, but also on the
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(a) build the next level of the network for s, put
the resulting node on OPEN and go to (3), otherwise

(b) disambiguate a piece of the boundary by
instantiating the best hypothesis of s, i.e., generate a branch
corresponding to asserting and denying of the instantiation
hypothesis, setting up a new node for each. .

(3) Apply CONSTRAIN, COMPACT and CONSTRAIN¥* to the new
nodes.

(4) Evaluate the global score of each node by computing f,
the maximum 1likelihood of the highest level hypotheses in the
network for the node. (If all possible primitive hypotheses
are deleted, set the score to 0).

(5) Update the likelihoods of the hypotheses associated
with new nodes, and put the new nodes on OPEN.

(6) Go to (1).

HCP is the above algorithm with (2b) removed, and with

likelihoods {0,1}.

We will now show that the application of such an operator
during the search 1is admissible, i.e., the start symbol
produced using HCP* is the same as the start symbol which is
produced by wusing HCP and then choosing the most likely start

symbol.,

Let H = {hgyg, hpq, ..., hg,} be the level 0 hypotheses for
some shape, and let S = {81, Soy wee, Sm} be the start symbol
hypotheses which can be constructed from H according to G.
That is,

82 => hpqhps. o ihyps
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from OPEN containing a start symbol hypothesis Sc # Sb. Then
there must be some node, m, on OPEN containing all of the
hypotheses required to construct Sb up to level k < n (node m
could not yet contain Sb, since otherwise m would have been
picked from OPEN). But from the Lemma, the likelihood of those
hypotheses must be greater than or equal to L(Sb), and thus,
flm) 2 L(Sy). But f(v) = L(Sy) because S, is the only level n
hypothesis in the network of node v. Thus, L(SC) = f(v) > f(m)

= L(Sy), contradicting the assumption that L(Sy) > L(S,).



Page 39

CONSTRAIN, COMPACT, and BUILD to the resulting layered network.
Once HCP has stabilized on this network (all higher levels
constructed and all constraints satisfied), the surviving
lowest level hypotheses can serve to guide the search for still
lower level, and probably even less reliably detected, pieces

of the shape.

Many claims have been made [19-21] about the relative
efficiency of constraint processes when compared with
conventional search strategies, but very little effort has been
devoted to substantiating or invalidating these claims
(exceptions include Gaschnig[25] and Haralick and Gordon[26]).
As another research goal, the computational complexity of HCP
needs to‘be investigated by both analytical and empirical
(e.g., simulation) studies on abstractions of the pattern
analysis problem. Only through such studies can we hope to
assess the real significance and practical importance of such

systems.
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