ASP: An Algorithm and Sensor Performance Evaluation System'’

Thomas C. Henderson, Chuck Hansen and Bir Bhanu

Department of Computer Science
The University of Utah
Salt Lake City, Utah 84112

Abstract

We describe a methodology which permits (1) the precise characterization of sensors,
(2) the specification of algorithms which transform the sensor data, and (3) the
quantitative analysis of combinations of algorithms and sensors. Such analysis makes it
possible to determine appropriate sensor/algorithm combinations subject to a wide range
of criteria including: performance, computational compiexity (both space and time),
possibility for concurrency, modularization, and the use of multi-sensor systems for
greater fault tolerance and reliability. Some examples from the domain of remote sensing

are given.

1This work was supported in part by NSF Grants ECS-8307483 and MCS-82-21750. Chuck Hansen is an ARQO
Fellow.

ASP: An Algorithm and Sensor Performance Evaluation System

1. Introduction

Current systems for the analysis of remotely sensed data are limited in their capability
by extreme data dependency and a set of ad hoc algorithms [1, 2]. The performance of
such systems in realistic scenarios is not very good and results in poor recognition
accuracy and a high false alarm rate. One approach to solving this problem is to develop
expert systems for the automatic analysis of imagery. For example, Nagao and
Matsuyama [7], describe an expert system for the anaiysis of aerial photographs, and
Tsotsos [8] presents an expert system for understanding motion in images. Although
such systems may achieve a certain amount of success, we beiieve that, in order to
preduce better systems, it is essential to consider the system as a whole, and, if possible,
to produce the system subject to known design constraints and requirements. All this
requires a thorough understanding of the algorithms for low level data anaiysis such as
preprocessing, detection, segmentation and feature computation. To a great extent the

success of such an analysis system depends on the low level image analysis.

Recent efforts have been concentrated on applying a given algorithm to a set of images
and carrying out statistical analysis without regard to the sensor. This is one of the root
causes for the lack of understanding of the behavior of algorithms and the inability to
predict their performance in real situations. In this paper we describe a novel framework
which allows the evaluation of the performance of a suite of algorithms based on the

interaction of algorithms with the sensor.

In a multi-sensor environment it is necessary to exactly characterize the nature of each
sensor, including the type of information returned by the sensor and the manner in which
this information is obtained [5, 4] For example, most sensors can be characterized to
some extent in terms of a small set of features such as error, accuracy, repeatability, drift,
resolution, hysteresis, threshold and range. Moreover, as we are dealing with digital
signal processing, measures of quantization and sampling performed by the sensor are
also considered. In general the essence of any sensor is the domain over which the
sensor operates and the kind of data it returns; e.g., a camera provides x and y spatial
values (perhaps implicitly according to location in the signal) and light intensity

information. A camera can be viewed as a function over its two-dimensional viewing

space, or as a stream of triples (x,y,intensity) produced by it. A computational theory of
sensors is explicitly based on the sensor, the algorithm, and the manner in which the
algorithm acts on the output of the sensor. It requires the definition of the domain over
which a sensor operates, the physical nature of the transduction, and the characteristic
output of the sensor. Given this framework, it is possible to make a quantitative

performance of various digital signal processing algorithms on the sensed data.

There are several difficult issues involved in choosing a scheme whereby features of
algorithms can be composed with features of physical sensors such that the overall
sensor system may be analyzed. A desirable characteristic of a complex suite of
algorithms as required for analyzing remotely sensed data is that each of its component
algorithms makes maximum use of the input data characteristics and its goals are in
conformity with the end resuit of obtaining the best recognition performance. One
approach to this problem is to view algorithms and sensors in much the same way; ie,
an algorithm takes in a certain set of data from a sensor or from another algorithm and
produces a set of transformed data. its output can then be characterized in much the
same way as the output of an actual sensor. This view permits an economy of
representation and easy movement from actual physical sensor devices to
sensor/algorithm combinations. Not only does this make the analysis easier, but it also
gives a mechanism by which it is possible toc consider different sensor/algorithm
combinations to be equivalent according to the characteristics of their output. As an
example, if an edge detection algorithm is run on a certain kind of image data, then the
output is essentially that of a “smart” sensor which detects edges directly. Similarly, two
cameras and a stereo algorithm which fuses their data to produce range data may be
considered equivalent to an actual direct range finding device. This also makes it
possible to consider under what circumstances the sensor algorithm combinations are
different and to use those differences to solve user or problem imposed constraints. For
example, given two systems which ultimately produce data with the same characteristics,
one system might be faster than the other or one might have better accuracy than the

other.

Finally, it is necessary to provide a quantitative analysis of the performance of different
sensor systems. This can be parameterized along whatever dimensions are defined for

the various sensors and algorithms. A major difficulty in resolving such issues is

presented by the great variety of sensor systems and the varying level of awareness of
such issues within different sensor user communities. Experienced users of certain types
of sensors may have a fairly good knowledge of when and why certain algorithms work
well. However, algorithm evaluation techniques are not standardized, and there are many
ways in which the properties of algorithms can be characterized. This is one of the major
motivations for establishing a uniform framework for the description of both sensors and
algorithms; namely, it becomes possible to define a coherent computational theory of
sensors. Then, the sensor system can be defined not simply as a task to be done, but
rather as a task to be performed in an optimal way. Of course, the optimal solution

depends on the application.

The use of statistical, heuristic and parametric models is considered for algorithm
evaluation on a sample database of a given scenario. In this context these models are
chosen such that each part of the remote sensing system can be evaluated not only with
respect to its own figure of merit, but also against the overall classification. In this view,
statistical measures of an algorithm’s performance, the ability of an algorithm to make
maximal use of the specific characteristics of the data, and the whatever general
parameters are used to evaluate the overall performance of the system ({probability of
classification, and faise alarm per frame) must all be taken into account when evaluating
the system. In addition, the models can be used to establish the requirements of the
database in terms of data collection and organization, with the end goal of generating
databases of sensor data which are increasingly representative of the real world. Thus,
sensor/algorithm systems are the best source of information on how to improve
themselves. The proposed framework for a computational theory of sensors provides a

firm basis for a thorough understanding of the problems involved.

2. Method
In order to achieve the analysis and performance evaluation system described above, it
is necessary to divide the problem into more manageable subproblems. The two major

aspects of the problem are:

1. the specification of sensors and algorithms which transform sensor data, and

2. the inference of properties of proposed configurations of sensor/algorithm
systems.

In this section we discuss our solution to these two problems.

2.1. Logical Sensor Specification

Multi-sensor systems require a coherent and efficient treatment of the information
provided by the various sensors. We have proposed elsewhere a framework, the Logical
Sensor Specification System, in which the sensors can be abstractly defined in terms of
computational processes operating on the output from other sensors [5, 4] Various
properties of such an organization have been investigated, and two implementations have

been described.

The principal motivations for logical sensor specification are:

* pbenefits of data abstraction: the specification of a sensor is separated from its
implementation. The multi-sensor system is then much more portable in that
the specifications remain the same over a wide range of implementations.
Moreover, alternative mechanisms can be specified to produce the same
sensor information but perhaps with different precision or at different rates.
Thus, several dimensions of sensor granularity can be defined. Further, the
stress on modularity not only contributes to intellectual manageability but is
also an essential component of the system’s reconfigurable nature. The
inherent hierarchical structuring of logical sensors further aids system
development.

* gvailability of smart sensors: the lowering cost of hardware combined with
developing methodologies for the transformation from high level algorithmic
languages to silicon have made possible a system view in which
hardware/software divisions are transparent. It is now possible to incorporate
fairly complex algorithms directly into hardware. Thus, the substitution of
hardware for software (and vice versa) should be transparent above Ihe
implementation level.

2.1.1. Logica! Sensors
We have briefly touched on the role of logical sensors above. We now formally define

logical sensors.

A logical sensor is defined in terms of four parts:

1. A logical sensor name. This is used to uniquely identify the logical sensor.

2. A characteristic output vector. This is basically a vector of types which
serves as a description of the output vectors that will be produced by the
logical sensor. Thus, the output of a logical sensor is a set {(or stream) of

vectors, each of which is of the type declared by that logical sensor’s
characteristic output vector. The type may be any standard type (e.g., real,
integer), a user generated type, or a well-defined subrange of either. When
an output vector is of the type declared by a characteristic output vector (i.e.,
the cross product of the vector element types), we say that the output vector
is an “instantiation” of that characteristic output vector.

3. A selector whose inputs are alternate subnets and an acceptance test name.
The role of the selector is to detect failure of an alternate and switch to a
different alternate. If switching cannot be done, the selector reports failure of
the logical sensor.

4. Alternate Subnets. This is a list of one or more alternate ways in which to
obtain data with the same characteristic output vector. Hence, each alternate
subnet is equivalent, with regard to type, to ail other alternate subnets in the
list, and can serve as backups in case of failure. Each alternate subnet in the
list is itself composed of:

* A set of input sources. Each element of the set must either be itseif a
logical sensor, or the empty set (nuil). Allowing nuli input permits
physical sensors, which have only an associated program (the device
driver), to be described as a logical sensor, thereby permitting uniformity
of sensor treatment.

* A computation unit over the input sources. Currently such computation
units are scftware programs, but in the future, hardware units may alsc
be used. In some cases, a special “do-nothing” computation-unit may
be used. We refer to this unit as PASS. o o ‘

A logical sensor can be viewed as a network composed of sub-networks which are
themselves logical sensors. Communication within a network is controlled via the filow of

data from one sub—-network to another. Hence, such networks are data flow networks.

2.1.2. Implementation

We currently have two implementations of the logical sensor specification language
running: a C version (called C-LSS) running under UNIX [3], and a functional language
version (called FUN-LSS) [4]. The C version produces a shell script from the specification,
while FUN-LSS generates code for a special functional programming language (FEL).
FUN-LSS provides a logical sensor specification interface for the user and maintains a

database of s—expressions which represents the logical sensor definitions (see Figure 1).

We have defined a Logical Sensor Specification Language as a framework facilitating

efficient and coherent treatment of information provided in multi-sensor systems. In

| logical sensor specification interface |

Figure 1. The Logical Sensor System Interface

addition to the issues raised when considering the language implementation itself, various

extensions have been suggested. In particular, we have implemented:

* A Logical Sensor Specification Language compiler.

* General fault—tolerance features such as:

1. A mechanism for detecting two types of sensor failure.
2. A technique by which switching to an alternate subnet is accomplished.

* A database of physical sensors.

2.2. An Expert System
The knowledge which must be represented depends primarily on the problem to be

solved. We have considered three application domains:

* Sensor hardware configuration and design constraints,
* The pixel classification problem, and

* Feature detection.

Concerning the first of these, there are many factors which come into play when a
remote sensing system is being configured. For example, the user must specify the

signal-to-noise performance which is expected of the system. This index is related to

the velocity at which the sensor will be flown, as well as its altitude, field of view and the
number of detectors involved. Once these are determined, however, it is possible to
choose the spectral channel bandwidth so as to achieve an acceptable signal-to-noise

ratio.

In the second example application, consider the classification of corn. If it is necessary
to distinguish corn from soybeans, then it is necessary to have data taken in the 1.3, 1.5
to 1.8, and 2.1 to 2.3 micrometer wavelengths. Moreover, seasonal variation must be
taken into account, and there must be an algorithm which claséifies corn or can be

appropriately parameterized to classify corn.

Let’'s look at a more detailed example of the third application area. Suppose that we
wish to know given the current set of sensors on the one hand and a set of algorithms
for edge detection on the other, if it is possible to detect edges with a certain absolute
resolution in the placement of the edges. Furthermore, suppose that the following two
sensors are defined (we are using HPRL, a Heuristic Programming and Representation

Language made available to us by HP [6]):

#X%
*¥#% show the sensor frames
%%
(M-7 (AXO ($VALUE (AIRBORNE)))
(BANDS
($VALUE (12)))
(RANGE

($VALUE ((0.4 0.9) (UNITS: MICROMETERS))))
(FOV ($VALUE (90 (DEGREES: !+- 45 FROM NADIR))))
(THERMAL-RESOLUTION

($VALUE (0.1 (UNITS: DEGREES C))))
(REFLECTANCE-RESOLUTION

($VALUE (1 (PERCENT:))))
(REFERENCE-PORTS

($VALUE (5 (RADIATION:))))
(COLLECTOR-OPTICS

($VALUE (12.25 (DIAMETER: CM))))
(SCANS-PER-SECOND

($VALUE (100)

(60)))

(ELECTRONIC-BANDWIDTH

($VALUE (90 (KHZ: FROM DIRECT CURRENT)))))

NIL

(M-7 (AKO AIRBORNE)
(BANDS 12)
(RANGE (0.4 0.9))
(FOV 90)
(THERMAL-RESOLUTION
0.1)
(REFLECTANCE-RESOLUTION
1)
(REFERENCE-PORTS
5)
(COLLECTOR-OPTICS
12.25)
(SCANS-PER-SECOND
100
60)
(ELECTRONIC-BANDWIDTH
90))

NIL

(LANDSAT-1 (AKO ($VALUE (LANDSAT)))
(BANDS
($VALUE (1))
(RANGE

NIL

($VALUE ((0.8 1.1) (UNITS: MICROMETERS))
((0.7 0.8) (UNITS: MICROMETERS))
((0.6 0.7) (UNITS: MICROMETERS))
((0.5 0.6) (UNITS: MICROMETERS))))
(FOV ($VALUE (11.56 (DEGREES:))))
(PIXEL-SPATIAL-RESOLUTION
($VALUE (80 (UNITS: METERS SQUARED))))
(REFLECTANCE-RESOLUTION
($VALUE (8 (BITS:))))
(REFERENCE-PORTS
($VALUE (2)
(M
(COLLECTOR-OPTICS
($VALUE (22.8 (CM:))))
(SCANS-PER-SECOND
($VALUE (13.65)))
(ELECTRONIC-BANDWIDTH
($VALUE (42.3))))

(LANDSAT-1 (AKO LANDSAT)
(BANDS 4)
(RANGE (0.8 1.1)
(0.7 0.8)
(0.6 0.7)
(0.5 0.6))
(FOV 11.56)
(PIXEL-SPATIAL-RESOLUTION
80)
(REFLECTANCE-RESOLUTION
8)
(REFERENCE-PORTS
2
1)
(COLLECTOR-QOPTICS
22.8)
(SCANS-PER-SECOND
13.65)
(ELECTRONIC-BANDWIDTH
42.3))

NIL

Finally, suppose that the knowledge of the available edge detection algorithms is:

RE%
*#%¥% show the edge detector frames
%%
(PREWITT (AKO ($VALUE (EDGE-DETECTOR)))
(INPUT
($VALUE (GRAY-SCALE)
(IMAGES)))
(PROCESS
($PARMS (THRESHOLD)
(QUANTIZATION)
(WINDOW-SIZE))
($CODE ("PREWITT-EDGE-PROCEDURE)))
(COV ($VALUE (THETA)))
(RESOLUTION
($VALUE (1.0 (ACCURACY: PIXEL / SUB-PIXEL)))))
NIL

(LAPLACIAN (AKO ($VALUE (EDGE-DETECTOR)))
(INPUT

NIL

10

($VALUE (GRAY-SCALE)

(IMAGES)))
(PROCESS
($PARMS (THRESHOLD)
(QUANTIZATION)

(WINDOW-SIZE))
($CODE (~LAPLACIAN-EDGE-PROCEDURE)))
(COV ($VALUE (RHO)))
(RESOLUTION
($VALUE (1.0 (ACCURACY: PIXEL / SUB-PIXEL)))))

(TRIENDL (AKO ($VALUE (EDGE-DETECTOR)))

NIL

(INPUT

($VALUE (GRAY-SCALE)
(IMAGES)))

(PROCESS

($PARMS (THRESHOLD)
(QUANTIZATION)
(WINDOW-SIZE))

($CODE (~TRIENDL-EDGE-PROCEDURE)))

(COV ($VALUE (RHO)

(THETA)
(R)))

(RESOLUTION

($VALUE (0.0039 (ACCURACY: PIXEL / SUB-PIXEL)))))

(PREWITT (AKO EDGE-DETECTOR)

NIL

(INPUT GRAY-SCALE

IMAGES)

(COV THETA)
(RESOLUTION 1.0))

(LAPLACIAN (AKO EDGE-DETECTOR)

NIL

(INPUT GRAY-SCALE
IMAGES)

(COV RHO)

(RESOLUTION 1.0))

11

(TRIENDL (AKO EDGE-DETECTOR)
(INPUT GRAY-SCALE
IMAGES)
(Cov RHO
THETA
R)
(RESOLUTION 0.0039))

NIL

Then if we want to find out whether there is any sensor/algorithm combination which can

detect edges at an 80 meter resclution, we obtain:

*%%

¥%¥% golve for minimum sub-pixel resolution of 80 meters
®E%

(solve-all '(?x sub-pixel-resolution 80))

Using Find-Sensor-Algorithm-Pair:
Landsat-1 combined with the prewitt edge detector satisfies the sub-pixel
constraint of 80 meters.

Using Find-Sensor-Algorithm-Pair:
Landsat-1 combined with the triendl edge detector satisfies the sub-pixel
constraint of 80 meters.

Using Find-Sensor-Algorithm-Pair:
Landsat-1 combined with the laplacian edge detector satisfies the
sub-pixel constraint of 80 meters.

Upon asking about a 1 meter resolution, we get:

%%

¥%% golve for minimum sub-pixel resolution of 1 meter
ER%

(solve-all '(?x sub-pixel-resolution 1))

Using Find-Sensor-Algorithm-Pair:
Landsat-1 combined with the triendl edge detector satisfies the sub-pixel
constraint of 1 meters.

Finally, at 0.005 meter resolution, we learn that:

F¥%k

¥%¥% gsolve for minimum sub-pixe! resolution of .005 meters
¥R%

12

(solve-all '(?x sub-pixel-resolution .005))
NIL

Thus, no combination was found for detecting edges at the given resolution. Even from
this simple example, it is possible to see the further implications to a more complete set

of information.

3. Conclusions

Our primary goal is to produce a system which makes it possible to:

1. Characterize physical sensors in terms of their domains of application, their
principles of operation, and their output,

2. Specify algorithms in such a way that the transformations they perform on the
input data are well-defined, and

3. Evaluate a given sensor configuration in terms of the sensors involved and
the effects of the particular algorithms on the sensed data; this permits the
selection of a sensing system optimized according to some user-defined
criteria.

The framework based on the interaction of sensors and algorithms allows the

determination of the following critical information:

* How well an algorithm is able to take into consideration the characteristics of
the sensor.

* How well an algorithm can be implemented and other characteristics of the
algorithm itself such as space and time computational complexity,
concurrency, modularity, parallelism and the adaptability to the other types of
sensors in a multi-sensor environment.

* How well the algorithm is able to predict performance. The performance is
verified on a sample data base, and is based on quantitative figures of merit.

We believe that the logical senscr methodology can provide the basis for a computational
theory of sensors and that when combined with an appropriate inferencing system makes

these goals possible.

13

References

[1] Bhanu, Bir.
Evaluation of Automatic Target Recognition Algorithms.
In Proceedings of the SP/E West '83. August, 1983.

[2] Dorrough, D.C, V.F. Pizzurro, B. Bhanu, and J.R. Pasek.
A Multi-sensor, Multi-mode Tracker Approach to Missile Ship Targeting.
In 7982 Tri-Service Workshop on Missile Ship Targeting. August, 1982.

3] Henderson, T.C., E. Shilcrat and C. Hansen.
A Fault Toleramt Sensor Scheme.
Computer Science UUCS 83-003, University of Utah, November, 1983.

[4] Henderson, T.C. and E. Shilcrat.
Logical Sensor Systems.
Journal of Robotic Systems 1(2):169-193, 1984.

[5] Henderson, T.C. and Wu So Fai.
MKS: A Multi-sensor Kernel System.
[EEE Transactions on Systems, Man, and Cyberbetics SMC-14(5):784-791,
September/October, 1984,

[6] Lanam, D., R. Letsinger, S. Rosenberg, P. Huyn, and M. Lemon.
Guide to the Heuristic Programming and Representation Language Part 1: Frames.
Technical Report AT-MEMO-83-3, Hewlett—Packard, Application Technology
Laboratory, Computer Research Center, 15601 Page Mill Road, Palo Alto, CA
94304, August, 1983.

[71 Nagao, M. and T. Matsuyama. ;
Advanced Applications in Pattern Recognition. Volume : A Structural Analysis of
Complex Aerial Photographs.
Plenum Press, New York, 1980.

{8l Tsotsos, J.C.
A Framework for Visual Motion Understanding.
Computer Systems Research Group CSGR-114, University of Toronto, June, 1980.

Table of Contents
1. Introduction
2. Method
2.1. Logical Sensor Specification
2.1.1. Logical Sensors
2.1.2. Impiementation
2.2. An Expert System
3. Conclusions

N OO S W=

