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Abstract

Deep learning shows promise in leveraging health signal data for assisted liv-
ing and preventive healthcare. However, deep learning models often exhibit
overconfidence in predictions, necessitating the use of uncertainty estimation
methods for accurate confidence assessment. Existing approaches for uncer-
tainty estimation frequently su↵er from poor usability or high computational
complexity. In this study, we introduce the Reconstruction Uncertainty Es-
timate (RUE), a distributional uncertainty estimation method inspired by
autoencoders, which addresses these limitations. Derived from any trained
model through a two-step process – 1) training a separate multilayer percep-
tron as a decoder and 2) calculating uncertainty based on the reconstruction
error of the decoder – RUE o↵ers an easy-to-implement and computation-
ally e�cient solution to support point-of-care decision making. We also pro-
pose non-parametric and parametric methods to compute prediction intervals
from RUE. Evaluation against Monte-Carlo dropout and the Gaussian Pro-
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cess Regressor on a health signal dataset from intensive care unit patients
demonstrates RUE’s superiority, showcasing high correlation with absolute
error and the lowest area under the risk-coverage curve value. RUE-derived
prediction intervals consistently outperform alternatives across key metrics.
The robustness of RUE highlights its potential to enhance the reliability of
deep learning applications in healthcare, paving the way for more informed
decision-making.

Keywords: Uncertainty estimation, prediction interval, machine learning,
neural networks

1. Introduction

Artificial intelligence holds significant potential in the field of health-
care, particularly with the exponential increase of health data. A substantial
portion of this data comes in the form of health signals, such as vital sign
readings. Therefore, to fully harness the benefits of this data, it is crucial to
develop improved methods for extracting insights from health signals.

The integration of deep learning into health signal prediction has brought
about notable advancements in healthcare, particularly in two key areas: 1)
Living assistance, and 2) Early detection of health risks. Health signal pre-
diction demonstrates promise in enhancing the quality of life for individuals
with disabilities. Utilizing classical machine learning algorithms like Sup-
port Vector Machines (SVM) and random forest classifiers on signals from
accelerometers and gyroscopes allows for the recognition of users’ hand ges-
tures, facilitating hands-free control of communication gadgets [1]. Another
notable example would be the application of sparse Bayesian classifiers to an-
alyze radar Doppler time-frequency signatures which enables the detection of
falls, facilitating prompt assistance and minimizing complications from the
fall, especially in the elderly [2]. Beyond fall detection, health signals have
also shown promise in enhancing the quality of life for patients who are un-
able to sense bladder fullness, achieved through predicting bladder volume
from a↵erent neural activity [2].

In addition to assisting in daily living activities, health signal prediction
plays a pivotal role in preventive healthcare. For example, health signals
have further been employed in predicting future epileptic seizures [2] and
anticipating the onset of mental health crises [3]. Health signals are also em-
ployed in gait analysis [4]. Several studies have investigated the detection of
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gait disorders and asymmetry using kinematics, kinetics, or neuromuscular
signals, employing support vector machines (SVMs) with promising results.
Early detection of gait disorders and asymmetry can enable medical profes-
sionals to intervene with protective measures, reducing the risk of fall-related
injuries, especially in the elderly. These applications underscore the transfor-
mative potential of health signal prediction in improving patient outcomes
and overall healthcare delivery.

Traditional methods for extracting insights from health signals involve
time-series feature extraction, followed by the application of conventional
machine learning techniques, such as SVM classifiers (as mentioned earlier),
for downstream tasks. However, this approach is time-consuming and less
suited for the healthcare domain, given the non-stationary nature of health
signals [1]. Consequently, there has been a shift towards the development
of deep learning methods that automate the feature extraction process to
address the limitations of the classical approach. A notable example is the
application of convolutional neural networks for the detection of myocardial
infarctions from ECG signals [5].

However, the adoption of deep learning techniques has led to increas-
ingly complex and unexplainable models. Moreover, recent advancements
in neural network architectures have contributed to heightened model mis-
calibration [6], resulting in overconfident classification predictions. In this
context, overconfidence refers to the tendency of the model to produce pre-
diction probabilities that overstate its accuracy. For instance, predicting a
patient has cancer with a 90% probability when the model’s actual prediction
accuracy for that patient is less than 90%. This is particularly concerning,
as such overconfidence may lead to catastrophic consequences when models
make predictions in scenarios for which they were not trained, resulting in
erratic outcomes. In the medical context, where decisions are critical and
often time-sensitive, some even carrying life-or-death implications, overcon-
fident predictions can have profound consequences. Adding to the concerns,
traditional neural networks applied to regression problems lack any indica-
tion of model confidence. To address the limitations of overconfident clas-
sification probability and provide an uncertainty score for neural network
regressors, various uncertainty quantification methods have been developed.
Well-known techniques for uncertainty estimation in neural networks include
Bayesian Neural Networks (BNNs) [7], Monte Carlo dropout (MC Dropout)
[8], and deep ensembles [9]. Beyond neural network techniques, the Gaus-
sian Process Regressor (GPR) [10] stands out as a classical machine learning
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model that not only provides reliable predictions but also generates a robust
uncertainty estimate.

BNNs distinguish themselves from classical neural networks through the
representation of their weights. In BNNs, weights are not treated as fixed
values; instead, they are modeled as probability distributions known as pos-
terior distributions. This modeling reflects the uncertainty associated with
the weights given the dataset and the predicted input. During the inference
phase, rather than producing a single deterministic output, a distribution of
outputs is generated. Analyzing this output distribution provides an approx-
imation of the uncertainty associated with the model’s predictions.

MC Dropout is an uncertainty estimation technique applicable to any neu-
ral network model trained with dropout during training. It involves sampling
predictions from a model when dropout is activated (random inactivation of
nodes in a neural network) during inference. These samples approximate the
output distribution from the model. The standard deviation of these pre-
diction samples is proposed to act as an uncertainty estimate for the model,
while its mean serves as the prediction.

Deep ensembles is a technique originally devised to enhance the perfor-
mance of neural network models by independently training a group of models
and aggregating their predictions, usually by taking the mean. Beyond its
role as a performance enhancement method, deep ensembles also excel at
generating reliable uncertainty estimates. The predictions from each model
in the ensemble approximate the output distribution, like in MC dropout.
Similar to MC dropout, the standard deviation of predictions serves as an
uncertainty estimate for the deep ensemble. In literature, deep ensembles
are often noted to produce more reliable uncertainty estimates compared
to MC dropout [11], and this is hypothesized to be attributed to the high
correlations between predictions in MC dropout.

GPR di↵ers from a regular regressor by defining a distribution of functions
instead of deriving a single function from the dataset. The model’s prediction
and uncertainty are determined by the mean and covariance functions.

Each of these techniques quantifies at least one of the following three types
of prediction uncertainty commonly discussed in the literature: aleatoric,
epistemic, and distributional uncertainty [12, 11]. In this study, our primary
focus is on quantifying distributional uncertainty.

1. Aleatoric uncertainty arises from the inherent randomness in the data
(e.g., noise).
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2. Epistemic uncertainty is associated with the model’s uncertainty and
typically diminishes as the volume of training data increases.

3. Distributional uncertainty, at times categorized under epistemic uncer-
tainty in the literature, pertains to the uncertainty linked to predictions
on samples significantly di↵erent from the training set.

However, it is important to note that each of these methods has its limi-
tations.

• BNNs have the capability to estimate both aleatoric and epistemic
uncertainty, but they are challenging to train and incur a high compu-
tational cost, even when employing variational inference. Additionally,
implementing BNNs often requires significant modifications to existing
neural network architectures.

• In contrast, MC Dropout and deep ensembles do not necessitate changes
to the model architecture, but they are limited to estimating epistemic
and distributional uncertainty. These methods generate multiple pre-
dictions during inference for each input, with the mean and variance of
these predictions serving as the final prediction and uncertainty mea-
sure for the input.

• MC Dropout achieves this by producing multiple sample predictions
with slight variations through dropout activation during prediction.
However, the sampling process in MC Dropout can lead to increased
inference times, as the inference process has to be executed multiple
times per output now instead of just once. This may a↵ect its suitability
for real-time applications.

• Deep ensembles, while not significantly a↵ecting inference time, require
longer training times due to the need to train multiple predictors.

• Vanilla GPR can estimate aleatoric, epistemic, and distributional un-
certainty; however, it su↵ers from high space and time complexity.

In summary, the discussed methods su↵er from one of the following three
key limitations: 1) Poor usability due to required model modifications, 2)
Higher prediction or training time, and 3) High computational cost. In this
work, we propose a method that addresses all the above limitations. Our
method focuses on estimating the distributional uncertainty of any given
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trained neural network prediction model in a single pass without requiring
modifications to its model architecture or training objective. The core con-
cept draws inspiration from anomaly detection using autoencoders. We view
any neural network model as consisting of two main components: 1) the fea-
ture extractor and 2) the prediction head. In our approach, we introduce
another neural network, which we refer to as the decoder. The decoder is
trained to reconstruct the prediction model’s input based on the output of
its feature extractor. Our hypothesis is that the reconstruction error, which
quantifies the di↵erence between the input and the reconstructed input, can
serve as a reliable estimate of prediction error and hence, a reliable uncer-
tainty score (Reconstruction uncertainty estimate; RUE). This hypothesis is
grounded in two key assumptions:

1. The prediction model performs poorly on unfamiliar samples, resulting
in high prediction error, and vice versa.

2. The decoder reconstructs unfamiliar samples poorly, leading to high
reconstruction error, and vice versa.

Nevertheless, we have observed that, in many cases, it is valuable to
provide not just a single estimation but also a prediction interval (PI). To
address this, we have developed two methods — non-parametric and para-
metric — for estimating the prediction interval for each prediction based on
the uncertainty score. Both methods aim to determine the PI (with lower
and upper bounds L

i

and U

i

) that meets this condition:

P (L
i

 y

i

 U

i

| ⇢
i

) = 0.95 (1)

The non-parametric method calculates the margin of error of the PI as the
95th percentile of prediction errors (e) among all neighboring samples, where
these samples are selected based on their similar reconstruction errors (⇢). In
contrast, the parametric method assumes that uncertainty scores and predic-
tion errors follow a multivariate Gaussian distribution. It derives a PI from
the estimated conditional expectation (E[e | ⇢]) and covariance (Cov[e | ⇢]).

The contributions of this paper are threefold:

1. It proposes a distributional uncertainty estimate, RUE, that is compu-
tationally e�cient and compatible with neural networks.

2. It introduces parametric and non-parametric methods for deriving pre-
diction intervals from RUE.
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3. It conducts a comprehensive analysis of uncertainty estimation perfor-
mance on a publicly available health signal dataset from intensive care
unit patients, comparing RUE and RUE-derived prediction intervals
with MC Dropout and GPR.

The remainder of the paper is organized as follows: Section 2 provides
details of the proposed uncertainty estimation and prediction interval gener-
ation methods, including a demonstration on a sine function approximation
task. In Section 3, we outline the dataset, evaluation metrics, and baseline
models used in our comparative study of uncertainty estimation methods.
The findings from the experiment, covering model performance, uncertainty
estimation, and prediction interval performance, are also presented in this
section. Section 4 summarizes the key findings from our study, discusses the
limitations of our proposed method, and outlines avenues for future work.

2. Methodology

In this section, we provide an overview of the proposed methods for un-
certainty estimation and prediction interval generation.

2.1. Reconstruction Uncertainty Estimate

Figure 1: Model architecture for RUE.

We introduce a distributional uncertainty estimate, RUE (Reconstruction
Uncertainty Estimate), inspired by anomaly detection with autoencoders.
This uncertainty estimate is calculated in a single pass without any modifi-
cations to the model architecture or training objective.

With reference to Figure 1, consider a trained multi-layer perceptron
(MLP) model f

�, 

with N layers of hidden nodes, trained with input X 2 Ri

and output Y 2 Ro. The model is parameterized by � and  , which denote
the first M and the last N� M layers of nodes, respectively. We can interpret
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f

�

as the feature extractor and f

 

as the prediction head. In a regression
problem, f

�

outputs a feature vector of size k, which is then used by f

 

to
compute continuous output values Ŷ , i.e., f

�, 

: Ri 7! Ro. The MLP model
f

�, 

is typically trained using gradient descent to minimize the discrepancy
between Y and Ŷ = (f

 

� f
�

)(X):

f

�, 

= argmin
�, 

||Y � (f
 

� f
�

)(X)||2. (2)

We propose training another MLP, denoted as g : Rk 7! Ri and referred
to as the decoder. The decoder is trained to reconstruct the input X of the
prediction model based on the output of its feature extractor, f

�

. g can also
be trained using gradient descent to minimize the discrepancy between X

and X̂ = (g � f
�

)(X):

g = argmin
g

||X � (g � f
�

)(X)||2. (3)

We observe that f
�

and g form an autoencoder for X. Unlike a standard
autoencoder model, where the encoder and the decoder are trained simul-
taneously, we adopt a two-step process. Initially, we train the encoder f

�

as part of the prediction model (Eqn. 2). Once f

�

is fully trained, we pro-
ceed to train g separately (Eqn. 3). This approach ensures that there is no
compromise in prediction accuracy for f

�, 

.
We hypothesize that for an instance x 2 Ri and its corresponding label

y 2 Ro, the reconstruction error of the decoder provides a reliable estimate
of prediction error:

|y � f

�, 

(x)| $ |x� (g � f
�

)(x)| . (4)

Thus, we can define
� := |x� (g � f

�

)(x)|
as the uncertainty estimate for the prediction f

�, 

(x). We refer to � as RUE
(Reconstruction uncertainty estimate) in subsequent sections.

This hypothesis is grounded in two assumptions:

1. The prediction model f
�, 

performs well on inputs similar to the train-
ing set but poorly on unfamiliar inputs.

2. The decoder g, trained on the same training set, reconstructs inputs
similar to the training set well, thereby achieving low reconstruction
errors (small �). For unfamiliar inputs, the decoder struggles to recon-
struct the input, leading to high reconstruction errors (large �).
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The illustrated model architecture yields an uncertainty score represented
by the reconstruction error � between the actual and reconstructed inputs.
� is hypothesized to exhibit a positive correlation with the prediction error
(Eqn. 4), serving as an indicator of the model’s performance before the ac-
tual outcome is known. Through the use of RUE, we can identify inputs that
fall outside the distribution by applying a RUE threshold. This threshold can
either be user-defined or calculated as the maximum RUE in the validation
set.

We demonstrate our proposed method using a toy dataset. We sample
20,000 x values from a uniform distribution, X ⇠ U(�10, 30), covering the
range from -10 to 30. Corresponding y values are generated with the equation
y = sin(x) + ✏, where ✏ ⇠ N (0, 0.6). Data points where x is in the range
[�10, 0) and (20, 30] are assigned to the test set (9921 data points), while
those in the range [0, 20] are randomly divided between the training and
validation sets (5040 and 5039 data points, respectively). Figure 2 illustrates
the model architecture used for predicting y given x on this toy dataset.
Both the prediction model and the decoder were trained using the Adam
optimizer with default Keras settings. Training is halted when the validation
error begins to increase. The toy dataset and the model architecture used
for prediction were adapted from [13].

Figure 2: Model architecture for toy data set.

Figure 3 illustrates the behavior of RUE on points with varying distri-
butional uncertainty. We note that RUE is high for samples in the test
set (out-of-distribution samples) that exhibit high distributional uncertainty,
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and low for samples in the training or validation set. Additionally, as x de-
viates further from the training and validation sets, RUE increases, aligning
with the expected rise in distribution uncertainty as we move away from
the training set. These observations highlight RUE’s capability to quantify
distributional uncertainty. Furthermore, we observe that RUE surpasses the
levels seen in the training or validation sets when x  0 or x � 20. This
underscores RUE’s ability to detect out-of-distribution examples, facilitated
by a carefully selected threshold (such as the maximum RUE observed in the
validation set).

Figure 3: Model predictions, Reconstruction Uncertainty Estimation (RUE) and absolute
prediction error. The green line graph represents model predictions. Orange and blue
points form the test and training/validation set, respectively. Since the orange points are
out of the range of the training and validation dataset, they are also considered out-of-
distribution examples.

2.2. RUE-derived Prediction Intervals

In regression problems, it is valuable to o↵er not only a single uncertainty
estimation but also a prediction interval (PI). To tackle this, we have devised
two methods—non-parametric and parametric—for estimating the prediction
interval for each prediction based on the reconstruction error. Both methods
aim to establish a prediction interval that satisfies Equation 1.
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2.2.1. Non-Parametric Prediction Intervals

The non-parametric method calculates the margin of error for a given
point x 2 Ri using the validation set of size n

v

through the following proce-
dure (also illustrated in Figure 4):

Figure 4: Non-parametric prediction interval.

1. Pass x through the feature extractor and the decoder to derive a re-
construction x̂ = (g � f

�

)(x).

2. Calculate the per-variable reconstruction error x� x̂ 2 Ri.

3. Find the nearest k = bpn

v

e neighbors in the validation set with similar
per-variable reconstruction errors.

4. Derive the absolute prediction errors of the k nearest neighbors.

5. The margin of error of x is the 95th percentile of the absolute prediction
errors of the neighboring points.

In implementation, to expedite the search process in step 3, we employ
a K-Dimensional Tree [14] fitted on the validation set reconstruction errors
before inference. During inference, the tree is queried with x. The non-
parametric method estimates the distribution of PIs conditioned on the re-
construction error through steps 3 and 4. Step 5 calculates the PI with 95%
coverage from this estimated distribution. Using a percentile instead of a
maximum reduces the impact of outliers in the validation set on the PI.

Figure 5 illustrates the prediction interval calculated using the non-parametric
PI estimation method. We observe that the PI e↵ectively covers the majority
of the blue points (93.4% of the training set). However, it is important to
note that since the PI is derived from the prediction errors of the validation
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set, its coverage is limited to prediction values observed in that dataset. This
limitation may result in constant PI values when the reconstruction error ex-
tends beyond the values present in the validation set, such as when x � 20
or x  0.

Figure 5: Non-parametric prediction interval on the toy dataset. The green line graph
represents the model’s predictions. Orange and blue points form the test and train-
ing/validation set, respectively. Since the orange points are out of the range of the training
and validation dataset, they are also considered out-of-distribution examples. The shaded
regions depict the prediction interval of the model; green regions are considered within
the distribution (Reconstruction Uncertainty Estimate, RUE  maximum RUE in the
validation set), while red regions are considered out of distribution (indicating high dis-
tributional uncertainty).

2.2.2. Parametric Prediction Intervals

The parametric method assumes that both reconstruction errors (⇢ =
x � x̂) and prediction errors (e = y � ŷ) follow a multivariate Gaussian
distribution: 

⇢

e

�
⇠ N

✓
µ

⇢

µ

e

�
,


⌃2

⇢

⌃
⇢,e

⌃
e,⇢

⌃2

e

�◆
(5)

Where µ
⇢

and µ

e

are the mean vectors of ⇢ and e, ⌃2

⇢

and ⌃2

e

are the covariance
matrices of ⇢ and e, ⌃

e,⇢

is the covariance matrix between e and ⇢, and ⌃

⇢,e

is its transpose.
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With this assumption, we can directly calculate the distribution of pre-
diction errors conditioned on the reconstruction errors, N (µ

e|⇢,⌃e|⇢). The
mean µ

e|⇢ and covariance matrix ⌃
e|⇢ of this conditional distribution, given

⇢, are calculated using the following two equations:

µ
e|⇢ = µ

e

+⌃

e,⇢

⌃

�1

⇢

(⇢� µ
⇢

) (6)

⌃

e|⇢ = ⌃

e

�⌃

e,⇢

⌃

�1

⇢

⌃

⇢,e

(7)

We derive a PI with a 95% coverage from the aforementioned conditional
Gaussian distribution as follows:

F

�1(0.975|µ
e|⇢,⌃e|⇢) (8)

Here, F�1 denotes the inverse cumulative distribution function operator of
the conditional distribution. In practice, the mean vector and covariance
matrix of the multivariate Gaussian are estimated using the sample mean
and sample covariance of the reconstruction and prediction errors from the
validation set:

¯


µ⇢

µe

�
=

1

n

v

nvX

i=1


⇢

i

e

i

�
(9)

¯
⌃2

⇢

⌃

⇢,e

⌃
e,⇢

⌃2

e

�
=

1

n

v

� 1

nvX

i=1

(


⇢

i

e

i

�
�


µ

⇢

µ

e

�
)(


⇢

i

e

i

�
�


µ

⇢

µ

e

�
)T (10)

Here, ⇢
i

and e

i

represent vectors of per-input reconstruction error and per-
output prediction error for validation sample i. This method assumes that
the reconstruction and prediction errors follow a multivariate Gaussian dis-
tribution. While we acknowledge that this assumption may not always hold,
we propose the mean log-likelihood (Eqn. 11) as a measure of prediction
interval reliability.

Average Log-Likelihood =
1

N

NX

i=1

log L̂(µ̄, ⌃̄; x
i

) (11)

Here, L̂(µ̄, ⌃̄; x
i

) represents the likelihood of x
i

, derived from the probability
density function of a multivariate Gaussian. The parameter N refers to
the number of data points. A higher mean log-likelihood indicates that the
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assumption is more likely to be true, and vice versa. This value can be
compared with the mean log-likelihood of a dataset (of the same size) sampled
from a multivariate Gaussian with identical mean and covariance matrix to
assess the validity of the assumption.

Figure 6 illustrates the results of the parametric prediction interval method
on the toy dataset. The parametric prediction interval covers 94.6% of data
points in the training set. Expanding beyond the training set, we observe
that the prediction interval increases to cover 98.9% of data points in the test
set. In contrast to the non-parametric method, the parametric method does
not have an upper bound for prediction interval width. The highly positive
mean log-likelihood (5.593, compared with the simulated dataset) leads us
to conclude that, in this toy dataset, the assumption that the reconstruction
and prediction errors follow a multivariate Gaussian is accurate. This results
in a reliable prediction interval that covers most of the out-of-distribution
data points.

2.3. Summary of Proposed Methods

In summary, we introduce the Reconstruction Uncertainty Estimate (RUE)
as a metric of distributional uncertainty. Leveraging a trained model, we em-
ploy a separate network, the decoder, to reconstruct the input based on the
model’s intermediate features. RUE is computed as the absolute di↵erence
between the reconstructed input and the actual input. We showcase RUE’s
e↵ectiveness in identifying out-of-distribution data points with a carefully
chosen threshold. Furthermore, we extend the utility of RUE by developing
parametric and non-parametric methods for constructing prediction inter-
vals. In the non-parametric approach, the prediction interval is estimated
from the prediction errors of validation data points with similar reconstruc-
tion errors. Conversely, the parametric method involves fitting a multivariate
Gaussian distribution to the reconstructed and prediction errors. The result-
ing distribution of prediction errors, conditioned on reconstructed errors, is
then used to construct the prediction interval.

3. Experiment

In this section, we outline the experimental setup, including the dataset,
evaluation metrics, and baseline models. We then present results comparing
RUE and RUE-derived prediction intervals with existing methods.
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Figure 6: Parametric prediction interval on the toy dataset. The green line graph depicts
the model’s predictions. Orange and blue points form the test and training/validation set,
respectively. Since the orange points are out of the range of the training and validation
dataset, they are also considered out-of-distribution examples. The shaded regions repre-
sent the prediction interval of the model; regions in green are considered within distribu-
tion (Reconstruction uncertainty estimate, RUE  maximum RUE in the validation set),
while regions in red are considered out of distribution (high distributional uncertainty).
The mean log-likelihood on the validation set is 5.593, and the mean log-likelihood of a
simulated Gaussian dataset is 5.602.
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3.1. MIMIC Dataset

To evaluate the e↵ectiveness of RUE and both RUE-derived PI methods
in the time series prediction of medical signals, we obtained medical signal
data from the MIMIC database [15]. The dataset comprises signals from 121
intensive care unit (ICU) patients, each with a potentially di↵erent set of
signals. The following preprocessing steps were applied to the dataset:

1. Select patients with all six of the following signals (patient states):
[“ABPdias (mmHg)”, “ABPmean (mmHg)”, “ABPsys (mmHg)”, “HR
(bpm)”, “RESP (bpm)”, “SpO2 (%)”]. A total of 57 patients were
selected.

2. Randomly assign 70%, 10%, and 20% of patients to the training, valida-
tion, and test sets, respectively. The prediction model will be trained
on the training set, its parameters tuned on the validation set, and
its performance evaluated on the test set. In the “Mini” dataset, the
training set is further downsampled to 10 patients.

3. Remove all feature values less than zero or blood pressure values greater
than 250.

4. Z-normalize the signals using the mean and standard deviation derived
from the training set.

5. To reduce the signal frequency, downsample the signal to one sample
per minute by calculating the mean and standard deviation of signals
within each minute.

6. Drop rows with missing values.

“ABPdias (mmHg)”, “ABPmean (mmHg)”, “ABPsys (mmHg)” signals
correspond to the diastolic, mean, and systolic arterial blood pressure of
the patient, while “HR (bpm)”, “RESP (bpm)”, “SpO2 (%)” correspond
to periodic measurements of the heart rate, respiration rate, and oxygen
saturation of the patient.

With the preprocessed data, we trained the prediction model, denoted
as f

�, 

(x), to forecast all six patient’s states for one minute into the fu-
ture (y

t+1

), two minutes into the future (y
t+2

), and three minutes into the
future (y

t+3

), utilizing the patient’s signals from the past 5 minutes (x
t�5

to x

t

). Figure 7 illustrates the model architecture employed for predic-
tion and reconstruction. We fine-tuned the width of each model (w 2
{64, 128, 256, 512, 1024, 1536}) through grid-search, using validation loss as
the performance metric. L2 regularization (l2 = 0.01) on hidden layers and
early stopping (patience = 20) were implemented to mitigate overfitting.
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Figure 7: Model architecture for MIMIC data set.

3.2. Baseline Models

We compare RUE with uncertainty estimates and prediction intervals
produced by two commonly used uncertainty estimation methods: Gaussian
process regressor (GPR) [10] and Monte Carlo (MC) dropout [8].

The GPR models the underlying function of the data as a Gaussian pro-
cess, representing a distribution of functions that could fit the data. It is
characterized by its mean and standard deviation (Std), which serve as pre-
dictions and uncertainty estimates of the model. In our experiments, we
used Scikit-learn’s implementation of vanilla GPR with the default radial
basis function kernel. Since vanilla GPR su↵ers from high time complexity
(O(n3)) [16] and memory consumption (O(n2)) [17], we reduced the size of
the training set to ten patients in the “Mini” data set.

Unlike GPR, MC dropout can be applied to neural networks trained with
dropout without modifications to the model architecture. It proposes the
activation of dropout during inference to generate multiple varied predictions
for each input. The sample mean and variance of these predictions serve as
the final prediction and uncertainty measure for the input. In implementing
MC dropout for our experiments, we applied a dropout rate of 0.20 to the
hidden layer of the prediction model. During inference, we generated 10
predictions for each input with dropout activated. The dropout rate and
sample size were determined with reference to experiments conducted in [8]
estimating uncertainty in regression problems.
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For both MC dropout and GPR, we derived the prediction interval (PI)’s
margin of error with 95% confidence using the standard deviation with Equa-
tion 12:

Margin of Error = 1.96 ⇤ z
0.975

(12)

3.3. Evaluation Metrics

For each of the three prediction tasks (predicting y

t+1

, y
t+2

and y

t+3

), we
assess the performance of all uncertainty estimates and prediction interval
generation methods on the test set. We evaluate the uncertainty estimates
using two metrics: the correlation between the uncertainty estimate and true
prediction error, and the area under the risk curve (AURC) [18]. A positive
correlation indicates a reliable uncertainty estimate. The AURC is computed
by summing thresholded prediction errors, with 100 thresholds generated
from equally spaced percentile values (0% to 100%). A lower AURC suggests
a better uncertainty estimate. The AURC is known to be invariant to changes
in the prediction model, allowing us to compare uncertainty estimates from
models of varying predictive performance.

Prediction interval quality was assessed using three metrics derived from
the prediction interval cost function introduced in [19]:

1. Prediction interval coverage probability (PICP): The proportion of
points within the prediction interval (Eqn. 13); a higher percentage
is better.

PICP =
1

n

nX

i=1

1
yi2[Li,Ui] (13)

Here, n represents the total number of points, y
i

denotes the ith ground-
truth output, and L

i

and U

i

stand for the lower and upper bounds of the
prediction interval. The PICP can be further converted into a penalty
value known as the Coverage Penalty (CP), as defined in Equation 14:

CP = (0.951� PICP )2 (14)

2. Prediction interval normalized average width (PINAW): The average
normalized size of the prediction interval (Eqn. 15). When two inter-
vals have the same PICP, the one with the smaller PINAW is considered
better.

PINAW =
1

n⇥R

nX

i=1

(U
i

� L

i

) (15)

Here, R is the range of the output variable.
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3. Prediction interval normalized average failure distance (PINAFD): The
average normalized distance of points outside the prediction interval
(Eqn. 16). A smaller PINAFD is better.

PINAFD =

P
n

i=1

1
yi /2[Li,Ui]min(|y

i

� U

i

| , |L
i

� y

i

|)
R⇥P

n

i=1

(1
yi /2[Li,Ui]) + ✏

(16)

Here, ✏ is a small value introduced to prevent undefined values resulting
from division by zero.

3.4. Experiment Results

In this section, we compare the prediction performance, reliability of un-
certainty estimates, and the quality of prediction intervals among di↵erent
uncertainty estimation methods. This comparison is based on the metrics
discussed in Section 3.3 across all time horizons, as well as between models
trained on the “Mini” and the complete training datasets.

3.4.1. Prediction Performance

Upon comparing the prediction performances of all three methods on
the “Mini” dataset (Table 1), we observe that GPR exhibited the highest
prediction errors among the three models. In contrast, MC dropout and
direct prediction demonstrated very similar performance. It is noteworthy
that, as the models forecast further into the future, prediction errors tend
to increase. Additionally, when assessing the performance of models trained
on the “Mini” dataset against those trained on the complete dataset, we
observed that models trained with more data exhibited smaller prediction
errors.

Table 1: Table showing test mean squared errors (MSE) for models trained on the “Mini”
and whole dataset.

Data Models t+1 t+2 t+3

Mini

Direct Prediction 0.099 0.134 0.148

MC Dropout 0.100 0.137 0.149

GPR 0.491 0.535 0.557

Whole

Direct Prediction 0.089 (-10.4%) 0.121 (-9.9%) 0.131 (-11.1%)

MC Dropout 0.09 (-10.2%) 0.121 (-11.2%) 0.132 (-11.3%)
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3.4.2. Uncertainty Estimation Performance

Figure 8 illustrates the relationship between uncertainty estimates and
absolute prediction errors. Table 2 compares the reliability of each uncer-
tainty estimate. We observed that all three uncertainty estimates have a
positive relationship with absolute prediction error. RUE consistently shows
the strongest correlations with prediction error (0.487), followed by GPR
and MC dropout standard deviations. We recognize that there is room for
improvement in the correlation between RUE and absolute error. This is
attributed to the fact that RUE solely focuses on distribution uncertainty,
addressing only one aspect of predictive uncertainty. Subsequent studies
could explore the integration of RUE with complementary methods to com-
prehensively capture both noise and model uncertainty. Generally, across all
methods, as the time horizon increases, all uncertainty estimates become less
correlated with absolute error. This observation may be explained by the in-
crease in model uncertainty as the time horizon increases, which makes these
uncertainty estimation methods less suited to quantify it. When comparing
the reliability of uncertainty estimates with more training data available, we
observed some drops in correlation for RUE and MC dropout standard de-
viation. Additionally, we noted that the change in correlation when models
were trained on the whole dataset was less drastic for RUE compared to
MC dropout. This suggests that RUE is more robust in the face of varying
training dataset sizes compared to MC dropout.

Further comparing uncertainty estimates based on their risk-coverage
curves (Figure 9) and the area under risk-coverage curves, we observed that
the risk-coverage curves of MC dropout and GPR tend to follow a U-shape,
while RUE exhibited a smoothly increasing logarithmic-like curve. The risk-
coverage curves of RUE and GPR align with our expectations that as cover-
age increases, risk increases, unlike the relatively constant risk curve of MC
dropout. We also noted that RUE is more reliable compared to the other two
uncertainty estimates for all time horizons. Comparing their AURCs (Table
2), RUE’s AURC was consistently the lowest among the three uncertainty
estimates, followed by MC dropout and GPR standard deviation. The rel-
ative performances of MC dropout and GPR have switched in this metric,
reflecting GPR’s poorer predictive performance observed earlier in Table 1.
When comparing the performance of models trained on the “Mini” and the
whole dataset, we observed a reduction in AURC across both methods. We
believe this reduction reflects the improved performance with more data, as

20



Table 2: Table showing the performance of each uncertainty estimate by comparing pre-
diction error correlation and area under risk-coverage curve.

Data UE
Correlation with AE AURC

t+1 t+2 t+3 t+1 t+2 t+3

Mini

RUE 0.487 0.439 0.362 13.624 16.025 17.384

MCD
Std

0.117 0.168 0.149 18.271 20.377 21.342

GPR
Std

0.470 0.353 0.256 35.103 41.328 45.470

Whole

RUE
0.485
(-0.6%)

0.427
(-2.6%)

0.334
(-7.6%)

11.749
(-13.8%)

14.612
(-8.8%)

15.881
(-8.6%)

MCD
Std

0.163
(39.2%)

0.135
(-20.1%)

0.083
(-44.3%)

15.925
(-12.8%)

18.788
(-7.8%)

19.893
(-6.8%)

observed earlier (Table 1).

3.4.3. Prediction Interval Performance

Table 3 compares the prediction intervals derived from RUE, MC dropout,
and GPR on three metrics: PICP, PINAW, and PINAFD. PICP measures
the proportion of points within the prediction interval, PINAW measures
the size of the prediction interval, and PINAFD measures the deviation of
points outside the prediction interval (refer to Section 3.3 for more details).
Ideally, a prediction interval should have a high PICP and low PINAW and
PINAFD.

Comparing the four di↵erent prediction intervals, we observed that GPR
generated prediction intervals with the highest PICP, and MC dropout pro-
duced the prediction interval with the smallest PINAW. Referring to Figure
10, we notice that GPR has the largest confidence interval; this allows GPR
to achieve the higher coverage observed earlier (highest PICP). We also no-
ticed that MC dropout has the narrowest prediction interval, consistent with
the earlier observation of low PINAW.

Comparing the PINAFD, we observed that the non-parametric RUE pre-
diction interval is comparable to MC dropout across all time horizons, with
MC dropout showing greater performance on two of the three time hori-
zons. Closely examining the equation for PINAFD (Eqn. 16) reveals that
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Figure 8: Relationship between uncertainty estimates and absolute prediction error for
models trained on the “Mini” dataset. Uncertainty estimates have been min-max normal-
ized for comparable visualization. The red line, accompanied by the red equation in each
plot, represents the linear regression line between the uncertainty estimates and absolute
error. Comparing the slopes of the scatter plots, we observe a more pronounced positive
relationship with absolute error for RUE and GPR Std compared to MCD Std.

this may not indicate that MC dropout is the better prediction interval with
respect to failure distance. PINAFD is derived as the normalized average
distance of points outside the prediction interval. Since MC dropout has
been observed to have poorer coverage (low PICP), the lower PINAFD value
observed in MC dropout may instead reflect a prediction interval that fails
to cover points that fall just outside the prediction boundaries. This leads
to a smaller PINAFD since these points reduce the average failure distance.

The above observations highlight that these three measures of prediction
interval quality need to be considered together; a good prediction interval
should excel in all three aspects. Figure 11 compares all three aspects with
star plots. The PICP was converted to a coverage penalty (CP) for easier
visualization (refer to Section 3.3 for more details). An ideal prediction
interval exhibits low CP, PINAW, and PINAFD. This is reflected on the star
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Figure 9: Risk-coverage curve for all uncertainty estimates for models trained on the
“Mini” dataset.

plot as a prediction interval with the smallest triangle.
From the figure, we can clearly observe that the non-parametric RUE

balances all three aspects the best, followed by the parametric RUE. MC
dropout and GPR excel in di↵erent aspects; MC dropout has poor coverage
but a small failure distance and a small prediction interval, whereas GPR
exhibits the opposite pattern.

Upon comparing the prediction intervals across time horizons, we ob-
served a clear increasing trend for RUE-derived prediction intervals in Table
3 and Figure 10. This observation aligns with the positive relationship be-
tween prediction error and the time predicted into the future (Table 1). How-
ever, this trend is not evident in GPR or MC dropout. This suggests that
GPR and MC dropout prediction intervals may fail to capture the increasing
uncertainty associated with predicting further into the future.

Upon comparing RUE and MC dropout prediction intervals trained with
the “Mini” and the whole dataset, it is evident that training with more data
generally improved the coverage and reduced the size of RUE-derived predic-
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tion intervals. However, there appears to be an increase in failure distances.
This could be a consequence of the improved coverage discussed earlier when
comparing MC dropout and RUE non-parametric failure PINAFD. This sug-
gests that RUE-derived prediction intervals can be enhanced as the predic-
tion and decoder models are trained with more data. For MC dropout, a
reduction in the prediction interval size was also observed. However, the
e↵ects of increased dataset size on its coverage or failure distances seem in-
consistent. Overall, it appears that for both prediction interval generation
methods, the prediction interval size reduced when the training dataset was
increased. This demonstrates that both methods captured the reduction in
model uncertainty when the model was trained with additional data.

4. Discussion and Conclusion

In this paper, we proposed a distributional uncertainty estimation method
inspired by the autoencoder, called the Reconstruction Uncertainty Estimate
(RUE). We suggest deriving RUE from any trained model with a two-step
approach: 1) training a separate multilayer perceptron acting as a decoder,
which reconstructs the input given the intermediate outputs of any trained
model, and 2) calculating the uncertainty estimate as the reconstruction error
of the decoder. We also propose non-parametric and parametric methods
for deriving prediction intervals from RUE by estimating the distribution of
prediction errors given reconstruction errors on the validation set.

We evaluated our uncertainty estimation methods against two baselines
– Monte-Carlo dropout and the Gaussian Process Regressor – using a pub-
licly available health signal dataset from intensive care unit patients. Our
experiments demonstrated that the Gaussian Process Regressor has poorer
predictive performance compared to artificial neural networks on this mul-
tivariate multi-output prediction problem. Additionally, we observed that
RUE is the most reliable uncertainty estimate among the three methods, ex-
hibiting the highest correlation with absolute error and the lowest area under
the risk-coverage curve value.

RUE-derived prediction intervals also demonstrated the best performance
when evaluating all three prediction interval metrics: coverage, interval size,
and failure distance. Although RUE-derived prediction intervals have shown
significant promise, it is important to note their dependency on the size of
the validation set. Future work will explore alternative methods of deriv-
ing prediction intervals from RUE or investigate more direct approaches for
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obtaining prediction intervals from a trained model.
In Section 3.4.2, we also observed that RUE does not encompass all facets

of predictive uncertainty. RUE does not capture uncertainty from noise in
the data or model uncertainty. Repeating our sine function simulation ex-
periments with di↵erent noise levels (Figure 12), we observed that as noise
increases, the concordance between prediction error and RUE is reduced.
This suggests that to reliably quantify prediction uncertainty in all machine
learning problems, RUE should be paired with aleatoric (noise) and epis-
temic (model) uncertainty estimation methods. Future studies could explore
integrating RUE with complementary methods that capture both noise and
model uncertainty.

Compared to existing uncertainty estimation methods, RUE o↵ers signif-
icant operational advantages. Its computational e�ciency during prediction,
unlike methods such as Monte Carlo dropout and deep ensembles, enables
real-time implementation in low-resource or edge computing environments.
This facilitates integration into medical IoT devices, potentially allowing for
smaller sensors. Reduced computational demands may also extend battery
life and enhance overall cost-e↵ectiveness with the use of low-powered chips,
aligning with environmental sustainability goals. Beyond its operational ef-
ficiency, RUE stands out as the most reliable uncertainty estimate among
the compared methods. However, certain considerations, like the need for a
larger dataset for model validation, exist. Unlike Gaussian Process Regressor
and Monte Carlo dropout, RUE also requires no changes to existing model
architectures, allowing for seamless integration into existing neural network-
based systems without costly retraining. Additionally, its faster training
process, especially with extensive data, implies quicker deployment and the
ability to swiftly push out new updates, marking a significant advantage in
dynamic environments.
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Table 3: Comparison of prediction intervals from RUE (Non-Parametric and Parametric),
MCD, and GPR, trained on the “Mini” and the whole dataset.

Data
Time

Horizon
Method PICP (↑) PINAW (↓) PINAFD (↓)

Mini

t+1

Non-Parametric 0.855 0.074 0.0160

Parametric 0.912 0.111 0.0340

MCD 0.637 0.041 0.0189

GPR 0.985 0.380 0.0758

t+2

Non-Parametric 0.878 0.093 0.0237

Parametric 0.926 0.138 0.0421

MCD 0.704 0.055 0.0230

GPR 0.981 0.380 0.0699

t+3

Non-Parametric 0.884 0.101 0.0299

Parametric 0.947 0.156 0.0468

MCD 0.580 0.042 0.0233

GPR 0.978 0.389 0.0658

Whole

t+1
Non-Parametric 0.888 (3.9%) 0.071 (-4%) 0.019 (18.7%)

Parametric 0.953 (4.5%) 0.117 (4.7%) 0.039 (15.8%)

MCD 0.689 (8.1%) 0.04 (-0.9%) 0.019 (2.9%)

t+2
Non-Parametric 0.899 (2.4%) 0.086 (-7.8%) 0.026 (10.7%)

Parametric 0.946 (2.2%) 0.129 (-6.9%) 0.044 (5.4%)

MCD 0.525 (-25.5%) 0.03 (-45.8%) 0.02 (-11.9%)

t+3
Non-Parametric 0.887 (0.3%) 0.092 (-9.6%) 0.028 (-4.9%)

Parametric 0.964 (1.8%) 0.15 (-3.8%) 0.054 (15.4%)

MCD 0.539 (-6.9%) 0.032 (-25.3%) 0.022 (-5.2%)
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Figure 10: Comparison of prediction intervals produced by each method, for one patient
(055n) on all six patient signals with di↵erent prediction horizons. The green line graph
shows the model’s predictions while the red shows the true signal values. The shaded
lighter green regions define the prediction interval.
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Figure 11: Starplot comparing the four prediction intervals across data sets of di↵erent
time horizons. Models compared were all trained on the “Mini” dataset. CP stands for
the coverage penalty calculated from the PICP.

(a) Noise SD = 0 (b) Noise SD = 0.3 (c) Noise SD = 0.6

Figure 12: Relationship between prediction error and RUE on the sine simulation problem
with di↵erent levels of noise (Di↵erent standard deviation; SD).
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