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Abstract. We present an uncertainty estimation model for algorithmic
trading agents in financial markets. These agents utilise deep learning
to analyse market data and identify trading opportunities. Our model
allows for optimised trade execution by providing estimated uncertainty
scores along with market predictions from deep learning models. Our
model is tested in trading with the S&P 500 index. Experiments demon-
strate that the estimated uncertainty correlates to prediction accuracy
and increased profitability can be obtained with our proposed method.

Keywords: Uncertainty Estimation, Algorithmic Trading Agent

1 Introduction

A trading agent is an intelligent software agent that uses machine learning to
facilitate trading in financial markets [5]. They analyse market data, identify
trading opportunities, and make trading decisions. Trading agents have become
increasingly popular in recent years due to their ability to process large amounts
of data quickly and make decisions based on real-time market information.

Uncertainty estimation has been attracting research attention in the machine
learning community, especially with the Bayesian learning approach [6]. Having
a reliable estimate of uncertainty is crucial for making informed decisions from
predictions made by AI systems. This is particularly important in finance, where
the decisions can have a significant impact on the end-users.

In trading, uncertainty estimation allows confidence-based decision making
[4] that optimises trade execution and risk management. For example, if the
algorithm has a high level of confidence in a particular trade, it may allocate
more resources to that trade to maximise potential profits. On the other hand,
if the confidence level is low, the algorithm may reduce the position size or avoid
the trade altogether to minimise potential losses.

Although Bayesian theory offers us mathematically grounded tools to reason
about model uncertainty, Bayesian learning approaches usually come with a
prohibitive computational cost [3]. More recently, uncertainty estimation directly
from neural network models have been explored, e.g., [7] introduce a meta-model
based approach for estimation prediction uncertainty.

We present an uncertainty estimation method with an autoencoder and show
its performance in trading the S&P 500 index. Our proposed model yields in-
creased profitability when compared against a Bayesian learning approach.
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Fig. 1: Uncertainty score model architecture.
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2 Uncertainty Estimation Model

To estimate uncertainty, we design an autoencoder-inspired architecture as shown
in Figure 1. Consider a multi-layer perceptron (MLP) model f, , with N layers
of hidden nodes trained with input X and output Y. The model is parameterised
on ¢ and v, which denote the first M and the last N — M layers of nodes, respec-
tively. Suppose that f, ., is a function fj 4 : R* — R° and the Mth layer contains
k nodes, then fs : R* — R¥ and f,, : R¥ — R°, such that

fow = ar%minl\Y— (fu o fo)(X)II%. (1)
Now, let us consider another MLP model g : R¥ — R, such that
g =argmin ||X — (g0 f5)(X)[|*. (2)
g

We see that f, and g form an autoencoder for X. We hypothesise that for an
instance x € R* and its corresponding label y € R it holds that

[y = fow(X)] o [x = (g o fo)(x)]. (3)
Thus, we can define
o :=[x—(go fs)x)]
as the uncertainty score for the prediction fg ., (%).

In other words, the depicted model architecture provides an uncertainty score
in the form of the reconstruction error o between the actual and reconstructed
input. o is hypothesised to be concordant with the true prediction error (Eqn. 3).
This provides an early indicator of a model’s performance before knowing the
actual outcome. Essentially, we make two assumptions in our model design:

1. a prediction model fy . performs well on inputs similar to the training set
and poorly on unfamiliar inputs; and

2. the decoder g trained on the same training set reconstructs inputs that
are similar to the training set well; thus, achieving low reconstruction errors

(small o). For unfamiliar inputs, the decoder would not be able to reconstruct

the input well, resulting in high reconstruction errors (large o).

Note that unlike a standard autoencoder model where the encoder and the de-
coder are trained at once, we first train the encoder f, as part of the prediction
model (Eqn. 1). With f, fully trained, we then train g separately (Eqn. 2). In
this way, we ensure that there is no sacrifice to prediction accuracy for fg ..

3 Experiments

This experiment compares the performance of our proposed model with a state-
of-the-art Bayesian learning approach, Gaussian Process Regressor (GPR) [9],
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Fig. 2: Training, validation and test data splits (The S&P 500 during 1 December
1969 to 13 May 2020). Each sub-period consists of 3 consecutive data parts.

which has been used to predict prices of different assets [1]. We forecast the
S&P 500 with the following features: S&P 500 index (up to one day before the
forecasting date), the Fama-French 3 Factors, and Momentum Factor [2]. The
data set contains values from 1/12/1969 to 13/05/2020.

As analysed in [8], the US stock market behaves differently between recessions
and non-recessions and between different recessions. Thus, the data set is further
divided into seven sub-periods, determined by the seven US National Bureau of
Economic Research (NBER) recessions as described in [8] (c.f. Figure 2). Each
sub-period is treated as a stand-alone data set as each has its own characteristics
determined by the market volatility at that time. All models were trained, fine-
tuned and evaluated on each of the seven overlapping sub-periods. Data in each
sub-period were z-score normalised independently prior to training. We adopt
cross-validation to select hyper-parameters achieving the best performance for
each model. We tuned the time lag (I € [5,7,9]) for both models and the width
(k € [32,64,128]) for our uncertainty model (M = 1, N = 2) with grid search.

For each period, we compare three metrics between our model and GPR:

1. prediction performance: MSE between market prices and predicted prices,
. uncertainty reliability: correlation between prediction error and uncertainty,
3. model profitability: annualised profits under the ideal parameter.

[\

Profits for each trade on day ¢ were calculated with the following equation:
Pt = ]lYt>Y¢,1(YVt —}/t_l) +]1Yt<yt71(}/t—l _}/t) (4)

Eqn. 4 states that when the model predicts rising stock prices, the agent buys one
unit of stocks on day ¢ — 1 and sell it on day ¢, and vice versa. Consequentially,
the derived annualised profits is such that:

252
AnnualisedProfits := 22 E P, (5)
n
t=1

where n represents the number of invested days. (Note that there are 252 trading
days each year.) The agent invests on days when uncertainty scores fall below a
threshold. For ease of comparison, we selected uncertainty thresholds generating
the highest profits with a minimum investing proportion of 0.05 for both models
(trade at least once a month). The results are shown in Table 1.

Our model achieves prediction accuracy comparable to that of GPR for most
sub-periods while giving higher concordance between uncertainty estimation and
prediction error. This implies that our model has a “better awareness” of its
performance than GPR. Consequentially, it is more effective for decision making
and yields increased profitability for most sub-periods for both recession and
expansion test sets (five and six out of seven sub-periods respectively).



Table 1: Comparison between our model and GPR.

69-76 73-80 80-83 81-91 90-02 01-10 07-20
Prediction Performance (Test MSE)
GPR 0.0245 0.0564 0.2965 0.0046 0.0018 0.0206 0.0477
Our Model 0.1793 0.0924 0.2683 0.0053 0.0026  0.0646 0.038
Pearson’s Correlation
GPR 0.4091 0.3505 0.6333 0.0843 0.3084 0.3275 0.4350
Our Model 0.5279 0.3286 0.4014 0.1142 0.3831 0.5187 0.4475
Recession Model Profitability (Test U$)

GPR 74.83 31.46 34.35 15.81 981.08 1086.59 2052.79
Our Model 194.23 97.27 67.90 378.63 667.38 214.74 20581.68
Expansion Model Profitability (Test U$)

GPR 56.74 -23.65 -11.97 151.63 487.83 425.12  6680.02
Our Model 18.00 177.34 5.47 268.49 1068.48 687.93 27313.02

4 Conclusion

In this paper, we present a deep learning uncertainty estimation model for trad-
ing agent inspired by the autoencoder model. Given a prediction model, our
model uses part of it as the encoder and employs a separate decoder trained
with the same data set as the prediction model. For a prediction instance, the
reconstruction error of the autoencoder represents the uncertainty score in pre-
dicting the instance. To demonstrate the effectiveness of our approach in market
prediction, we have experimented our model with the S&P 500 market index. We
show that (1) our uncertainty score highly correlates with prediction accuracy,
and (2) improved profitability can be obtained with our model. In the future,
we will analyse our approach from a Bayesian theoretical perspective to better
understand its applicability and limitations.
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