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Abstract. Logical agents base their action selection decisions on in-
ferences made over a logical knowledge base. Given a propositional logic
knowledge base expressed in Conjunctive Normal Form (CNF), the knowl-
edge can be converted into a geometrical format, and subsequent analysis
takes place as geometrical operations on the feasible region in that repre-
sentation. We present two novel methods based on this approach in order
to: (1) find SAT solutions for the knowledge base (i.e., a truth assign-
ment to each logical variable which makes the CNF sentence true), and
(2) find a reasonable approximation to the atom probabilities given the
current set of information. This allows agents to determine the semantics
(truth) of the world as well as to estimate the probability of truth.

1 Introduction and Background

Given a propositional calculus knowledge base represented in Conjunctive Nor-
mal Form (CNF), an agent can find out information about the world by finding
new sentences that are entailed by the current knowledge. In this way, an agent
can avoid danger and take appropriate actions. In order to do this, it may be
useful to determine whether or not the CNF sentence has a solution. If so, the
sentence is called satisfiable, otherwise it is unsatisfiable. This is called the SAT
problem (for SATisfiability), and is in NP.

Another aspect of interest to the agent is the probability that a specific atom
(logical variable) is true. For example, for the CNF S = A ∨ B, then since
there are three solutions {(0, 1), (1, 0), (1, 1)}, the probability of A is 2/3, and
the probability of B is 2/3. Note that this is the mean of the models (truth
assignments to variables) which satisfy the sentence. One way to determine the
atom probabilities is to solve the Probabilistic SAT (PSAT) problem [12, 7]. That
is, given n logical variables, there are 2n unique truth assignments (also called
models) to the variables. The set of all models is called Ω, and ωi is the model
with binary assignments corresponding to the binary representation of i−1; e.g.,
ω1 is all zero assignments - all false. The PSAT problem is to find a probability

distribution, π : Ω → [0, 1] such that
∑

2
n

i=1
π(ωi) = 1, and

∑
ωi|=Cj

π(ωi) = pj .

The probability of an atom is then found as Prob(A) =
∑

ωi|=A π(ωi) We have



also previously described how to solve the Probabilistic Sentence Satisfiability
Problem (PSSAT) [9] which in certain cases provides a PSAT solution (i.e.,
given independent variables). The methods we are proposing differ from standard
methods in that we solve linear or nonlinear systems of equations rather than
having to consider the full joint probability distribution over the variables (e.g.,
like Bayesian networks [13] or Markov Logic Networks [6]).

The Chop-SAT method has been proposed as an alternative way to answer
these questions about SAT and PSAT [10, 11]. Previous work on the topic started
with Gomory [8] who sought integer solutions for linear programs. Given the
semantics of the literals in a disjunction, then a linear inequality can be formed
summing xi for atoms in the clause and (1−xi) for negated atoms in the clause
and setting this to be greater than or equal to 1. Next, a {0, 1} solution is sought
resulting in an integer linear programming problem. If a non-{0, 1} solution is
found, Gomory proposed a way to separate (via a cutting plane) that solution
from all integer solutions. This method has been used in finding lower complexity
ways to provide theorems for proving the boundedness of polytopes, cutting
plane proofs for unsatisfiable sentences, pseudo-Boolean optimization, etc. (see
[1–5]).

Based on the Chop-SAT approach, the contributions here provide:

1. A method to determine whether a SAT solution exists, and
2. A method to determine an approximation to the atom probabilities.

2 Chop-SAT

A CNF sentence is the conjunction of a set of disjunctions where each disjunction
is a literal (i.e., either an atom or the negation of an atom). A CNF sentence is
then represented as S = C1 ∧ C2 ∧ . . . ∧ Cm, where Ci = Li,1 ∨ Li,2 ∨ . . . ∨ Li,k

where Li,j = ap or Li,j = ¬ap, and ap is an atom.
A CNF sentence, S, over n variables can be converted to a geometric problem

as follows. Consider the hypercube of dimension n; call it Hn. Then each vertex
of Hn represents a model for n variables. The vertexes also represent assignments
of probability 0 or 1 for the truth of each variable. Every other point in Hn can
be considered to give a probability on the interval [0, 1] for each variable. E.g.,
the center of Hn represents a probability assignment of 1/2 for each atom.

Next, consider a clause, Ci, of S with k literals. Since it is a disjunction,
there is only one truth assignment over its literals which makes it false: namely,
where the atom of each literal is assigned the value which makes the literal false.
However, every atom not represented by a literal in Ci can take on either truth
value and not change the truth of the clause. Thus, there is a sub-hypercube of
dimension n− k, that is, an instance of Hn−k, whose vertexes are not solutions
for S. It turns out that there is an (n− 1)-dimensional hyperplane which can be
constructed so as to separate solutions from non-solutions for Ci. This chopping
hyperplane can be positioned anywhere along the edges connecting Hn−k to the
rest of Hn. Figure 1 shows an example of chopping one vertex ([1,0,1]) from the
H3.



Fig. 1. Example of Chopping [1;0;1] from H3.

Once all the chops are made (i.e., the intersection of the non-zero half-spaces
defined by the hyperplanes), the resulting convex set is called the feasible region.
Note that it is necessary to include hyperplanes which define the faces of Hn in
order to keep the feasible region bounded. Figure 2 shows a simple 2-D example
feasible region resulting from chopping off each corner. The hyperplanes in this
case are lines in 2-D (each row provides the coefficients a, b, c of the standard
form equation of a line: ax+ by + c = 0):

-0.7071 -0.7071 1.0607

-0.7071 0.7071 0.3536

0.7071 -0.7071 0.3536

0.7071 0.7071 -0.3536

1.0000 0 0

-1.0000 0 1.0000

0 1.0000 0

0 -1.0000 1.0000

where the first four are the corner cuts, and the last four are define the faces
(sides) of the square.

3 Solving SAT

Given a feasible region, F , corresponding to a CNF sentence (or knowledge
base), it is possible to probe that region to determine if there is a SAT solution
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Fig. 2. Example 2-D Feasible Region Resulting from Chopping all Corners o H2.

(i.e., a corner of Hn in F). Note that the feasible region for any unsatisfiable

sentence has no point farther than
√
n−2

2
from the center of Hn. Our approach

takes advantage of the fact that the Maximal Volume Inscribed Ellipsoid (MVE)
of a set of linear inequalities can be found in polynomial time. Moreover, this
ellipsoid will, in general, have its major semi-axis aligned with the most elongated
part of F . In order to increase the volume, it is possible to move the hypercube
face constraints outward to allow a larger volume for the ellipsoid. Figure 3
demonstrates this idea in 2-D where there is just one solution ([0;0]), and the
sides of the square have been moved out 10 units.

To test the practicality of this approach, the following experiment was per-
formed:

– A set of 1000 random knowledge bases over 20 variables were generated.

– The corresponding feasible region was determined for each KB.

– The MVE was found for each feasible region.

– The major semi-axis was found.

– Linear programming was used to find the point in the feasible region which
projected to the extreme position along the major semi-axis.

– If the point is greater than
√
n−2

2
away from the center, then a solution is

known to exist.

A solution was found in this way for every knowledge base.



Fig. 3. Example 2-D MVE Showing Major Semi-Axis in Direction of Solution.

4 Solving for Atom Probabilities

Another important problem for an agent is to determine the probability of the
state of the world. For example, in the Wumpus World, the agent will die if it
enters a cell with a pit. Here we describe a method to determine such probabilities
using the feasible region arising from a CNF sentence knowledge base.

For any given satisfiable knowledge base, the atom probabilities are just the
average of the 0/1 truth assignments of the models which make satisfy the CNF
sentence as described in the introduction. However, since it is too computation-
ally costly to determine all possible solutions and take their average, we propose
the following approximations that can be found within a feasible region F :

– the analytic center of F .
– the p-center of F .
– the center of the MVE.
– mean of samples from F .

Analytic Center of F The analytic center of F is defined as:

c = maxy

∏
(a · yh)

where y ∈ F , a is the hyperplane coefficient vector, and yh is y with a final
homogeneous coefficient of 1.



P-Center of F The p-center of the feasible region is defined as follows: for each
hyperplane in the set of linear inequalities, find a point, p, in F that lies on the
hyperplane; next, find the point on the opposite side of F in the direction of the
normal of the hyperplane

Center of MVE of F The MVE provides both the center of the MVE as well as
the directions of the semi-axes. Here, the center of the MVE is used to approxi-
mate the atom probabilities.

Mean of Sample Points from F In this approach, a number of samples are
found in the feasible region and their average determined. For example, solve
the following:

minxf
Tx

such that x ∈ F and f is taken as the positive and negative unit vector along
each axis of the n-D space.

4.1 Experimental Study

For this study, 1000 random knowledge bases were generated with 5 atoms, a
maximum of 10 clauses, and at most three literals in a clause. Figure 4 shows the
Euclidean distance between the atom probability vector and the four proposed
approximations: (1) the analytic center (has lowest error), (2) the p-center (next
lowest error), (3) the Chop mean center (similar to p-center error), and (4) the
ellipse center which has the most error. Error over all trials was 0.25, 0.52, 0.57,
and 1.07, respectively.

Figure 5 shows how the centers cluster. Since the vectors are all 5-dimensional,
they are converted to a 2-dimensional representation which maintains spatial co-
herence. As can be seen, the analytic centers spread similarly to the actual atom
probabilities, the MVE centers form a tight central cluster, the p-centers skew
somewhat away (up) from the actual atom probabilities, while the Chop mean
centers skew a good bit away from the actual probabilities.

5 Wumpus World Experiment

To demonstrate the effectiveness of this approach, agent decision making was
tested in the Wumpus World framework. Wumpus World was proposed by Yob
[15], and has been used as a standard agent testbed for some time [14]. Wumpus
world here is a 4x4 grid of cells; each cell may contain a pit with 20% probability,
and if there is a pit it is the only thing in the cell. One cell contains some gold,
and one cell contains a Wumpus (the gold may be co-located with the Wumpus).
An agent starts in cell (1, 1) and explores the grid in order find the gold. Each
cell neighboring a pit has a breeze, and each cell neighboring the Wumpus has
a stench. Figure 6 shows an example board with the agent in cell (1, 1) with
direction θ = 0, with pits in cells {(1, 4), (4, 2), (4, 3)}, the Wumpus in cell (2, 3),
and the gold in cell (4, 4).
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Fig. 4. Error of Approximation Methods: Analytic Center (blue), P-Center (red), Chop
center (mustard), MVE center (purple).
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Step 1

Fig. 6. An Example Wumpus World Board.

The agent has a set of percepts in a cell (represented as bits): (1) stench, (2)
breeze, (3) glitter, (4) bump, and (5) scream. The glitter percept lets the agent
know it’s in the cell with the gold. The agent has a state (x, y, θ), where (x, y) is
its location in the grid, and θ is its orientation θ ∈ {0, 90, 180, 270} degrees. The
agent has a set of possible actions: (1) rotate left, (2) rotate right, (3) forward,
(4) grab, (5) shoot, and (6) climb. If the agent moves into a cell with a pit or
the Wumpus, it dies. The agent has one arrow and can shoot the Wumpus.

The agents here all share a Belief, Desire, Intention cognitive architecture
with desires: (1) escape, (2) kill the Wumpus, and (3) explore. If it has the gold,
its intention will be to escape with the gold. The agent’s intention will be to kill
the Wumpus if its location is known. Otherwise, its intention is to explore the
grid. In order to explore, the agent selects the lowest probability risk unvisited
cell. All agents have the same BDI architecture and only differ in how they
compute the probabilities for risk: (1) a human produced algorithm to assign
pit and Wumpus probabilities, (2) the analytic center, (3) Chop-SAT mean, and
(4) Monte Carlo simulation based on statistics over sample boards satisfying the
known percept information.

The experimental method is to generate 1,000 random Wumpus boards, run
each agent type on the boards, and measure successful escape with the gold.
Note that the Monte Carlo results will be very close to optimal and serves as
the upper bound on success. The results are given in Table 1. As can be seen,
the Chop-SAT based agent performed the best, and this is a good indication of
its efficacy.



Table 1. Results of Wumpus World Experiment.
Number Human Analytic Chop-SAT Monte Carlo

of Boards Center

1000 585 598 608 613.3

6 Conclusions and Future Work

The results of the experiments indicate that this geometric approach works well
at least up to dimension 20, and that the analytic center is the best approx-
imation to the actual atom probabilities on a random set of knowledge bases.
However, the probabilities provided by the Chop-SAT method performed slightly
better in the decision making experiment in Wumpus World, and both the ana-
lytic center and Chop-SAT methods performed better than a human developed
risk probability algorithm.

Future work includes:

– performing SAT solver experiments in higher dimensions,
– using the atom probability approximation in more complex agent decision

making situations and compare its effectiveness with other methods.
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