Implementing Multi-Sensor Systems

in a Functional Language'

Esther Shilcrat, Prakash Panangaden
and Tom Henderson

UuUCS-84-001
24 February 1984

Department of Computer Science
The University of Utah
Salt Lake City, Utah 84112
(Shilcrat, Panangaden, Henderson)@UTAH-20

Abstract: We discuss a methodology for configuring systems of sensors using
a functional language. To date no such general methodology exists, and existing
multi-sensor systems have been hand-crafted around a particular application.
Our main point is that the use of abstraction and of functional language features
leads to a natural and simple approach to this problem. Our work exploits
features of a particular functional programming environment, Function Equation
Language (FEL) running on the REDIFLOW simulator, to develop a simple fault-
tolerance scheme that avoids complicated issues of state restoration and
switching protocols, and to develop implementations of multi-sensor systems
that are very close to the abstract system specification and are hence manifestly
correct.

keywords and phrases: Functional Programming, Sensor Systems, Fault
Tolerance, Demand Driven Evaluation, Logical Sensors, Data Abstraction.

1

This work was supported in part by NSF Grants ECS-8307483 and MCS-82-21750.

1. Introduction

Functional programming has long been advocated as a convenient and flexible method to
facilitate the design and development of systems that are composed of independently defined
modules functioning co-operatively. By and large, however, functional programming applications
have been limited to situations that are well understood in an imperative setting; In this paper we
examine a novel application of functional programming, namely a system for configuring networks
of sensors. We use several features of functional languages to arrive at a simple and natural
implementation of sensor networks. Indeed, our major thesis is that functional programming
concepts are naturally suited to this important application area and that some common features of
functional languages can be used to finesse certain problems that would arise in a more

conventional programming environment. Furthermore, our fault-tolerance mechanism, though

deveiloped in our particular problem domain, has general applicability. Finally, our system is generai
in that it can be used with any multi-sensor system instead of being "hand-crafted” around a

particular concrete application.

Monitoring highly automated factories or complex chemical processes requires the integration and
analysis of diverse types of sensor measurements; e.g, it may be necessary to monitor
temperature, pressure, reaction rates, etc. In many cases, fault tolerance is of vital concern; e.g. in
a nuclear power plant. Our work has been done in the context of a robotic work station where the

kinds of sensors involved include:

* cameras: an intensity array of the scene is produced,

* tactile pads: local forces are sensed,

* proximity sensors: the proximity of objects to a robot hand is sensed,

* laser range finders: the distance to surface points of objects in the scene
are produced, and

* smart sensors: special algorithms implemented in hardware for detecting
features such as edges.

Other examples of sophisticated sensor systems include automatic target recognition (ATR)
systems [Bhanu 83] and the Utah/MIT Dextrous Hand [Jacobsen 83]. ATR systems integrate data
from three sensors: microwave, FLIR (Forward Looking Infra-Red), and LADAR (Low Altitude
Detecting and Ranging), via seven separate computational steps. The Utah/MIT Hand includes a
tactile sensing system which is composed of tactile element sensors gathered into tactile pads and

placed on the Hand.

The increasing sophistication of sensor applications has raised a variety of problems which

cannot be efficiently solved by the ad hoc configuration techniques generally used in the past for

single sensor systems. For instance, in multi-sensor systems it is much more difficult to correctly
expréss the inherent relations of transformed data. In ATR systems, for example, the lowest level
would be the raw data returned by the physical sensor, next, the data which results from
preprocessing the raw data, then the result of the next software layer, target detection, and so on.
Often there are relationships to be expressed within a level; for example, preprocessing may involve
first transforming the data by a high pass filter program, and then by locally variable scaling. In
the case of the Utah/MIT Hand, the most obvious relationships to be expressed are between the
physical sensors themselves: the tactile elements form a pad, a group of pads form a finger (or

palm), the fingers and palm form the Hand.

Thus, in multi-sensor systems, the complexity introduced by the use of many sensors and
software layers makes paramount the need for a coherent and systematic treatment of data,
particularly when using various kinds of sensors. Multi-sensor systems also complicate the issue
-of fault tolerance. In single sensor systems, backup sensors would generally be duplicates of the
failed sensor, or would be functionally equivalent to it, and would be permanently mounted and
running. In the case of multi-sensor systems, mounting duplicate sensors may be either
prohibitively expensive or impossible due to physical space limitations. Furthermére, stopping a
system in order to mount a replacement sensor will conflict with the real-time expectations of

some sensor systems.

A solution to these problems can be achieved through the use of logical sensor specification, a
framework in which sensors and their software layers can be abstractly defined in terms of
computational processes operating on the output from other sensors. Such abstractions are called

logical sensors. Logical sensors are a means of information hiding such that sensor system

configuration becomes tantamount to function composition and application.

The language we use is Function Equation Language (FEL) [Keller 82] which runs on the REDIFLOW
multiprocessor simulator [Keller 83]. The REDIFLOW simulator supports both graph reduction and
dataflow evaluation strategies, with graph reduction being the default. The invocation of functions
is controlled in a demand-driven fashion. This combination is ideally suited to our applications,
especially as regards the fault-tolerance mechanism. This particular language embodies a
functional semantics based on the concept of Function Graphs [Keller 77]. This graphical view of
functions is ideally suited to describing systems which are networks of computing agents as is the

case in our multi-sensor systems.

2. Logical Sensors

Sensor system configuraﬁon in multi-sensor systems presents a variety of problems, including
how to express the relationships between sensed/transformed data, how to focus on the issues of
importance amidst the confusing plethora of details concerning both the sensors and associated
software, and how to express and implement fault tolerance. We present logical sensor
specification, a methodology designed to deal with the particular problems inherent in multi-sensor
system configuration. The need for this abstraction mechanism wasyoriginally articulated in the
course of developing the Multi-sensor Kernel System (MKS) [Hansen 83, Henderson 83a, Henderson
83b, Wu 83]l. Logical sensor specification incorporates solutions to the above mentioned key

problems of multi-sensor systems, via information hiding, data relationship expression and alternate

computation paths.

Many sensor/software details are irrelevant in determining sensor system configuration. However,
one item of information which is always necessary is the type of output produced. Thus, logical
sensors are designed as a means by which to insulate the designér from unnecessary details, while
keeping necessary information visible. This is accomplished by creating “packages” of sensors,
wherein only output type is visible to the rest of the system. Thus, a logical sensor, however

complicated, is viewed simply as an object of a specified type.

This concentration on type not only serves to shield the designer from unnecessary information,
but also facilitates the view of system design as function application. As a simplified example of
this, consider a sensor system for finding edges designed around a single camera. The camera is a
logical sensor, and hence object, of type (stream? of i:int, j:int, ?ntensity:int). The overall logical
sensor, “edge-finder”, is an object of type (stream of i:int, j:int, edge:bool). Thus, a transducer of
type (stream of int x int x int) ---> (stream of int x int x bool) is needed to create “edge-finder”

out of “camera” (see figure 3-2).

The following inductive definition shows how logical sensors hide unnecessary information and

express fault tolerance:

1. A logical sensor name. This is used to uniquely identify the logical sensor.

ZSlnce physical sensors continually produce output, which is continually being processed, both physical and logical sensors produce
streams of output.

2. A characteristic output vector. A vector of types which serves as a description of the
output vectors that will be produced by the logical sensor.

3. A selector whose inputs are alternate subnets (below) and an provided acceptance test.
The role of the selector is to detect failure of an alternate and switch to a different
alternate. If switching cannot be done, the selector reports failure of the logical sensor.

4. Alternate Subnets. This is a list of one or more alternate ways in which to obtain data
with the same characteristic output vector. Each alternate subnet in the list is itself a
pair composed of:

* A tuple of input sources. Each input source is in turn itself a logical sensor. As
a special case, the tuple of input sources may be null. Allowing null input permits
physical sensors, which have only an associated program (the device driver), to
be described as a logical sensor, thereby permitting uniformity of sensor
treatment.

* A computation unit, a transducer, over the input sources. In some cases, a
special “do-nothing” unit may be used. We refer to this unit as PASS.

Since even physical sensors are classified as logical sensors, a logical sensor can be viewed as a
network composed of sub-networks which are themselves logical sensors. Communication within a
network is controlled via the flow of data from one sub-network to another. The action of the
computation units is to accept a stream of input data and produce a stream of output values; thus,

a logical sensor may be viewed as a data-flow network.

3. Functional Fault Tolerance

Multi-sensor systems present a challenging opportunity to turn what is in one case a source of
weakness (thg number and variety of sensors) into a source of strength in terms of building fault
tolerant sensor systems [Henderson 83c]l. Through the use of data abstraction in a functional

environment, logical sensor specification helps provide ways in which to meet this challenge.

By focusing concentration on the object type, logical sensors facilitate the recognition of ways in
which to make sensors already in the system serve as backups in addition to their primary sensing
role. As a simplified example, consider logical sensor “tactile_pad,” of type (stream of iiint, j:int,
force:bool), which contains three tactile element logical sensors of type (stream of force:bool).
Suppose that one of the three tactile elements fail. If an interpolator function of type (stream of
bool x bool) ---> (stream of bool) can be created or composed, the other two tactile elements
could be used as backups for the failed element. As this example illustrates, backups may well not

be simple replacement of sensors, but replacements which involve one or more sensors, and one

or more software modules. Such replacements make it yet more desirable to abstract sensor-

software combinations, and to avoid unnecessary consideration of the internal details of an abstract

sensor.
Element 2 fails
Z=====z==z=====>
| Combine | Combine
1 e e e e a0 e o o o e e e o e] ¥ e e e o e o o e]
. —]
/ l \ / @ TN M m m m m n n - o\
/ | \ / linterpolate pgm| \
/ | \ / Y e AN
/ | \ / / \ \
| E1. 1] | E1. 2| | E1. 3| | E1. 1| | E1. 3|
fncmme! - LI]]] (] []

Figure 3-1: A Fault Tolerant Configuration for a Tactile Pad

We introduce the use of a selector node as a means to achieve fault tolerance in a functional
environment. The selector determines which function application, i.e. alternate subnet, is
acceptable, thereby allowing failure and recovery. The failures detected by a selector may be due
to either hardware or software failures; no attempt to determine the exact cause of failure is made.
This is in accordance with our view of the need for a hardware/software transparency in sensor
systems, which is reinforced by the consideration that in a multi-sensor system, particularly where

continuous operation is expected, trying to determine and correct the exact source of a failure may

be prohibitively time-consuming.

Th‘e selector node operates in a manner similar to that of the recovery block [Randell 77]. Like
the recovery block, a selector contains a series of alternates which are to be tried in the order
listed and uses an acceptance test to ensure that the output produced by an alternate is correct or
acceptable. If the acceptance test passes the output from the first alternate, that stream of output
data flows up, otherwise the second alternate is activated. If the outpuf from the second alternate
is not acceptable, then the third is triéd, and so on. If no alternate passes, the selector reports

failure. Switching may then be accomplished by some higher level selector.

However, selectors do not entail the the use of complicated error recovery mechanisms (restoring
the state, and so on), which is typical in imperative settings. In an imperative program a sensor

may update global variables before failing; such variables have to be reset before a backup can be

activated. In our case this need not be done since there are no global variables of any kind. When
an alternate is activated by a selector it can start functioning immediately and the old network is

eventually removed by the garbage collector.

This point is particularly important in our application, with regard to both time and space
considerations. Not only may the time taken to restore the state conflict with the real-time nature
of many sensor systems, but sensor systems also generally pose space problems by the large
amount of data they produce; such a situation is only exacerbated by the need to store state
recovery information. In addition, most sensor systems are designed to sense the current
environment, in accordance with the view that the scene to be sensed is in a constant state of flux.
Thus, it is useless to try to “roll back” to a previous time-slice; since the scene is changing, only
the location of objects at the curreht moment is of interest. The complexity of using a global state
in such sensing lends itseif to dangerous inconsistencies, rendering the functional approach both

more natural and safer.

We now present the formal definition of some of our example logical sensors:

Logical Sensor Name: Edge-finder

- Characteristic Output Vector: x:int, y:int, edge:bool
Acceptance Test: Sharp-edge R
Subnet(s) (computation unit, input source pairs):

1. (Edge-program,Camera)

This logical sensor has only one subnet, and hence any failure must be accommodated by some

higher level logical sensor. The input source, Camera, must itself be a logical sensor:

Logical Sensor Name: Camera

Characteristic Output Vector: x:int, y:int, intensity:int
Acceptance Test: Timeout

Subnet(s): ;

1. (Driver-camerat, null)

2. (Driver-camera2, null)

Camera is defined to have two alternate subnets, so that a failure of the physical cameral will

initiate a demand on physical camera2. Pictorially, logical sensor Edge-finder looks like:

Figure 3-2: Logical Sensor Edge-finder

Edge-finder mm————————— .
(x:int, y:int, | sharp-edge |
edge:bool) S —— '

l
| edge pgm. |
1 e o o e e o o o o e t

l
Camera meme————————
(x:int, y:int, | Timeout |
intensity:int) e ———————— '
/ \

|DrivCam1| |DrivCam2|
]

4. Logical Sensor Systems in Function Equation Language
In this section we describe how the logical sensor‘ system described in the last section is
implemented in Function Equation Language (FEL) [Keller 82]. First we describe briefly some of the

key features of the FEL/REDIFLOW environment that are of interest in our implementation.

One can view an FEL program in two semanticaily equivalent ways: (i) a textual form in which the
programs are actually written; and (ii) a graphical form which is convenient for actual program

design and composition. We shall discuss both of these views in what follows.

An FEL program is a function from a domain of inputs to a domain of outputs. Each such
function is viewed as the node of a graph with the input arcs representing the data values on
which the function is appliéd and the output arcs representing the data values resulting from the
function application. The main graph defining a particqlar function can be supplemented by other
graphs defining the auxiliary functions used in the top-level definition. Thus program composition

is easily modelled as the linking together of graphs.

Syntactically an FEL program consists of a set of equations called an equation group. Each

equation group also contains a result expression. Each equation in the equation group equates an
identifier with an expression defining an object. These objects may be functions or any data

structure, thus functions are first class objects in FEL. The effect of executing an FEL program is to

evaluate the result expression. Right-associative function application is denoted by an infix colon,
“*, while left-associative function application, or currying, is denoted by a vertical bar, “|". Function
abstraction is written with a “=>", thus Ax.f(x) would be written as "x => (f:x)”. Notationally an FEL

equation group appears as:
{equations RESULT expression}.

The keyword RESULT indicates that the following expression is the result expression. The basic
constructor functions used are "~ ” which is essentially an infix cons, "~ ~” which is essentially an
infix append and “[]" which is the tuple constructor. These are all lazy constructors and hence can

be used with potentially infinite streams.

ThLe standard evaluation mechanism for FEL is graph reduAction [Trelevan 82]. The high-level
) textual FEL programs are mapped into a low-level functional language based on the graphical
representation discussed above. The application of a function is modelled by macro-substitution of
a node labelled with the function name by a graph which defines the meaning ofrthe function.
Reduction entails the creation of a new copy of a function body for each invocation of the function.
The REDIFLOW simulator, however, also allows functions to behave as a stream-transducers (by
adding the keyword PROCESS to the FEL function definition). Thus we may use both reduction and
dataflow evaiuation in the same network. We use reduction to ensure that those parts of the
network that are present as backups are represented only inAskeIetal form until they are needed,
and we use dataflow we ensure that a function acting on input streams does not get recopied for

every member of the stream. Both evaluation mechanisms embody a demand driven strategy, that

is, no expression is evaluated uniess its result is needed for the evaluation of the outermost result

expression.

To summarize, the main features of FEL/REDIFLOW that we exploit in the implementation of a

logical sensor network are:

* the correspondence between the graphical view of logical sensors and the function
graph view of FEL programs. This engenders a straightforward translation between
specifications written in the Logical Sensor Specification Language (LSSL) and FEL code.

* the purely functional nature of FEL. This leads to a simple fault-tolerance scheme
where complicated issues of state restoration are finessed.

* demand-driven function invocation. This means that nodes will be inactive until they
are demanded by the selector and thus no unneeded data will be produced.
Furthermore, switching between a logical sensor and its backups occurs entirely by the

propagation of demands, thus no explicit switching protocols are required.

* the hybrid evaluation strategy. This allows optimal use of resources since demanded
nodes are not duplicated (dataflow) and nodes which are not demanded are not
expanded (reduction). '

Figure 3-2 makes manifest the following correspondences: A logical sensor is simply a function

graph. A logical sensor name is the identifier which is equated to the FEL expression defining the

graph in question. The characteristic output vector is simply the type of the function graph. The
computation units and selectors correspond to functions, the interconnections between selectors
and computation units are expressed as function applications. We now give a detailed example of
the correspondence between logical sensors and FEL code. Consider the logical sensor shown in

fig 3-2. The sensor picture presented translates directly to this FEL code:

Edge-finder = (selector|acc_sharp_edge):[Edge-program:Camera]
Camera = (selector|acc_timeout):[[Driver-camerai:[]],[Driver-camera2:[]]]

(* where the definition of selector is %)
selector = (acc_test => (subnet-list =>
if subnet-list = [] then []
else
(acc_test:(first:subnet-1list))~~((selector|acc_test):(rest:subnet-list))

(* the acc functions are constructed from the given (boolean valued)
acceptance tests. We show acc_sharp edge in the example below ¥)
PROCESS acc_sharp_edge:stream =
if stream = [] then [] else
if sharp_edge:(first:stream) then
(first:stream)~(acc_sharp_edge:rest:strean)
else []

Thus, the FEL equational definitions correspond exactly to the graphical view of logical sensor
networks. In the graphical view, a logical sbensor is a data stream which is formed by choosing (via
the acceptance test) between computations preformed on other logical sensors. In the FEL view, a
logical sensor is a stream of data (and hence an object) produced by applying the higher-level
selector function to the acceptance test, and the list of computation units applied to logical

sensors.

The selector function involves both dataflow and reduction style evaluation. The selector takes as

arguments an acceptance test and a list consisting of computation units applied to their input

10

sources (the alternate subnet list). We assume that a correctly operating logical sensor produces
an infinite stream of output. Thus an end of stream (represented by [] in FEL) signifies that none
of the alternates produced acceptable data. This is known to be the case when the subnet list is
empty. The acceptance test function is a filter on the incoming data stream constructed from the
given (boolean valued) acceptance test; it passes on acceptable data and returns [] when a failure
is detected. In order to operate as stream transducers they are implemented as processes.
Reduction style evaluation enters through the use of “~ *”“. As long as its first argument is
producing data the second argument is not demanded since "~ ~" is lazy. If the first argument
returns [] (indicating that that subnet has ceased to function) then the second argument of "~ ~” is
demanded; until such time the subnets corresponding to the second argument of the "~ ~" are

present only in skeletal form.

We now present a more detailed example. Range Finder fig4-1 obtains surface point data via two
possible alternate methods. The characteristic output vector of Range Finder is (x:realy:real,z:real)
and is produced by selecting one of the two alternate subnets and projecting their first three
elements. The preferred subnet contains logical sensor Image_Range. This logical sensor has two
alternate subnets, both of which use the computational unit PASS. PASS does not affect the type
of the logical sensor, being merely the identity function. These alternatives will be selected in turn
to produce streams of type (x:realy:realz:realiiinteger). I|f both alternates fail Image_Range has
failed. Range_Finder then selects the second subnet to obtain the (x:real,y:real,z:real) information

from Tactile_Range. If Tactile_Range also fails, then Range_Finder fails.
The FEL code corresponding to this logical sensor network is shown below:
{ RESULT range_finder

range_finder = .
(selector|acc_rf):[project123:image_range,projecti23:tactile_range]

image _range = (selectorlacc_image):[PASS:laser_light,PASS:stereo]
tactile_range = (selector|acc_tr):[3_D:tactile_pad]
laser_light = (selector|acc_l1):[P1:camera_1,P2:camera_2]

camera_1 = (selector|acc_c1):[driver_camera_1:[]]

(selector|acc_c2):[driver_camera_2:[]]

camera_2

1

Range Finder | rf test l
| mmmmm e I
| Project | Project |
| 123 | 123]|

image test |
---------------- I (x:real,y:real,z:real,
| PASS | force:bool)
________________ f
Stereo | st test | | tr test| Tactile Range
B l |=mmmmmee l
|PASS |PASS| | 3-D |
¥ e e e e e o o 1 ! e !
[\ l
| 11 test | Stereo | fs test| | ss test| Stereo (i:int, j:int,
[— l L R | R I 2 force:bool)
| P1 | P2 | | Fast | | Slow |
| I | | Stereo | | Stereo |
' ----------

(i:int,
J:int,
level:int)

Figure 4-1: Logical sensor Range Finder

12

stereo = (selector|acc_st):[Pass:fast_stereo,Pass:slow_stereo]

fast_stereo

(selector|acc_fs):[fast_stereo_prog:[camera_1,camera_2]]

slow_stereo = (selector|acc_ss):[slow_stereo_prog:[camera_1,camera_2]]

tactile pad = (selector|acc_tp):[combine prog:[t1,...,tn]]

t1 = (selectorlacc_t1):[driver_t1:[]]}

Working with a graph reduction system allows us to reuse subnetworks via structure sharing. Thus
for exampie the camera_1 and camera_2 logical sensor subnetworks are used by laser_light,
fast_stereo and by slow_stereo. Since activation of a subnet is accomplished by the arrival of
demand, we need not articulate any protocol for switéhing between networks. With several levels
of selection, as in this example, it would be tedious to explicitly encode such switching. In the
present example the selection might occur as follows: The top-level node (select_rf) would demand
the reduction of image_range, if the data that appeared passed the acceptance test (acc_rf) then
this would be reported as the result of running this logical sensor network, if it did not pass the
acceptance test then the reduction of tactile_ range would be demanded. When the reduction of
image_range is demanded, the selector at the top of the corresponding function graph would
demand the evaluation of laser_light. If laser_light failed to produce acceptable data, stereo would

be demanded.

5. Conclusion -

A prototype logical sensor specification system is currently undér development. This features an
interactive front-end which allows the designer to specify a logical sensor in an abstract
specification language, which is then compiled into FEL. The front-end and the compiler are
written in Portable Standard Lisp (PSL). Further system development awaits the completion of the
REDIFLOW project.

Several theoretical and pragmatic issues remain to be developed. The use of acceptance tests
introduces indeterminacy; this should be addressed by a formal semantics for logical sensors. Our
formalism could bé extended to allow recursive definitions of logical sensors, since this is required
to describe sensor systems which involve feedback loops. For a more refined approach, one could
expand the notion of type to include performance characteristics such as accuracy or resoiution.
~These characteristics can be used to determine a more accurate set of functionally equivalent

logical sensors. The feasibility of incorporating and propagating such information through a logical

13

sensor network is being investigated.

To summarize, we have developed a functionally based, general purpose, multi-sensor
configuration system. To date, no such system has been developed in an imperative setting. We
have argued that the functional programming style leads to a modular and semantically transparent
multi-sensor system design. In particular, we have shown that, for our purposes, fault tolerance is
expressed more naturally in a functional framework than in the standard imperative style recovery
block schemes. We have shown how the use of a demand driven control protocol completely
obviates the need for explicit articulation of switching protocols. Finally, by using the novel
REDIFLOW architecture which allows both reduction and dataflow evaluation, we minimize

overheads traditionally associated with functional languages.

[Bhanu 83]

[Hansen 83]

[Henderson 83al

[Henderson 83b]

[Henderson 83c]

[Jacobs_en 83]

[Keller 77]

[Keller 82]

[Keller 83]

[Randell 77]

[Trelevan 82]

[Wu 83]

14

References

Bir Bhanu.
Evaluation of Automatic Target Recognition Algorithms.
In Proceedings of the SPIE West ‘83. August, 1983.

Hansen, C., T.C. Henderson, Esther Shilcrat and Wu So Fai.

Logical Sensor Spscification.

In Proceedings of SPIE Conference on Intelligent Robots, pages 578-583. SPIE,
November, 1983.

Henderson, Thomas C. and Wu So Fai.

A Multi-sensor Integration and Data Acquisition System.

In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 274-280. |EEE, June, 1983.

Henderson, T.C. and Wu So Fai.
Pattern Recognition in a Multi-sensor Environment.
UUCS 001, University of Utah, July, 1983.

Henderson, T.C., E. Shilcrat and C. Hansen.
A Fault Tolerant Sensor Scheme.
Computer Science UUCS 83-003, University of Utah, November, 1983.

Jacobsen, S, J.E. Wood, D.F. Knutti and K. Biggers.
The Utah/MIT Dextrous Hand.
In MIT/SDF IRR Symposium. August, 1983.

Keller R. M.
Semantics of Parallel Program Graphs.
Department of Computer Science UUCS-77-110, University of Utah, July, 1977.

Keller R.M.

FEL Programmer’s Guide.

AMPS Technical Memorandum 7, Univ. of Utah; Dept. of Computer Science, April,
1982.

Keller R. M., Lindstrom G., Organick E. |
REDIFLOW: A Muitiprocessing Architecture Combining Reduction and Data-Flow.
In Parallel Architecture Workshop. Univ. of Colorado, 1983.

Randell, B.
System Structure for Software Fault Tolerance.
Prentice-Hall, Englewood Cliffs, NJ, 1977, pages 195-219.

Trelevan P. C., Brownbridge D. R., Hopkins R. P.
Data-Driven and Demand-Driven Computer Architecture.
ACM Computing Surveys 14(1):93-143, March, 1982.

Wu So Fai.
A Multi-sensor Integration and Data Acquisition System.
Master’s thesis, University of Utah, June, 1983.

