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Abstract

We have proposed a lane-based approach to handle large-scale Unmanned Aircraft

Systems (UAS) traffic management. Given the number of UAS in the airways simulta-

neously, it is necessary to imbue each UAS with a learning capability at the cognitive

level so that it can optimize its performance in the face of weather, airway congestion

and other contingencies. Here we describe a Belief, Desire, Intention (BDI) archi-

tecture for the representation and reasoning over cognitive states, where these beliefs

include goals for the UAS such as staying in its lane, on heading and at the desired

speed. Such goals are represented as logical propositions, and if false, they may be

selected as goals (intentions). We apply reinforcement learning to optimize the selec-

tion of a plan to achieve the goal of the UAS. That is, a policy is determined which

given the cognitive state of the UAS, including for example weather conditions, a plan

is selected which achieves the goal with minimal cost and maximal effectiveness.

1
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Abstract— We have proposed a lane-based approach to
handle large-scale Unmanned Aircraft Systems (UAS) traffic
management [1]. Given the number of UAS in the airways
simultaneously, it is necessary to imbue each UAS with a
learning capability at the cognitive level so that it can optimize
its performance in the face of weather, airway congestion and
other contingencies. Here we describe a Belief, Desire, Intention
(BDI) architecture for the representation and reasoning over
cognitive states, where these beliefs include goals for the UAS
such as staying in its lane, on heading and at the desired
speed. Such goals are represented as logical propositions, and
if false, they may be selected as goals (intentions). We apply
reinforcement learning to optimize the selection of a plan to
achieve the goal of the UAS. That is, a policy is determined
which given the cognitive state of the UAS, including for
example weather conditions, a plan is selected which achieves
the goal with minimal cost and maximal effectiveness.

I. INTRODUCTION AND BACKGROUND
The coming wave of autonomous, semi-autonomous,

and human-operated vehicles in low-altitude airspace over
densely populated areas requires a new system to automate
air traffic control (ATC). The current system relies heavily
on the intuition of human pilots and controllers who benefit
from over one-hundred years of recorded trials and errors.
Even after millions of test cases per year, contingencies
occur that confound experts and result in disastrous out-
comes (e.g., the failure of coordination that resulted in a
mid-air collision over Uberlingen, Germany in 2002 [2]).
The computational intractability of enumerating all possible
sequences of actions and outcomes that lead to contingencies
is the root-cause for these disasters; if engineers knew the
Uberlingen scenario was possible they would have avoided
it (after the accident, TCAS software was patched to handle
it, albeit at great expense due to the complexity of the
software and subsequent testing [3]). However, the density
and dynamism of the anticipated low-altitude air traffic
mandates an automated approach; it is difficult to imagine
human controllers managing the separation of thousands of
flights per hour. This is the conclusion of most professionals
in aerospace across the United States, particularly the Federal
Aviation Administration (FAA) and the National Aeronautics
and Space Administration (NASA), as well as in Europe and
Asia, where UAS Traffic Management (UTM) systems are
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being developed rapidly. However, if current ATC systems
still experience contingencies after a hundred years, and
millions of flights per year, what hope do engineers have in
constructing a safe automated traffic management system?
This question lies at the heart of this research, and it not
only applies to the safe coordinated access of airspace (i.e.,
maintaining safe separation between aircraft), but also to a
plethora of other issues that air traffic controllers face.

The issues that require human intervention, and that make
experts nervous about automated air traffic systems, are
typically contingency scenarios. Situations that require safe-
separation and unplanned priority, for example medical res-
cue, temporary flight restrictions (TFR) due to wildfires, low-
fuel, electronics failure, etc. The scenarios, and the combi-
nations or sequences of events that lead to them, are difficult
to enumerate (as mentioned before), and therefore difficult
to plan for. They are difficult because in a concrete sense,
the determination of whether a solution exists to return to a
nominal state may be as difficult as, or likely more difficult
than, the Satisfiability (SAT) problem. In the language of
computer science, the public relies on pilots and controllers
to heuristically search for solutions that maintain our safety.
It is likely that humans perform these searches at a high-level,
using abstraction (and perhaps analogies) to reduce the space
of possible solutions. So far, no one has shown that the brain,
or any part of the nervous system routinely and exactly solves
NP-complete problems [4]. For this reason, the problem of
air traffic control, when considering the automation of what
human operators are currently responsible for, falls squarely
within the purview of computer science. This problem is
fundamentally an issue of cognition and computation.

Considering the cognitive and computational nature of the
UTM problem, a good strategy for constructing a system to
replace human pilots and controllers becomes clear: reduce
computational complexity on all fronts. A direct effect of
this strategy is the reduction of the number of possible
contingencies because by definition there are fewer states
to consider (and by implication, fewer undesirable states). It
is our contention that this strategy should be executed via
two channels. First is through structure and deconfliction;
since safe separation is a constraint that must be satisfied
in any contingency scenario, it serves to reason that this
problem should be easy to solve, and hence low complexity.
This is the foundation that the lane-based approach provides.
Second, complexity in cognition should be reduced via
abstraction, which we explore using agent based modeling
and simulation (ABMS), and the Belief-Desire-Intention
(BDI) architecture. With this strategy, we expect that the



Fig. 1. Scenario: Ground Communication Disrupted for Multiple UAS.
Explain

resulting system design will be more robust in the face of
contingencies than anything else currently proposed.

A. The Role of Reinforcement Learning

Reinforcement learning provides engineers with a tool
for generating complex computer programs from high-level
requirements. Traditionally, engineers receive high-level re-
quirements, such as “UAS should avoid rain,” then proceeds
to define all the behavioral rules necessary to fulfill that goal.
The effort required to define this program logic is a complex
function of the software technology, development cycle,
and requirements. Estimating the effort required is itself a
large topic of software-engineering research [5], and changes
to requirements or logic errors can have dramatic costs.
Reinforcement learning, however, does not require a manual
development of the program logic for the desired behavior. It
does require a careful definition of possible states, available
actions, and rewards, but it is not necessary to consider all
the possible combinations of states and actions.

Consider a scenario in which ground infrastructure sup-
porting UAS communications is disrupted during normal
operations (see Figure 1). Currently, the published protocol
for handling this contingency is to fly back to base if com-
munications cannot be re-established within a given amount
of time [6]. Since this is a pre-defined policy, it is worth
considering whether such a policy is robust. For example,
depending on how many UAS communications are disrupted,
the number of conflicts that result from the simultaneous
replanning of multiple agents may have negative cascading
effects [7]. As the complexity of the UTM system increases,
it becomes harder for experts to enumerate all the failure
modes and effects; assigning liability and performing post-
failure diagnoses will also be difficult.

A comparison between Traffic Alert and Collision Avoid-
ance System (TCAS), which is currently in widespread use
by airlines, and a new system called the Airborne Collision
Avoidance System X (ACAS X) offers a compelling anal-
ogy. TCAS has been described as an “ad hoc rule-based
specification” [3]. Limits to its robustness arise primarily
because programmers are unable to anticipate the spectrum
of operational scenarios, one of which caused a collision
over Uberlingen, Germany in 2002. ACAS X, in contrast,
adopts a process of modeling and optimization that improves

robustness. Kochenderfer describes an early prototype of
ACAS X, in which the anti-collision problem is formulated
as a partially observable Markov decision process (POMDP)
[3]. In this way, collision and alert preferences are treated as
inputs, and the system logic as an output.

B. Complexity and Cognitive Structure

When the number of possible states and actions is large
it forces engineers to carefully create abstractions of states
and actions (e.g., object-oriented software), otherwise the
program logic becomes fragmented across a large and flat
organizational structure. A fragmented program is unde-
sirable because the conceptual links between a high-level
requirement and low-level actions are buried in the program
logic. On the other hand, a hierarchical structure of states
and actions encodes conceptual links explicitly and enables
efficient searching through a categorical index (e.g., Desires
in the BDI architecture).

The Belief-Desire-Intention architecture [8] is a hierarchi-
cal organization of states and actions (grouped into plans)
that was designed specifically for agent models. The architec-
ture not only defines the conceptual structure of a program,
but also a process structure that enables dynamic planning,
similar to a Markov Decision Process (MDP) ([9], [10], [11],
[12]). Organizing the program in this way supports both
reasoning by the autonomous agent as well as reasoning by
human operators. The structure of desires, intentions, beliefs,
and plans coincides well with the reasoning of the human
operator. For example, a human observer could ask a BDI
agent directly, “What is your current plan?”, and the agent
could respond, “Correcting my heading to get back in the
lane.”

C. Complexity and Airspace Structure

In previous work, we outlined the structure and analytical
capabilities made available by the lane-based airspace struc-
ture [1], [13]. From a cognitive perspective, the environment
in which autonomous agents operate are dynamic and un-
certain, and agents are resource-constrained and have only a
local view of the world. The lane-based structure provides
autonomous agents with more information about the state
of the airspace, while requiring less computational effort to
reason about it. The primary basis for this is that agents only
need to consider the schedule on each lane, as opposed to
the entire trajectory of other aircraft in a free-flight airspace
structure.

In the free-flight model, where any trajectory is allowed,
agents must sample other trajectories and their own to ensure
safe separation. The sampling resolution necessary to ensure
safe separation, i.e., the discretization of trajectories, depends
on how trajectories are specified and the available time and
resources to perform the sampling. Each agent must perform
this computation every time it considers a new or altered
path. The lane-based approach, however, pre-calculates safe-
separation in the spatial domain, so agents only need to
consider the schedule.



Fig. 2. (a) BDI Architecture (taken from [14]). (b) Reinforcement Learning
Focus 1: cognitive level plan selection to achieve goal, and Focus 2: actions
in the individual plan (this figure is adapted from [15]).

Fig. 3. MDP Representation of BDI Architecture (this figure was adapted
from [16]

II. LEARNING AND BDI

UAS agents have a Belief-Desire-Intention architecture
which functions as shown in Figure 2a. The BDI cycle in-
volves updating the beliefs, determining the desires, choosing
an intention (goal), and then selecting an appropriate plan to
achieve that goal. A belief is represented as a disjunction
of logical variable literals, and the entire belief set is a
conjunction of such beliefs (in Conjunctive Normal Form
(CNF)). A desire is a belief that the agent would like to
make true, and an intention is a belief that is a current goal
(of which only one is active at a time). The selection of a
plan is the action at the cognitive level, and optimal cognitive
policies pick the best plan for a given state. Focus 1 in
Figure 2b is where the cognitive learning takes place; i.e., the
actions are a set of possible plans to achieve a specific goal,
and an optimal policy chooses the best plan for a given state.
The selected plan is then executed until either completion or
preemption. Focus 2 concerns policies at the physical level
(i.e., moving through space).

For example, given cognitive states S = {S1 ≡
GoToDestination−NoDrift, S2 ≡ GoToDestination−
Drift, S3 ≡ Fail, S4 ≡ Succeed}, where there may be
several plans to achieve a goal (e.g., shorter or safer routes),
and the action is to select one of these plans. Rewards
are associated with states and actions, and reinforcement
learning is applied to find optimal policies. This is done
over a large number of environmental and UTM conditions.
Actions are parameterized by considerations like estimated

required time, risk, communications connectivity, etc.
At the physical level, a plan may consist of a sequence of

lanes with associated entry-exit times. Alternatively, a plan
may consist of a sequence of GPS waypoints and times. We
have already performed a preliminary study of this aspect of
UAS plan optimization (see [17]), and shown how optimal
policies (for moving through space) can be determined in the
context of environmental conditions (e.g., wind).

Cognitive-level reinforcement learning follows the same
process as traditional reinforcement learning. A policy, π,
is learned to maximize the utility, U(s), of high-level states
and actions, then it deterministically specifies the action for
each state. The goal is to maximize the expected utility. The
utility for each state is defined by the Bellman equation:

U(s) = R(s) + γmaxa∈A(s)

∑
P (s′ | s, a)U(s′) (1)

where U(s) is the utility of state s, a is an action, A(s) is the
set of actions possible for state s, and P is the probability of
state s′ given state s and action a. In our experiments we use
value iteration to solve for the state utilities; i.e., the above
equation is iterated, updating the utility of each state until
convergence is achieved. Once the utilities are known, the
optimal policy at each state corresponds to the action which
maximizes the expected utility from the action:

π∗(s) = argmaxa∈A(s)

∑
s′

P (s′ | s, a)U(s′) (2)

III. EXPERIMENTS

To demonstrate the BDI reinforcement learning at the
cognitive level, a simulation was run to determine the optimal
policies for UAS agents in an environment that contains
rain and wind. The cognitive state of each UAS before
the simulation begins is represented by a knowledge-base
containing the clauses in Table I. The initial goal is for the
UAS to be assigned a mission, so the intention stack is started
with the desire to be ASSIGNED. Once assigned, the UAS
selects intentions from the precedence list shown in Table
II (i.e., after being assigned, the next desire is to remain
IN LANE).

A combined state and sequence diagram outlining a single
reasoning cycle is shown in Figure 4. When the UAS agent
receives a percept from the simulator, containing both state
information as well as messages from other agents, it parses
the data and updates its knowledge-base. In the Analyze
state, the agent considers its desires and updates its current
intention. The Filter state involves selecting the optimal plan
for the current intention, and in Execute Plan the required
low-level actions are taken.

The process for generating and assigning flights follows
the general design proposed by NASA where a UAS Service
Supplier (USS) is responsible for deconflicting flights with
other USS in the system. To accommodate the ABMS setup,
the USS is also responsible for generating random flight
requests and auctioning them to UAS agents. This process
is diagrammed in Figure 5.



TABLE I
UAS KNOWLEDGE-BASE AT INITIALIZATION

ID Clause

1 IN LANE ∧ ON HEADING ∧ SPEED OK → NOMINAL

2 LAST LANE ∧ AT NEXT WAYPT → AT FINISH

3 ¬IN LANE

4 ¬ON HEADING

5 ¬SPEED OK

6 ¬ASSIGNED

7 ¬IN FLIGHT

8 ¬AT START

9 ¬AT NEXT WAYPT

10 ¬ADVANCE LANE

11 ¬WRAP UP

TABLE II
UAS DESIRES AND PRECEDENCE

Desire Precedence

ASSIGNED 10

IN LANE 20

ON HEADING 30

SPEED OK 40

AT NEXT WAYPT 50

ADVANCE LANE 60

WRAP UP 70

A. Environment Model

The environment used to train a policy is shown in Figure
6, where solid circles mark areas of rain and dashed circles
mark areas of wind. Rain is modeled as a scalar intensity
value that decreases with distance from the center of the
feature. Rain affects the speed of UAS proportional to the
amount of rain. Wind is similarly defined, except it affects
both speed and heading of a UAS in a direction tangential
to the radius of the wind feature.

B. Actions

UAS agents in this simulated framework have the ability
to set their velocity after each reasoning cycle. In a scenario
without wind or rain, the desires are selected in order of
precedence (lower precedence happens first). However, due
to the dynamics in the environment brought in by wind and
rain, agents are affixed with logic that requires replanning
when the situation is not NOMINAL. In this case, the agent
must choose a contingency plan that returns the cognitive
state to NOMINAL. There are a number of plans that may
achieve this, given in Table III. The selection of plans
is determined by a policy obtained through reinforcement
learning.

C. Transition Probabilities and Rewards

To generate the transition probabilities, a Monte Carlo
simulation was run and a three-dimensional state-action
transition matrix, representing the probability P (s′|s, a), was
generated from the data.

Fig. 4. Combined Sequence and State Diagram Showing Agent Architec-
ture

Fig. 5. Flight Path Generation and Assignment

The reward model, R(s, a), considers only the eight states
generated by the Cartesian product of NOMINAL, RAIN,
and WIND, and the four high-level plans in Table III. A
state reward (Rs) of +6 was assigned to any state that was
NOMINAL, and −2 for any state that was not. Plan rewards
were set as follows (reflecting their cost to execute):

Ra(FOLLOW LANE) = −1
Ra(CORRECT SPEED) = −3
Ra(CORRECT HEADING) = −5
Ra(GO TO LANE) = −8

D. Policy Selection

A policy was selected by running value iteration and
generating state utilities. A trace of the state utilities after
each iteration (Eq. 1) is shown in Figure 7. A slice of the
transition probability matrix for the plan FOLLOW LANE is
depicted by the digraph in Figure 8. The UAS agent then



TABLE III
UAS HIGH-LEVEL PLANS

Plan Description

CORRECT HEADING Heading Optimized Controller

CORRECT SPEED Speed Optimized Controller

FOLLOW LANE Main Lane Following Control

GO TO LANE Take Immediate Action and Fly to Lane
Segment

Fig. 6. Wind and Rain Placement in for Training

combines the state utilities and the transition probabilities
using Equation 2 to select the optimal plan.

A graphical depiction of the behavior of a single UAS
mission without rain or wind contingencies is shown in
the plan and state graph in Figure 9. Figure 10 shows the
behavior of a UAS navigating the same trajectory through
a rain feature with a learned policy. Finally, in Figure 11,
a behavior trace of a UAS navigating the rain feature using
a programmed policy that deals with the rain contingency
directly by correcting its speed.

IV. DISCUSSION

The experiments demonstrate that reinforcement learning
at the cognitive level is a viable option for programming
agents in a UTM system. The program in this instance was
comprised of a number of plans that could be engineered
independently, in contrast to the currently proposed strategy
of enumerating risk factors and developing contingency plans
in concert across the industry.

In this simple experiment, the resulting policy is guaran-
teed optimal with respect to the rewards because dynamic
programming was used. In a large-scale system, the number
of possible states and actions may be too large to pre-
calculate utilities. However, a plan can be engineered in
which the UAS agent performs dynamic programming over
a narrowed set of states provided by the Analyze step in
the BDI architecture. Since the BDI architecture supports
replanning when a plan fails or when desires change, the
agent can avoid over-committing to a plan that did not
consider a particular contingency.

This fact is demonstrated in the experimental output of
Figures 9, 10, and 11. The explicitly programmed policy is
brittle in the face of a rain contingency because the speed

Fig. 7. Value Iteration Trace. N-Nominal, W-Wind, R-Rain

Fig. 8. Transition Probabilities for Follow Lane Plan

correction causes the UAS to overshoot lane waypoints. The
learned policy selected a different plan, one that corrects
heading and speed concurrently, and proves to be more
robust.

V. CONCLUSION AND FUTURE RESEARCH

We have shown how states and actions at the cogni-
tive level can be combined with reinforcement learning to
generate optimal policies for UAS agents. Additionally, the
BDI architecture provides a convenient structure for defining
high-level states and actions, while reducing the engineering
complexity by allowing plans to be designed independently.
The benefit of this approach is that it reduces the amount
of programming logic required to build robust policies, and
utilizes a logic structure that supports operational insight
since decisions are expressed in a human-understandable
form.

In upcoming research, our intention is to demonstrate the
performance of the combined cognitive-level reinforcement
learning BDI architecture with respect to contingency scenar-
ios where a large number of states exist. In these scenarios
the agent must replan when optimal plans do not produce
the correct outcome due to unforeseen states.

Also, the effects of replanning and contingency handling
on the aggregate state of all UAS agents in a UTM system
must be understood. If it can be shown that the best available
policy for UAS agents includes dynamic replanning and the



Fig. 9. Nominal Behavior without Contingencies

Fig. 10. Learned Policy with Rain Contingency

proposed cognitive structure, then this strategy will enable
a more rapid adoption of autonomous agents due to the
decreased engineering complexity.
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