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Efficient 3-D _Objéct Representations for
Industrial Vision Systems

THOMAS C. HENDERSON

Abstract—The representation of 3-D objects is an important step in
solving many problems in scene analysis. One of the most successful
techniques is that based on the surfaces of objects. We describe several
methods for obtaining such surface representations from various types
of intrinsic images. In particular, previous work is reviewed and an al-
gorithm based on region growing is investigated in terms of its efficiency
in segmenting a set of points in 3-D space into planar faces. Informa-
tion on the neighborhood structure of the points in the form of a spa-
tial proximity graph is used to direct the segmentation. Applications
to industrial objects are demonstrated.

Index Terms—Spatial proximity graph, surface segmentation, 3-D
representations.

I. INTRODUCTION

URRENT machine vision systems impose severe con-

straints on the work environment and are generally re-
stricted to rigid objects observed from standard viewpoints
in high contrast lighting with no shadows or occlusion allowed.
Moreover, recognition and analysis are based on 2-D represen-
tations of the objects. Although many tasks can be engineered
to meet these constraints, many important problems cannot.
For example, recognition of nonrigid objects or of workpieces
on overhead conveyors, bin picking, and automatic vehicle
guidance are beyond the ability of current vision systems.
Rosen [44]. describes these problems in detail. We believe that
one major stumbling block to the development of more power-
ful computer vision techniques is the traditional 2-D array im-
age representation. A survey of three-dimensional representa-
tions is presented, and a particularly efficient structure, the
underlying 3-D neighborhood graph is proposed as the basic
low-leve] representation of image information.

To overcome the problems outlined above, the long-range
goal of computer vision research is to provide a description of
the objects in a scene and the relations between these objects.
Most early work on the subject dealt strictly with intensity
images or with filtered versions of intensity irhages, e.g., edge
images or line drawing images, and the major problems posed
were segmentation and object identification. These problems
were found to be more difficult than they were originally
thought to be, and workers turned their attention from high-
level problems such as object identification to a closer investi-
gation of the kind and quality of information available in in-
tensity images. The most successful current work is the fruit
of that labor and has provided a much better understanding
of low-level vision processes and the information available
from intensity images. However, vision systems have a long
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way to go before they will be general purpose (see Binford
[10] for a review).

Marr [35] shows how distance and surface orientation can
be derived from intensity images, and calls the set of images
describing this information the 2.5-D sketch. Anotherapproach
is that of Tennenbaum er al [50]; they describe a set of in-
trinsic characteristics recoverable from intensity images and rep-
resent these characteristics as a set of arrays registered with
the original image. These arrays are called intrinsic images and
include images of surface orientation, surface reflectance, and
incident illumination. Other characteristics are possible: range,
color, etc. Several other approaches exist to determine intrin-
sic images, and in particular depth information: structured
light [41], shape from shading [30], and even direct range’
finders [21].

Taking account of these developments, we see that a general
purpose vision system should provide several levels of represen-
tation. At the lowest level is the sensorinformation (usually an
intensity image), and at the highest level is a symbolic descrip-
tion of objects in the scene and their relations. In between
these extremes, there may be several intermediate levels; for
example, among the levels proposed by Tennenbaum are:

Level 0—Original image

Level 1—Intrinsic surface characteristics
Level 2—3-D Surface descriptions

Level 3—3-D Object descriptions

Level 4—Symbolic description of scene.

The computational problems involved in deriving Level 1
from Level O are fairly well understood now. The next step
from Level 1 to Level 2 is just starting to receive attention.

Clearly, the choice of object representation at Level 3 will
directly influence the possible methods for surface extraction.
There are currently three major representation schemes for
3-D objects: volume, surface, and skeleton representations
(see Bajcsy [4] for an overview of these methods). However,
for recognition and matching all three methods depend to
some extent on the surfaces of the objects.

Several kinds of volume representations exist for describing
three-dimensional shape. Srihari [49] gives an introduction
to the subject but the emphasis is on voxel-based images.
(Voxels stands for volume element.) The representations dis-
cussed are the following.

Topological:

e 3-D Euler Characteristic—The shape is encoded in terms
of the number of components, tunnels, and enclosed cavities.

e Adjacency Tree—A structure which describes the con-
tainment relation of the background, components, and holes.
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Quad-tree

Image
Fig. 1. A sample image and its corresponding quad-trees.

Geometrical:

e Borders—The voxels on the boundary of the shape.

o Medial Axis Transform—The 3-D extension of Blum’s
2-D transform [11].

o Features—Extensions of standard 2-D feature models to
3-D are given, including analytic functions, Fourier descriptors,
moments, and convexity measures.

Spatial Organization:

e Generalized Cylinders—Shape is described in terms of a
3-D space curve and an associated cross sectior..

e Generalized Blobs—A set of primitive objects are given
and relations can be defined on them.

e Skeleton—Stick figures capture the structure of the
shape.

Another representation not mentioned above is the oct-tree
(see Jackins and Tanimoto [33]). See Fig. 1 fora sample im-
age and corresponding quad-tree. The oct-tree is the three-
dimensional analog of a quad-tree. The oct-tree of a volume
is based on successive subdivisions of the volume into octants.
A uniformly valued octant is represented by a leaf in the tree,
while a nonuniformly valued octant is further subdivided. Such
a representation can be used for geometric modeling and space
planning. Jackins and Tanimoto give efficient algorithms for
space array operations such as rotations and translations of
oct-tree representations. '

Requicha [43] has described a volume representation based
on constructive solid geometry. A set of primitive solids is
given and defines the lowest possible level. The usual set op-
erations are defined on these primitives and any 3-D object to
be modeled is represented as a combination (under the defined
operations) in terms of other solids, all ultimately defined in
terms of the primitive solids. Fig. 2 demonstrates this approach.
Unfortunately, until techniques are developed for obtaining
and processing 3-D volume imagery, this type of model does
not Jend itself well to computer graphics techniques.

The use of 3-D skeleton models (or generalized cones) has
been explored by a number of people (see Agin [1] or Nevatia
and Binford [37]). A generalized cone is defined by a 2-D
shape and a curve (or axis) in space along which the shape is
translated. The 2-D shape may vary along the axis as defined
by a sweeping function which describes the variation in shape.
Fig. 3 illustrates this approach. Hierarchical representations
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are possible, too, in which objects are described as combina-
tions of a few primitive generalized cones. Two approaches
exist to extract generalized cones from range data, namely, an
analysis of ribbons and a search for ellipses. Brooks ez al. [15]
describe the use of ribbons which are 2-D generalized cones,
while Bolles and Fischler [13] describe fitting ellipses to struc-
tured light data. One major disadvantage of this method is
that it is not easy to describe objects which have no axis of
symmetry, ie., the sweeping function is unduly complicated.
Even s0, this method offers several advantages, including hierar-
chical structure, compact representation, and local descriptions.

Surface (or boundary) representations describe solids in
terms of their boundaries. This is analogous to 2-D shape rep-
resentations based on the silhouette or periphery of a planar
shape. 3-D boundaries, however, are represented in terms of
points, curves and surfaces which permit “faces” to be de-
fined. In order to make the problem of surface representation
tractable, it is necessary to define the computational problem
to be solved. This allows relevant mathematical results to be
used. Since the surface is to be defined in terms of “faces,”
this implies that the notion of “face” must be examined care-
fully. As Brown [16] points out, even when the type of face
allowed is specified, and thus, the class of possible surfaces im-
plied, it may still be difficult to determine if a given object
constitutes a valid boundary. For example, Hall et al. [25]
define a “simple surface” as a function describing the surface,
and, in particular, they fit a quadric surface equation to the
data points. As mentioned previously, such representations
specify efficiently the geometrical information necessary for
graphics and for machine operations that are numerically con-
trolled. Although many types of surface description can be
formulated, we shall be concerned with polyhedral and cylin-
drical approximation to surfaces. One of the major advantages
of a polyhedral approximation is that it allows the use of the
powerful techniques of computational geometry to find the
convex parts of objects and to test the intersections of objects.
This is essential, for example, to determine a collision-free
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Fig. 4. Range data image.

course through a group of obstacles [3], [14], [17], [34],
[52]. Moreover, the use of computer graphics techniques to
display the results is simple to implement with this type of
representation and allows for the development of interactive
methods for model construction.

We develop and compare methods for automatic surface ap-
proximation of a set of points in 3-D space. Polyhedral ap-
proximation is a two-step process consisting of a local analysis
of points followed by a grouping operation to produce faces.
This process is studied in the context of an underlying graph
which represents the neighborhood structure of the points.
This structure can be exploited by all these methods to achieve
a more rapid segmentation. This graph-based segmentation
process can be viewed as a generalization from the implicit
image array topology to that defined by a surface graph. More-
over, all 3-D representation schemes can, in principle, take ad-
vantage of this low-level organizational structure. Other ap-
proaches to the recovery of structure in point sets include the
use of the minimal spanning tree [55], the relative neighbor-
hood graph [51], and the Voronoi triangulation [2]. How-
ever, if what is desired is a description of all points within
some fixed distance for every point in the set, then none of
the structures listed above gives that information explicitly,
nor can it be derived efficiently from them.

II. RELATED WORK

The methodology proposed here assumes that 3-D informa-
tion is available in the form of points in 3-space, i.e., range
data. Many methods are currently available which provide a
scene analysis system either directly or indirectly with range
data (see [21], [24], [25]). Figs. 4 and 5 show the types of
data available, namely, range data images and sets of points in
3-space, respectively. One major goal of this paper is to de-
scribe efficient algorithms to approximate surfaces in such
data. However, the extraction of 3-D surfaces from range data
is a difficult problem since range data varies smoothly at sur-
face boundaries and contains “jump” edges at occluding edges.
Even so, some progress has been made. Most methods treat
the surface extraction problem as one of direct image pro-

cessing; that is, given a range data image, segment the image
into connected planar regions. The problem can be posed,
however, in a more abstract manner. Namely, given a set of
3-D points, partition the set into subsets of points, where
each subset constitutes a planar connected region. Alterna-
tively, one might try to characterize the polyhedra which have
the set of points as surface points. The latter approach might
work well if the set of points is known to constitute a single
object, but will perform poorly in a cluttered environment.

As an example of a problem treated by this approach, con-
sider the problem of finding the convex hull of a set of points.
A set is convex if and only if for every pair of points in the set,
the line segment joining the pair of points is completely con-
tained in the set. The convex hull of a set is the smallest con-
vex set containing the set. Shamos [45] shows that for sets
of planar points, an algorithm exists that runs in Order(NV)
expected time and has Order(MogN) worst case behavior.
Preparata and Hong [42] describe an Order(Vlogh) algorithm
for sets of 3-D points. Although in some circumstances the
convex hull of a set of points suffices as a description, it is
clear that nonconvex polyhedra require a complete polyhedral
representation. It would be convenient if computational geom-
etry provided optimal algorithms for 3-D problems, but as
Bentley and Shamos [8] point out, computational geometry
has not successfully addressed problems in more than two
dimensions.

Although various types of surfaces can be extracted from
range data (e.g., see Hall er al [25] or Agin [1}), there are
several criteria which make polyhedral approximations useful
as object representatijons:

e they are general enough to represent wide classes of ob-
jects;

e they are compact;

e they permit reasoning in terms of abstract notions, e.g.,
faces, convex parts, holes, etc.;

e they allow hierarchical representations, i.e., the descrip-
tion of more complicated objects as collections of simpler ob-
jects;

e they permit an easy interface to graphics display; and
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Fig. 5. Set of points in 3-space.

e they provide direct information concerning surfaces which
is most often the information desired.

We now briefly review surface extraction methods.

Existing methods for segmentation of range data into faces
can be divided into “region” and “edge” based, just as in the
segmentation of intensity images. Many researchers adopt a
method which is most suitable for their input device. For ex-
ample, Duda er al. [21] describe a sequential procedure for
determining planar surfaces in a scene from registered range
and intensity data. The vertical and horizontal surfaces are ob-
tained directly from the range data by histogram analysis.
Slanted surfaces are assumed to have constant intensity and
are obtained from the intensity image. Finally, an iterative
procedure refines the initial set of surfaces found. Milgram
and Bjorklund [36] find planar surfaces in a range image (con-
sisting mostly of planar regions) to determine the actual sensor
position with respect to a given reference model. Planar sur-
faces are found by fitting a least squares plane in the small
neighborhood of each pixel. The orientation of the plane, its
altitude from the sensor, and goodness of fit are recorded as
local features of each pixel. Finally, pixels are examined for
their association with their neighbors to form connected com-
ponents. This step uses essentially a standard region coloring
algorithm. When the range image consists of complex objects
having nonplanar surfaces, too, this approach is not suitable.

Underwood and Coates [53] describe a system for inferring
3-D surface descriptions for planar convex objects from a se-
quence of views (reflectance images), and the faces are deter-
mined from edge information (also, see Baker [5]). Several
workers have proposed the identification of space curves in
terms of projections (see [46], [47], [54]). Ishii and Nagata
[32] obtained the contour of an object by controlling a laser
spot. Shirai [48] and co-workers have used region and edge
based methods to represent polyhedral and simple curved ob-
jects. Popplestone er al. [41] dealt with polyhedra and cylin-
ders using light planes. Inokuchi and Nevatia [31] present a
technique for obtaining surface edges, effectively a 3-D edge
operator, while Zucker and Hummel [56] describe an optimal
3-D surface edge operator which produces a smooth surface
separating adjacent volumes. The drawback of these techniques
is that the edge responses must be grouped, thinned and linked

in crder to produce a reasonable object description in terms of
coherent regions. On the other hand, once the line segments
are found, the theory of 3-D line semantics can be directly
applied. It is possible to extract planar faces from asingle view
range data image by extending the iterative endpoint fit method
(see Duda and Hart [20]) from 2 to 3 dimensions. This may
work well since the range z can be considered as a function
of two spatial coordinates, x and y. All the above techniques
apply to one range data image at a time. Combinihg theresults
from several views is a major problem.

Many shape analysis methods are based on a planar face rep-
resentation. Even those systems which allow curved surfaces,
usually determine the curved faces by grouping elemental pla-
nar faces. Bhanu [9] uses polyhedral approximations to 3-D
objects in his relaxation-based matching scheme. Object recog-
nition is performed by Oshima and Shirai [39] in terms of
properties of planar surfaces and their relations. Ballard’s gen-
eralized Hough transform approach to 3-D modeling assumes
planar faces as part of the input [6]; also see the planar face
based 3-D Hough transform proposed by Henderson and Keskes
[28] and Henderson and Mitiche [29]. Finally, the planar
face representation has been used in the analysis of time-vary-
ing imagery by Dreschler [19] with good results. These are
just a few examples of the many 3-D shape representation
schemes based on polyhedral approximation.

A polyhedron of minimal surface area has been suggested by
O’Rourke [38] as the most natural polyhedral model for a set
of given 3-D points. Let S be the set of points, then P is a min-
imal surface area polyhedron for the set of 3-D points S if and
only if the set of vertexes of 2 is identical to S, and no other
simple polyhedron whose vertex set is S has a smaller surface
area. The idea is to start from the convex hull of S and modify
a given polyhedron to include new points. The method has
several serious drawbacks. The problem of finding the mini-
mal polyhedron is thought to be NP-hard. Moreover, the heu-
ristic algorithm given is Order(V?) and can be seriously misled
by certain inputs. Worst of all, the algorithm is not guaran-
teed to reduce the residual error to get closer to the minimal
polyhedron.

Several alternative approaches to polyhedral approximation
are possible, including region growing, local feature clustering,
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and divide-and-conquer techniques. Region growing methods
attempt to locate small seed areas on the surface that are in-
terior to planar faces with a high degree of certainty, and then
to grow outward by testing whether or not neighboring areas
satisfy the conditions necessary to join the expanding region.
Local feature clustering involves measuring some feature at
each point in the date (e.g., the surface normal at that point),
then applying standard clustering techniques to the resulting
vectors. - Obviously, such methods are sensitive to the calcula-
tion of the features, and features should be chosen that a small
change in the local arrangement of the sample points leads to
small changes in the vector produced. Finally, the ubiquitous
divide-and-conquer strategy applies a recursive algorithm to
two halves of the data and produces a fast method. Unfortu-
nately, most divide-and-conquer methods work on 3-D volumes,
not surfaces. However, certain results from computational
geometry do carry over to 3-D; for example, the minimum
spanning tree can be found in Order(NlogV) time.

One method of tremendous potential is the application of
clustering techniques to local features measured on the range
data. For a review of the various methods and applications of
clustering see Diday er al [18]. Clustering methods are re-
quired to be fast, to take neighbor constraints into account,
and to allow the use of supplementary information.

The problem of surface extraction can be posed as a cluster-
ing problem by associating a feature vector with each of the
detected points and then using a clustering method to group
these vectors. The basic motivation of this approach then is
to exploit the fact that points lying on the same face yield
similar feature vectors based on the characterization of the
plane containing the face and the neighborhood relation. It
remains to be seen whether current clustering methods are
robust enough to permit the extraction of faces from range
data.

Divide-and-conquer methods have been successfully used to
solve problems in multidimensional space (see Preparata and
Hong [42], Bentley and Shamos [8], and Bentley [7]), and
and divide-and-conquer approach that seems to lend itself
immediately to the polyhedral approximation problem is that
of triangulation. Namely, given a set S of N points, join these
points by straight line segments such that any two line seg-
ments intersect only at points in the set S, and interior to the
convex hull, every region is a triangle. An Order(NlogV) al-
gorithm exists based on Voronoi diagrams to solve this problem
for sets of points in the plane (Shamos [45]), but the 3-D
generalization partitions space into tetrahedra. One graph-
guided divide-and-conquer approach to polyhedral approxi-
mation of a set of points on a surface in 3-D space has been
proposed by Boissonnat and Faugeras [12]. A graph struc-
ture is imposed on the set of points sampled on the surface,
and the algorithm proceeds by approximating the surface with
triangles. The essential innovation here is to use an underlying
graph to structure the data for association with approximating
triangles. Whenever a triangle does not approximate very well
the data associated with it, then graph methods are used to
divide up the data and associate the parts uniquely with a
better approximating triangle. The time complexity of the al-
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gorithm is Order (VlogV), and the results obtained on a variety
of objects (sphere, bar-bell, and helix) are very encouraging;
that is, the triangulation is excellent with very few defective
areas [22].

11I. GRAPH-GUIDED SURFACE SEGMENTATION

In this section we describe an efficient low-level representa-
tion for the organization and analysis of sets of 3-space points.

A. Basic Organization of the Data

Given a set of points in 3-D space, we assume that there exists
a graph describing these points and their neighbor relations;
this graph will be called the spatial proximity graph and will
be designated as G(V, E) or as G, where V is the vertex set of
G, and E is the edge set. If this information is not directly
available from the scanning system, then G can be constructed
as follows.

e Let P={X;, Y;,Z,)}i=1, Nbe the set of points. Form a
k-d tree [23] using the three coordinate values X;, Y;, and Z;
as a 3-D key. A k-d tree is a binary tree for sorting k-dimen-
sional keys, and its structure is optimized with respect to the
number of records accessed for nearest neighbor queries. Non-
terminal nodes represent some subset of the data and describe
how that subset is split at the next level. A subset is split at
the median value along the axis with the greatest spread in the
data on that axis. (This step canbe performed in Order(Mogh)
time.)

e Find the m nearest neighbors of each point, where m is
the likely number of neighbors within one raster distance.
(This step can be performed in Order(loghV) time for each
point.)

e Threshold according to the known sampling information
and reject any of the m nearest neighbors which are too far
away to be actual neighbors. (Alternatively, incorporate this
step into the neighbor query.)

This yields a graph G describing the neighborhood of each
point; this graph is a generalization of the (planar) region ad-
jacency graph of Pavlidis [40]. However, the implicit assump-
tion is that the points really lie on some surface, and that the
surface is essentially 2-D. (This may not be a good model, for
example, of a grassy surface.) The k-d tree organization of the
data allows rapid access to the m-nearest neighbors of any point
and thus provides the essential information for further analysis.
Fig. 6 shows the spatial proximity graph generated for the data
in Fig. 5.

B. Region Growing: Three-Point Seed Method

The 3-point seed method is a sequential region growing al-
gorithm and works on sets of 3-D points (see Bhanu [9],
Henderson [26], and Henderson and Bhanu [27]). Planar
convex faces are determined by sequentially choosing three
very close noncollinear points and investigating the set of
points lying in the plane of these three points. By taking ad-
vantage of the nearest neighbor information in the k-d tree of
the data, the complexity of finding planar faces is reduced
to Order(VlogV). Suppose that every 3-point seed grows into
an acceptable face, then the number of 3-point seeds will be on
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Fig. 6. Spatial proximity graph of points in Fig. 5.

(* Check every point not yet part of a plane as the possible seed of a
plane *)

fori := 1 to number _ of _ points do
begin
if Unmarked(?) then
begin
Find _ plane(i,a,b,c,d,found _ plane);
if found _ plane then
begin
Mark(?);
Mark _ neighbors(i);
Put _neighbors —on . queue(i);
number in _face := Count _queue + 1;

(* while the queue is not empty, check if its elements lie in the plane *)

while Not _empty do
begin
index := Queue _head;
forj := 1 to number _ of _neighbors do
begin
next := graphfindex, j] ;
if Unmarked(next) then
if In _ plane(next,a,b,c,d) then
begin
number _in _ face := number _in __face + 1;
Mark(next); '
Enqueu(next);
end;
end;
end;

(* Save face if there are enough points contributing to it *)

if number _in _face > minimum _allowed _ in _ face then
begin
Save __face;
face —number = face _number + 1;
end;

end;

end;
end;

Fig. 7. Spiral plane fitting algorithm.

the order of the number of faces of the object. This number
is independent of the number of sample points and can be con-
sidered constant for any given scene. Now, for every 3-point
seed considered, initialize the test face set of points as the 3
points of the seed and enter the 3 points on a queue; next,
investigate the neighbors of the points on the queue. If the
queue is not empty, then take a point off the queue. Con-
sider each neighbor in turn; if the neighbor lies on the plane
defined by the seed points, then add it to the face set and
put on the queue any of its neighbors not already on the
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Fig. 8. A set of surface points sampled from a cube.

queue. Since all N points should pass through the queue
one time, and since the planarity test takes constant time, the
worst case time complexity is thus Order(V) (see Fig. 7).
However, the construction of the neighborhood graph is the
most expensive step as it takes Order(NMogN) operations.

Both synthesized objects and an industrial piece used in an
automobile suspension system have been analyzed with the
proposed method for surface approximation by polygons.
Results obtained on synthetic cubes were exactly the faces
of the cubes, and faces found on synthetic spheres were reason-
able (see Figs. 8-11). A more difficult case is that of the com-
plicated casting shown in Fig. 12. This object does not contain
any major horizontal or vertical surfaces. Fourteen views were
obtained with a range data acquisition system, and three of
these are shown in Figs. 13-15. Distance is encoded as a func-
tion of gray scale with darker areas nearer and lighter ones
more distant. In this figure the lighter a point is the farther
away it is. After thresholding the background points, each
view shown has about 2000 points. Surface points for the
composite object were obtained by rotating the points in 12
of the views, and control points were used to transform the
top and bottom views. For each view, the required transfor-
mation was applied, and the distance between the transformed
point and the points already in the list (in the beginning just
the O degree view points) was used to add previously unrepre-
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Fig. 9. Faces found for cube.

Fig. 10. A set of surface points sampled from a sphere.

sented points to the list. With all the views combined, 8334
points were produced for the composite object.

The 3-point seed method was applied to the 14 individual
views and to the composite object. Fig. 16 shows the faces
found for the O degree view of the object. The points that
could not make up a face of at least 20 points were rejected.
The area of rejected points falls either on jump points result-
ing from large z-distance change with correspondingly little
X or y change, or they occur in extremely uneven parts of the
surface of the object. A rejected point lies inside some of the
faces because it has been missed in the process of data acquisi-
tion. As can be seen, most of the faces found are reasonable.
The object has major curved surfaces that were split symmetric-
ally into different faces. Edge pointsare not very well detected.
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Fig. 11. Faces found for sphere.

Fig. 12. Industrial part.

A total of 85 faces were found for the composite object, and
their distribution fits well with the results from the individual
views.

The major advantages of this method include its applicability
to a composite object as it is not restricted to single view range
data images, and the robust result produced even for noisy
data. Moreover, the expected time complexity is very low.

IV. SUMMARY AND FUTURE WORK

The major goal is to develop efficient surface extraction
methods. This requires a thorough investigation of the funda-
mental issues of surface representation, and in particular, of
the notion of “face.” Thus, we hope to characterize the defi-
nition most suitable for a given class of objects to be modeled.
No matter which 3-D object representation is chosen, the spa-
tial proximity graph provides a convenient representation for
the spatial organization of the original 3-D data points. Once
the representation is chosen, particular methods of surface
extraction can be analyzed. We have investigated the graph-
based segmentation of 3-D object surfaces. A region growing
algorithm which takes advantage of the spatial proximity graph
which describes the neighborhood structure of the points in
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Fig. 15. 180 degree range data image of part.
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Fig. 16. Faces found for the industrial part.

3-D space has been developed and evaluated. This method
has been tested on synthetic and industrial objects.
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Special Correspondence

GAGESIGHT: A Computer Vision System for Automatic
Inspection of Instrument Gauges

MICHAEL L. BAIRD

Abstract—GAGESIGHT is a computer vision system recently inte-
grated into production which demonstrates new flexibility in pro-
duction automation technology. The vision algorithm accommodates
significant misregistration in the position and orientation of objects,
and adjusts process control parameters accordingly. The GAGESIGHT
system is easily reconfigured for inspecting new types of objects by
executing a teach program, and responding to a few instructions at an
interactive display console. GAGESIGHT, intially intended for the
automatic inspection and assembly of pointers and other components
to instrument gauges, is finding new applications as well since the ap-
proach employed makes few assumptions regarding the objects being
viewed.

Manuscript received September 27, 1982; revised May 23, 1983. This
work was performed at General Motors Research Laboratories, Warren,
MI 48090.
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MI 48090. He is now with the Artificial Intelligence Laboratory, Ad-
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Index Terms—Automation, computer vision, machine vision, robotic
vision, visual inspection.

I. INTRODUCTION

At the AC Spark Plug Division of General Motors Corpora-
tion, various instruments such as fuel gauges and speedometers
are manually calibrated and inspected for proper setting. Most
of these calibration and inspection tasks are candidates for
automation with computer vision techniques. Research was
required to find general methods for determining the position
of a pointer relative to markings on a gauge where the gauge it-
self is only roughly fixtured. These vision methods must be
general because over several hundred different styles of gauges
are produced at AC Spark Plug every year. Fig. 1 illustratesa
few of the many styles of fuel gauges and speedometers. A
separate vision system for each gauge is thus not practical.

This report describes a system which has been constructed
that shows both the technical and economic feasibility of
automating this process. Other attempts to automate this
process required a special system to be constructed for each
gauge style, and worked on only a limited number of styles [1].
Nippondenso Company, Ltd. also has recently demonstrated a
system similar to GAGESIGHT [2]. It appears that they have
fully integrated the vision capability into production, at the
expense of some flexibility in instrument design rules.
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