
BRECCIA: A Novel Multi-source Fusion Framework for Dynamic
Geospatial Data Analysis

D. Sacharny, T.C. Henderson, R. Simmons, A. Mitiche and T. Welker
School of Computing

University of Utah
Salt Lake City, UT, USA
Email: tch@cs.utah.edu

X. Fan
Nanyang Technological University

Singapore
Email: xyfan@ntu.edu.sg

Abstract— Geospatial Intelligence analysis involves the com-
bination of multi-source information expressed in logical form
(as sentences or statements), computational form (as numerical
models of physics or other processes), and sensor data (as
measurements from transducers). Each of these forms has
its own way to describe uncertainty or error: e.g., frequency
models, algorithmic truncation, floating point roundoff, Gaus-
sian distributions, etc. We propose BRECCIA, a Geospatial
Intelligence analysis system, which receives information from
humans (as logical sentences), simulations (e.g., weather or
environmental predictions), and sensors (e.g. cameras, weather
stations, microphones, etc.), where each piece of information has
an associated uncertainty; BRECCIA then provides responses
to user queries based on a new probabilistic logic system
which determines a coherent overall response to the query
and the probability of that response; this new method avoids
the exponential complexity of previous approaches. In addition,
BRECCIA attempts to identify concrete mechanisms (proposed
actions) to acquire new data dynamically in order to reduce
the uncertainty of the query response. The basis for this is a
novel approach to probabilistic argumentation analysis1.

I. INTRODUCTION

A. Geospatial Intelligence (GEOINT)

Current knowledge-based GEOINT systems do not incor-
porate a broad notion of uncertainty quantification (UQ),
although such a capability would allow decision makers to
make more informed decisions, or to acquire more data
before coming to conclusions. In addition, it would be better
if system responses were provided with an explanation of
how they were derived, as well as how the uncertainty
was determined. This can be the result of sensor error,
computational error, human error, etc., and the best models
should be selected at each time step in order to reduce the
variance on quantities of interest. In addition, intelligence,
surveillance and reconnaissance support systems should gen-
erate dynamic path planning solutions which can include
constraints on time, energy, or uncertainty reduction. The
automatic generation of constraints arising from the various
models can be used to inform the deployment of data
measurement systems. The application studied here is UAV
(Unmanned Aerial Vehicle) surveillance and reconnaissance
in urban areas. Some work has been done in this general

1This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-17-1-0077.

area (e.g., see [19] for a novel guidance law in windy urban
environments combining pursuit and line-of-sight laws, and
[35] for a multi-cost UAV mission path planner).

Exploiting Dynamic Data Driven Application Systems
(DDDAS) for large-scale, geographically distributed scenar-
ios promises significant advantages, and we envision an
approach that combines various types of information with
associated uncertainty to enable model-driven active data
acquisition. Figure 1 shows our proposed overall organization
of a dynamic data-driven GEOINT application system (called
BRECCIA after a type of rock formed from several mineral
pieces held together in a fine-grained matrix). Typical geo-
referenced visual and data products include: maps, charts,
digital files, imagery and vector information. Value added
items include: data verification, correction, updates, densi-
fication, reformatting, orthorectification, map finishing, seis-
mic activity, intelligence reports, and additional categories of
content [31].

We describe here two major novel research results: (1) the
combination of formal probabilistic logic methods with state-
of-the-art physics-based uncertainty quantification methods,
and (2) uncertainty driven active information data acqui-
sition, demonstrated by UAV path planning, to optimize
performance or to resolve contradictory information. The
probabilistic logic method is a re-formulation of the approach
described in [23] (although Boole [5] first proposed it);
see [15] for details. Basically, Nilsson’s method requires
first solving the SAT problem (i.e., find all consistent truth

Fig. 1. BRECCIA: Uncertainty Quantified GEOINT and Planning.

assignments) to set up a set of linear equations, then the use
of numerical methods to solve them. We, on the other hand,
create a set of nonlinear equations, and solve them directly
[15].

BRECCIA is a dynamic uncertainty monitoring and reduc-
tion system; that is, uncertainty can arise due to a change in
local conditions (e.g., the weather may make movement dif-
ficult) or new information may be available (e.g., obscurants
in the air, new interesting sites). As a consequence, steps are
taken to reduce the uncertainty of assessments; for example,
an unmanned aerial vehicle may over fly a zone to get visual
confirmation of damage assessments, or a swarm of quadro-
tors may be sent to provide surveillance or reconnaissance
in an urban area. Transparent and precise reasons are offered
to the user to explain uncertainty conditions and how they
may be resolved.

The study and analysis of geospatial data has progressed
from simple Geographic Information Systems (GIS) (spa-
tially organized layers of digital data with associated func-
tional elements [9]) to broader geocomputation systems
(see [1], [18]). Such systems involve geospatial data, large-
scale computation, and a willingness to apply data mining
techniques in order to build models based on experience in
addition to analytical theories. This involves GIS as well
as artificial intelligence, high performance computing and
underlying science models. At its core, this is a major
paradigm shift which allows large-scale data exploitation. We
believe that GEOINT systems need to be centered in such
a modern framework: this means a cloud-based and scalable
system with a user-friendly interface (see [22]).

Example applications include decision support for snow
removal [34], environmental science [33] knowledge base
integration for GIS [24], multiagent systems using GIS data
for planning purposes [29], and the exploitation of machine
learning and data mining methods in this domain [11],
[27], [38], [39] Large-scale geospatial big data projects and
systems are relevant as well [7], [13], [32], [37]. We have
previously developed the basic computational framework for
a DDDAS-based cloud architecture for small-scale structural
health monitoring of aircraft [40].

II. THE BRECCIA SYSTEM

A. Current Implementation Details

BRECCIA is designed using a well documented multi-
agent, Belief-Desire-Intention (BDI) framework called Jason
[6]. Jason includes an interpreter for an extended version of
the AgentSpeak(L) [28] language, which provides a Prolog-
like grammar. Both the style, resembling a natural language
application, and the operational semantics of the extended
language that enable a data-driven architecture, fit well with
the proactive and reactive goals of BRECCIA. Each agent in
the BRECCIA system is composed of a backward chaining
inference module (see [25] for a formal justification of
modularity in BDI programming languages) with a prob-
abilistic logic component. This module, and probabilistic
component, form the most abstract fusion implementation in
the BRECCIA system. To elaborate, this system may include

many functional fusion modules that agents specialize for
a particular application. For example, an agent that special-
izes in managing a particular unmanned air vehicle (UAV)
requires a fusion module for estimating target detection.
However, the human agent, a ”user” in BRECCIA, requires
information in more abstract terms to support the decision
process. For example, a user may query the system by asking
for the probability of mission success. Among the many
bits of information that support this assertion, with their
associated probabilities, and one of which is whether the
target was detected, BRECCIA would respond as follows:

mission success[p(0.9),

justification([target detected, no damage, ...])]

The probabilistic logic component facilitates the propa-
gation of quantitative uncertainties when making inferences
from the knowledge base, all while maintaining the justifi-
cations for such inferences. Probabilities of sentences in the
knowledge base, which may be interpreted as uncertainty,
are represented as beliefs with annotations (a feature of the
extended AgentSpeak language). For example, the belief,
“Bob thinks it will rain today with 0.9 certainty,” may be
represented in Jason as follows:

will rain today[p(0.9), source(bob)]

If the application requires a data-driven event, for example
to notify a user that their base assumptions about a prior
simulation have changed, the program simply requires a plan
in the following syntax:

+will rain today[p(X)] : X < 0.8←!tell bob

This plan says that if the certainty for ”will rain today”
dips below 0.8, then the agent should adopt the goal to tell
Bob. This example demonstrates the clarity with which a
data-driven application is programmed in this framework.
Furthermore, the BDI system allows for the dynamic pri-
oritization of goals (termed intentions once they are adopted
by the agent); high priority goals can interrupt low priority
intentions and become the current intention. This is a critical
feature for a reactive system such as BRECCIA; changing
assumptions about the current state of the environment
should force replanning. In Jason this concept is represented
as the plan’s “context,” shown in the above example after
the colon asserting that X < 0.8. Another plan may exist in
the agent to tell a higher authority when the probability dips
below 0.5, for example.

The algorithm for backward chaining with probabilistic
logic is shown in Algorithm 1. Inference rules with proba-
bilistic logic are stored as material implications in BRECCIA
in the following format:

mat imp(consequent, [antecedents])[p(probability)]

As a concrete example, if the implication a ∧ b =⇒ c
should be stored in the knowledge base with probability 0.9,
then it is defined in the following syntax:

mat imp(c, [a, b])[p(0.9)]

Data: L← List of antecedents
Result: p(C) - The probability of the consequent
matched beliefs← [empty list];
for each A in L do

belief ← match in kb(A);
p(belief)← extract probability(belief) ;
append(matched beliefs, belief [p(belief)]);

end
p(C) = run nlpl(matched beliefs);
add C[p(C), justification(mat cnf(C)] to KB;

Algorithm 1: Backward Chaining with Probabilistic Logic

Algorithm 1 matches each antecedent in the given material
implication with a belief in the agent’s knowledge base and
forms a new list with the current sentence probabilities. If an
antecedent is an inferred belief that has yet to be calculated,
then the current intention is suspended and a new intention is
generated to resolve the constraint. The process of generating
intentions for unresolved constraints uses the built-in (non-
probabilistic) backward chaining that comes with Jason.
However, this process is automatic and simply requires the
following plan that responds to unresolved beliefs that have a
material implication rule (notice the context after the colon)
and adds the goal to run Algorithm 1:

+?X : mat cnf(X,)←!backchain(X)

Once the list of probabilities have compiled, the non-
linear probabilistic logic algorithm (described in section III)
is executed to calculate the probability for the inferred belief.
Finally the inferred belief is added to the agent’s knowledge
base. The process of belief-revision (when probabilities of
antecedents change) currently utilizes the same algorithm,
except first a list of justifications, stored in the belief an-
notations, is compiled until the most abstract inference is
located. Belief-revision in the BRECCIA system is an active
area of research.

B. Path Planning

BRECCIA includes an RRT* path planner [8], [17] that
provides an asymptotically optimal path between two states
(in this case between the launch and recovery sites). In this
specific implementation, the goal is to fuse uncertainties in
the environment and vehicle models into an estimate of the
probability of success of a selected path in terms of power,
flight time constraints, etc. Consider a simplified case of the
Raven UAV tasked with monitoring a location in an urban
environment.

The simulate path method calculates the cost of the path
between two locations in an environment at incremental
steps during the path planning procedure. In the current
implementation the cost is a representation of the flight time
required to traverse between the two locations in one-meter
increments. In this simplified model, the component of drag
in the direction of the travel is added to the vehicle’s velocity
to calculate a ground speed. The path cost is then calculated

from the ground speed, hence higher ground speeds are
favorable.

Data: v1 ← start position; v2 ← end position
Result: path cost
path velocity ← v2 − v1;
air velocity ← cruise speed ∗ path velocity

|path velocity| ;
for each meter in path do

wind velocity ← sample wind(position);
ground speed←
cruise speed+ wind velocity·air velocity

|air velocity| ;
time burned← (ground speed)−1;
if time burned

60 > max flight time then
path cost← inf ;
break;

else
path cost← path cost+ time burned;

end
end

Algorithm 2: Raven Path Cost Algorithm.

The critical step in Algorithm 2 is sampling from the
wind model. Data from the wind model is captured in
Matlab’s griddedInterpolant object to enable the path planner
to sample from any location. Each wind sample is purposely
corrupted by Gaussian noise with the given variance from
the wind model as determined in the vortex simulation (see
below). BRECCIA then runs the path planner multiple times
to calculate a variance in path costs. Figure 2 shows the final
path discovered by RRT using vortex simulation data.

The path planner was run thirty times for the operational
scenario shown in Figure 2 with an assumed wind model
variance of 0.5. One example of a resulting path is shown in
Figure 2 as a dashed line between waypoints. A histogram of
resulting flight times and a fitted normal distribution is shown
in Figure Figure 3. Based on the resulting model, the mean
flight time is approximately 612 seconds with a standard
deviation of 27 seconds. The resulting 90th percentile flight-
time is 653 seconds and is shown marked on the cumulative
distribution function in Figure 4. These values are propagated
to BRECCIA’s argumentation system for uncertainty fusion.

The key attribute of this path-sampling strategy is that the
uncertainty in path optimality is included in the resulting
flight-time model. Hence, the parameters that control RRT*,
such as the number of iterations, may be adjusted by BREC-
CIA to achieve more or less uncertainty in the final result.
The benefit of this is the ability to re-plan in real-time while
maintaining awareness of the probability of mission success.

C. Vortex (Cavity Flow) Modeling

As part of the mission planning, the weather must be con-
sidered, and Vortex Modeling provides initial wind velocity
estimates and their probabilities. These wind velocities are

Fig. 2. Operational Scenario and Final Path Calculated by RRT*.

Fig. 3. Histogram of Path Flight Times and Fitted Normal Distribution.

initially provided to the path planning algorithm by means
of a simple 2D particle model simulation. The approach is
based on the detailed description given by Greenspan [14].
It is assumed that the air mass is comprised of N particles,
~Pi, i = 1 . . . N , each with mass m. A system of coupled
ODEs describes the motion of each particle:

~Fi = m
∂2r

∂t2
, i = 1 . . . N

where ~Fi is the force on particle i, and ~ri is the position
vector of particle i. Note that:

~Fi = ~F ∗∗i + ~F ∗i

where ~F ∗∗i is a long range force (gravity and g = 980), and
~F ∗∗i is a short range force that holds within specified distance
D:

~F ∗ij,k = [− G

(rij,k)p
+

H

(rij,k)q
]
~rij,k
rij,k

To obtain values for the mission simulation, 2576 points
are used in a square area where it is assumed that three sides
are closed and one open (the top). A wind (V = [−10, 0])
passing by the top produces the cavity flow. The parameters
are set to: G = 0, p = 3, H = 100, q = 5, D = 0.35 (the

Fig. 4. Cumulative Distribution of Flight Times with 90th Percentile
Marked.

Position and Velocity of Particles Example Trajectory of a Particle

Fig. 5. The State of Particles after 12000 Steps (left); a Sample Particle
Trajectory (right).

initial distance between particles is 0.25), and δt = 0.0001.
A snapshot of the state of the particles and the trajectory of a
sample particle after 12,000 steps in the simulation are shown
in Figure 5 on the left and right, respectively. A Gaussian
noise model on the individual particle forces is used with
σ2 = 0.0001.

III. PROBABILISTIC LOGIC

Here we address the problem of finding a suitable repre-
sentation for uncertainty associated with logical sentences.
Although several approaches have been proposed in the past
(see [2], [10], [12], [16], [21], [26], [36], [30]), they generally
have some significant drawbacks. Usually, these have to do
with the computational complexity of the semantics of the
sentences (i.e., finding the set of consistent truth assignments
is exponential in the number of sentences, or for Domingos,
exponential in the number of cliques in the Markov graph
[3]).

We have developed a new approach which computes the
probabilities of the atoms in the sentences, and in terms
of these, provides a solution for Pr(Q | KB), where
Q is the query and KB is the knowledge base set of
sentences (see [15] for details). Moreover, the knowledge
of the probabilities of the atoms allows us to determine
where the most uncertain part of the argument lies, and to

allocate resources to lower that uncertainty, thus decreasing
the uncertainty of the query. This is done by exploiting the
probability of a disjunctive clause, and developing a set of
equations from the sentences and their probabilities, and then
solving those equations (the number of equations equals the
number of sentences).

Our approach to probabilistic logic starts with an analysis
of Nilsson’s method [23]2. Given a set of n sentences,
S = {S1, S2, . . . , Sn}, in the propositional calculus, where
{S1, . . . , Sn−1} is the KB and Sn is the query, he first finds
the set of models of the sentences (i.e., the set of truth value
assignments to the sentences that are consistent using the
general semantic tree [20] for a set of sentences). In our new
approach [15], we avoid the exponential complexity of most
other algorithms by solving for the logical variable (atom)
probabilities directly as follows.

First, we assume that the sentences are given in conjunc-
tive normal form. This means that each sentence is a disjunct
of literals (an atom or its negation). Our second assumption is
that Pr(P ∧Q) = Pr(P)Pr(Q); note that if this assumption
is violated, our methods also allow the bounds on the
probability to be determined. Next, we find the set of logical
atoms (i.e., variables) in S; let A = {A1, A2, . . . , Ak} be
this set. In this case the probability of a sentence can be
computed from the probability of its literals as follows:

Pr(L1 ∨ L2 ∨ . . . ∨ Lp) =

Pr(L1) + Pr(L2 ∨ . . . ∨ Lp)

−Pr(L1)Pr(L2 ∨ . . . ∨ Lp),

where the probabilities of clauses on the right hand side are
computed recursively.

Assuming that the logical (random) variables are inde-
pendent, each sentence gives rise to a (usually) nonlin-
ear equation defined by the recursive probability of the
disjunctive clause as defined above. The resulting set of
equations can be solved using standard nonlinear solvers
(e.g., fsolve in Matlab), and a set of consistent values for
the probabilities of the atoms determined. Of course, one
problem with the nonlinear solver approach is that it may
not find a solution, even when one or more exist. Thus, our
current approach is to solve all equations that have a single
unknown (recursively), and then use an iterative method to
find a set of atom probabilities which produce the correct
sentence probabilities.

IV. EXPERIMENTS

Here we describe a scenario which uses a Raven, man-
portable, hand-launched small unmanned aerial vehicle (see
Figure 6). The mission is described in Figure 7 and consists
of going to a specified location (Named Area of Interest -
NAI), loitering there while reconnoitering some points of
interest, then going to the recovery location. Note that the
area is similar to our simulation scenario in that there are

2Note that Nilsson’s method for propositional calculus is the same as that
proposed by George Boole in the 1800’s [4], [5].

Fig. 6. The Raven UAV.

three closed sides formed by the buildings, and the fourth
side is open. Assume the KB has sentences related to the
use of several Raven platforms for a mission, and a subset
of KB sentences are extracted that form an argument for
using the specific platform called Raven 1; then the argument
sentences and their origins are as follows (the sources of
information, i.e., which BRECCIA component produced them
are given in parentheses):
1. Raven 1 Platform Available (Maintenance Reports)
2. Raven 1 Air Control Measures OK (Mission Plan)
3. Wind<17 Knots (Weather Report)
4. Precipitation Low (Weather Report)
5. Visibility OK (Weather Report)
6. Temperature between [0,90] (Weather Report)
7. (3 ∧ 4 ∧ 5 ∧ 6) → Weather OK
8. Target-Loiter distance < 7miles (Mission Plan)
9. Raven 1 Electro-Optical (Mission Plan)
10. Raven 1 Infra-Red (Mission Plan)
11. (9 and 10) → Collection Requirement Done
12. Raven 1 Power OK (Path Planning)
13. Raven 1 Battery OK (Maintenance Reports)
14. Raven 1 Speed Known (Path Planning)
15. Raven 1 Altitude Known (Path Planning)
16. Raven 1 Loiter Time Known (Path Planning)
17. (12 ∧ 13 ∧ 14 ∧ 15 ∧ 19 ∧ 16 ∧ 21) → Path OK
18. Raven 1 Crew Available (Mission Plan)
19. Raven 1 Route Time Known (Path Planning)
20. Air Defense Threat Known (Mission Plan)
21. Named Areas of Interest Defined (Mission Plan)
22. (1 ∧ 2 ∧ Weather OK ∧ Collection Requirements Spec-
ified ∧ Path OK ∧ 18 ∧ 20) → Raven 1 Mission OK
23. (Query) Raven 1 Mission OK?
Note that sentences 7, 11, 17, and 22 are human specified
rules. This leads to 23 CNF clauses for sentences 1 to 22,
and 1 for the query. Note that the probabilities for the indi-
vidual sentences come from either human attribution (e.g.,
Raven 1 platform available), or from noise models in the
data (velocity vectors have Gaussian noise as determined by
the simulations). Furthermore, note that some sentences are
comprised of only a single literal, and thus, the probability
of the associated atom is the probability of the sentence.
However, the probability of some atoms (e.g., Path OK in
sentence 17) is implicit and must be found as part of the

Fig. 7. An Example Mission.

solution for the set of nonlinear equations arising from the
sentences. The probabilities for the path planning sentences
arise from simulations as shown in Figure 2.

As a preliminary test of the probabilistic logic compu-
tation, all KB sentences were assigned the (same) value
ranging from 0.9 to 1.0 in steps of 0.02, and the resulting
probabilities assigned to the query were [0.7406 0.8373
0.9011 0.9452 0.9768 1.0000]. As can be seen, when all
the sentences are true (probability 1), the query is true with
probability 1.

Now consider the case where sentences are provided by
the following specialized agents in a BRECCIA system and
their assigned sentences.

(mission planner,

uav manager,

weather monitor) ∈ Breccia
(2, 8, 9, 10, 11, 12,

13, 15, 16, 17, 18, 19, 22) ∈ mission planner
(1, 13) ∈ uav manager
(3, 4, 5, 6, 7) ∈ weather monitor

To facilitate inference across agents, material implica-
tions that include external propositions include the special
annotation ”ask(agent)”. Intentions are then automatically
generated to query agents across the BRECCIA network.
A mission is simulated with every sentence probability set
to 0.9, and Figure 8 shows the simulation console output.
BRECCIA finds the following values for the implicit atoms:
Pr(Weather OK) = 0.8476, Pr(Collection Requirement Done)
= 0.8765, Pr(Path OK) = 0.7909, and Pr(Mission OK) =
0.7406. Thus, to increase the probability of mission success,
it is essential to increase the probability of Path OK. For
example, replanning to ensure that the weather info in
sentences 3–6 and power info in 12–13 has probability 0.95,
raises the Pr(Mission OK) to 0.7560. The user must decide
if it is worth investing resources to improve that information.
The advantage of BRECCIA, is that deeper insight into the
reasons for the overall probability of success can be known.

V. CONCLUSIONS AND FUTURE WORK

BRECCIA, a dynamic geospatial information analysis sys-

Fig. 8. BRECCIA Mission Simulation Output

tem, is described which provides a unified probabilistic
framework for multi-source data uncertainty. The major
contributions here are: (1) an effective probabilistic logic
methodology, and (2) an experimental GEOINT system
which allows the specification and combination of uncertain
data from a wide variety of information sources, including
the ability to determine specific actions to lower the uncer-
tainty of the likelihood of statements of interest.

Future work includes:
• the extension of the knowledge base to first order logic,
• a more in-depth demonstration of the argumentation

capabilities of BRECCIA,
• the addition of other information services (e.g., the use

of available 3D urban wind models),
• the inclusion of cost models to provide cost-benefit

analysis for the user in making decisions.
• more advanced belief revision.
• the further improvement of the interaction between

BRECCIA and the information sources, and
• field testing with UAV reconnaissance missions.

REFERENCES

[1] R.J. Abraham and L. See, editors. GeoComputation. CRC Press, Boca
Raton, FL, 2014.

[2] T. Alsinet, C.I. Chesnevar, L. Godo, and G.R. Simari. A Logic
Programming Framework for Possibilistic Argumentation. Fuzzy Sets
and Systems, 159(10):1208–1228, 2008.

[3] M. Biba. Integrating Logic and Probability: Algorithmic Improvements
in Markov Logic Networks. PhD thesis, University of Bari, Bari, Italy,
2009.

[4] G. Boole. Further Observations on the Theory of Probabilities. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2:96–101, 1851.

[5] G. Boole. An Investigation of the Laws of Thought. Walton and
Maberly, London, UK, 1857.

[6] R.H. Bordini, J.F. Huebner, and M. Wooldridge. Programming Multi-
Agent Systems in AgentSpeak using Jason. Wiley Series in Agent
Technology. Wiley, Hoboken, NJ, 2007.

[7] S. Bowers, E. Jaeger-Frank, B. Broderic, and C. Baru. Managing
Scientific Data: from Data Integration to Scientific Workflows. In
A.K. Sinha, editor, Geoinformatics: Data to Knowledge, pages 109–
130, Boulder, CO, 2006. The Geological society of America.

[8] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E.
Kavraki, and S. Thrun. Principles of Robot Motion. MIT Press,
Cambridge, MA, 2005.

[9] J. Delaney and K. van Niel. Geographical Information systems. Oxford
University Press, Oxford, UK, 2007.

[10] P. Domingos and D. Lowd. Markov Logic: An Interface Layer for
Artificial Intelligence. Morgan and Claypool, San Rafael, CA, 2009.

[11] N. Gilardi and S. Bengio. Comparison of Four Machine Learning
Algorithms for Spatial Data Analysis. In G. Dubois, J. Malczewski,
and M. De Cort, editors, Mapping Radioactivity in the Environment
– Spatial Interpolation Comparison, volume 97, pages 222–237, Lux-
embourg, May 2003. Office for Official Publications of the European
Communities.

[12] V. Gogate and P. Domingos. Probabilistic Theorem Proving. Commu-
nications of the ACM, 59(7):107–115, 2016.

[13] D.G. Goulinas. Development of a GIS-based System for Highway
Analysis. In C.A. Brebbia and P. Pascolo, editors, GIS Technologies
and Their Environmental Applications, pages 167–176, Southhampton,
UK, 1998. Computational Mechanics Pubs.

[14] D. Greenspan. Particle Models. Birkhäuser, Boston, MA, 1997.
[15] T.C. Henderson, A. Mitiche, R. Simmons, and X. Fan. A Preliminary

Study of Probabilistic Argumentation. Technical Report UUCS-17-
001, University of Utah, February 2017.

[16] A. Hunter. A Probabilistic Approach to Modelling Uncertain Log-
ical Arguments. International Journal of Approximate Reasoning,
54(1):47–81, January 2013.

[17] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based
Algorithms for Optimal Motion Planning. In Y. Matsuoka, H. Durrant-
Whyte, and J. Neira, editors, Proceedings of Robot Science and
Systems, Zaragoza, Spain, 2010.

[18] H.A. Karimi, editor. Big Data: Techniques and Technologies in
Geoinformatics. CRC Press, Boca Raton, FL, 2014.

[19] M. Kothari, I. Postlewaite, and D.-W. Gu. UAV Path Following
in Windy Urban Environments. Journal of Intelligent and Robotic
Systems, 74:1013–1028, 2014.

[20] R. Kowalsi and P.J. Hayes. Semantic Trees in Automatic Theorem
Proving. In J.J. Siekmann and G. Wrightson, editors, Automation of
Reasoning, pages 217–232, Berlin, 1983.

[21] H. Li, N. Oren, and T. Norman. Probabilistic Argumentation Frame-
works. In Proc. 1st International Workshop on the Theory and
Applications of Formal Argumentation, Beijing, China, August 2011.

[22] B. Liu, Y. Chen, A. Hadiks, E. Blasch, A. Aved, D. Shen, and
G. Chen. Information Fusion in a Cloud Computing Era: A Systems-
Level Perspective. IEEE Aerospace and Electronic Systems Magazine,
29(10):16–24, October 2014.

[23] N. Nilsson. Probabilistic Logic. Artificial Intelligence Journal, 28:71–
87, 1986.

[24] D. Nute, W.D. Potter, Z. Cheng, M. Dass, A. Glende, F. Maierv,
C. Routh, H. Uchiyama, J. Wang, S. Witzig, M. Twery, P. Knopp,
S. Thomasma, and H.M. Rauscher. A Method for Integrating Multiple
Components in a Decision Support System. Computers and Electron-
ics in Agriculture, 49:44–59, 2005.

[25] G. Ortiz-Hernández, J.F. Hübner, R.H. Bordini, A. Guerra-Hernández,
G.J. Hoyos-Rivera, and N. Cruz-Ramı́rez. A Namespace Approach
for Modularity in BDI Programming Languages. In M. Baldoni, J.P.
Müller, I. Nunes, and R. Zalila-Wenkstern, editors, Engineering Multi-
Agent Systems: 4th International Workshop, EMAS 2016, Singapore,
Singapore, May 9-10, 2016, Revised, Selected, and Invited Papers,
pages 117–135, Cham, 2016. Springer International Publishing.

[26] L. De Raedt, A. Kimmig, and H. Toivonen. HProbLog: A Probabilistic
Prolog and its Application in Link Discovery. pages 2462–2467, 2007.

[27] R. Ramachandran, J. Rushing, X. Li, C. Kamath, H. Conover, and
S. Graves. Bird’s-eye View of Data Mining in Geosciences. In A.K.
Sinha, editor, Geoinformatics: Data to Knowledge, pages 235–248,
Boulder, CO, 2006. The Geological society of America.

[28] A.S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical
Computable Language. In W. Van de Velde and J.W. Perram,
editors, Agents Breaking Away: 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, MAAMAW ’96 Eindhoven,
The Netherlands, January 22–25, 1996 Proceedings, pages 42–55,
Berlin, Germany, 1996. Springer Verlag.

[29] F.I. Riadh, S.E. Karim, B. Solaiman, and B.A. Mohamed. Analyzing
Spatial-Temporal Geographic Information based on Blackboard Archi-
tecture and Multi-Agent system. International Journal of Computer
Science and Network Security, 6(8A):4–10, August 2006.

[30] M. Richardson and P. Domingos. Markov Logic Networks. Machine
Learning, 62(1-2):107–136, February 2006.

[31] C.M. Scaparrotti. Geospatial Intelligence in Joint Operations. Number
Joint Publication 2-03. US Government, Washington, DC, 2012.

[32] M.H. Sharker and H.A. Karimi. Distributed and Parallel Computing.
In H.A. Karimi, editor, Big Data: Techniques and Technologies in
GeoInformatics, pages 2–31, Boca Raton, FL, 2014. CRC Press.

[33] J. Song, B. Xiang, X. Wang, L. Wu, and C. Chang. Application of
Dynamic Data Driven Application System in Environmental Science.
Environmental Review, 22:287–297, 2014.

[34] R. Sugumaran, S. Ilavajhala, and V. Sugumaran. Development of a
Web-Based Intelligent Spatial Decision Support System (WEBISDSS):
A Case Study with Snow Removal Operations. In B.N. Hilton, editor,
Emerging Spatial Information Systems and Applications, pages 184–
202, London, 2007. Idea Group Publishing.

[35] L.D. Swartzentrubre. Improving Path Planning of Unmanned Aerial
Vehicles in an Immersive Environment using MetaPaths and Terrain
Information. PhD thesis, Iowa State University, 2009.

[36] M. Thimm. A Probabilistic Semantics for Abstract Argumentation. In
Proc. 20th European Conference on Artificial Intelligence, Montpel-
lier, France, August 2012.

[37] M.-H. Tsou. Bridging the Gap: Connecting Internet-Based Spatial De-
cision Support Systems to the Field-Based Personnel with Real Time
Wireless Mobile GIS Applications. In S. Balram and S. Dragicevic,
editors, Collaborative Geographic Information Systems, pages 286–
315, Hershey, PA, 2006. Idea Group Publishing.

[38] T. van Zyl. Machine Learning on Geospatial Big Data. In H.A. Karimi,
editor, Big Data: Techniques and Technolgies in GeoInformatics, pages
134–148, Boca Raton, FL, 2014. CRC Press.

[39] R.R. Vatsavai, A. Ganguly, V. Chandola, A. Stefanidis, S. Klasky, and
S. Shekhar. Spatiotemporal Data Mining in the Era of Big Data Spatial
Data: Algorithms and Applications. In Proc. 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, pages
1–10, NY, NY, 2012. ACM.

[40] W. Wang, A. Joshi, N. Tirpankar, P. Erickson, M. Cline, P. Thangaraj,
and T.C. Henderson. Bayesian Computational Sensor Networks:
Small-scale Structural Health Monitoring. In Proceedings of the Inter-
national Conference on Computational Science, ICCS ’15, Reykavik,
Iceland, June 2015. Springer-Verlag.

