Logical Sensor Specification!

Charles Hansen, Thomas C. Henderson, Esther Shilcrat and Wu So Fai
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Abstract

Multi-sensor systems require a coherent and efficient treatment of the information
provided by the various sensors. We propose a framework in which the sensors can be
abstractly defined in terms of computational processes operating on the output from
other sensors. Various properties of such an organization are investigated.

1 Introduction

Most pattern recognition systems to date have been designed around a single sensor or
a small number of sensors, and ad hoc techniques have been used to integrate them into
the complete system and for operating on their data. In the future, however, systems
must operate in a reconfigurable multi-sensor environment; for example, there may be
several cameras (perhaps of different types), active range finding systems, tactile pads,
etc. The Multi-sensor Kernel System (MKS) has been proposed as an efficient and
uniform mechanism for dealing with data taken from several diverse sensors[3, 4, 1].
MKS has three major components: low-level data organization, high-level modeling,
and logical sensor specification. This paper addresses the problem of logical sensor
specification.

The specification of logical graphics input devices has been investigated by Foley
[2], Pfaff [9], and Rosenthal [10], and we have shown how MKS can provide similar
functions in a multi-sensor environment. Basically, a logical (or abstract) sensor can
be viewed as a software filter whose inputs are either system defined devices (such as
cameras) or the output streams of other logical sensors. Thus, MKS supports a mix of

!This work was supported in part by the System Development Foundation and NSF Grants ECS-
8307483 and MCS-82-21750.



hardware and software sensors in straightforward way. The logical sensor specification
defines a dependency relation and permits efficient system reconfiguration in case of the
failure of a particular sensor. Such a sensor specification is in fact a sensor definition
language, and thus, a semantics of sensor definitions can be given, providing the user
a useful analysis tool.

There are several principal motivations for logical sensor specification:

e emergence of multi-sensor systems: many applications require several sensors;
e.g., robotics workeells, distributed problem solving networks, etc. Often, the
sensors are of diverse types (cameras, tactile pads, active range finders), and a
coherent data acquisition and integration system is required.

e benefits of data abstraction: the specification of a sensor is separated from its
implementation. The multi-sensor system is then much more portable in that the
specifications remain the same over a wide range of implementations. Moreover,
alternative mechanisms can be specified to produce the same sensor information
but perhaps with different precision or at different rates. Thus, several dimensions
of sensor granularity can be defined. Further, the stress on modularity not only
contributes to “intellectual manageability” [11] but is also an essential component
of the system’s reconfigurable nature. The inherent hierarchical structuring of
logical sensors further aids system development.

o availability of smart sensors: the lowering cost of hardware combined with devel-
oping methodologies for the transformation from high level algorithmic languages
to silicon have made possible a system view in which hardware/software divisions
are transparent. It is now possible to incorporate fairly complex algorithms di-
rectly into hardware. Thus, the substitution of hardware for software (and vice
versa) should be transparent above the implementation level.

In the remainder of this paper, we present some of the advantages and disadvantages
of logical sensor specification, but it should be remembered that this is only one part
of the Multi-sensor Kernel System, and that the specification of logical sensors must
accord with the rest of the system.

2 The Data Flow View of Logical Sensors

Before we give a detailed syntactic description of a logical sensor specification language,
an overview of logical sensor specification is in order. A logical sensor is defined in terms
of three parts:

1. A set of input sources. Each element of the set must either be itself a logical
sensor, or the empty set.



Figure 1: Graphical View of a Logical Sensor

2. A computation unit over the input sources. Currently such computation units
are software programs, but in the future, hardware units may also be used. The
examples of computation units in this paper will be programs.

3. A characteristic output vector. This is basically a vector of types which serves as
a description of the output vectors that will be produced by the logical sensor.
Thus, the output of a logical sensor is a stream of vectors, each of which is of
the type declared by that logical sensor’s characteristic output vector. When an
output vector is of the type declared by a characteristic output vector (i.e., the
cross product of the vector element types), we say that the output vector is an
“instantiation” of that characteristic output vector.

Alternatively, we present the following inductive definition of a logical sensor, where
1. is the base case:

1. A computation unit, with specified output type (the characteristic output vector),
which requires no input sources.

2. A computation unit, with specified output type, whose input sources are logical
Sensors.

Figure 1 gives a graphical presentation of this notion. The characteristic output vector
declared for this logical sensor is (x-loc:real, y-loc:real, z-loc:real, curvature:integer).
We present two examples to clarify the definition of logical sensors, and in particular
to show how the inputs to a logical sensor are defined in terms of other logical sensors
and how the program accepts input from the source logical sensors, performs some
computation on them and returns as output a set (stream) of vectors of the type defined
by the characteristic output vector. Figure 2 shows the logical sensor specification for
a Camera which happens to have no other logical sensor inputs. The specification for

3



Figure 2: The Logical Sensor Specification of a Camera

Figure 3: The Logical Sensor Specification of Range_Finder.



a stereo camera range finder called Range_Finder is given in Figure 3. The program
stereo takes the output of the two cameras and computes vectors of the form (x,y,z)
for every point on the surface of an object in the field of view.

The idea is that a logical sensor can specify either a device driver program which
needs no other logical sensor input, but rather gets its input directly from the physical
device and then formats it for output in a characteristic form, or a logical sensor can
specify that the output of other logical sensors be routed to a certain program and the
result packaged as indicated. Thus, logical sensors play the role of “software filters”
which can be built as a useful set of modular tools in the system.

Having described how logical sensors are developed and operate, we now define a
logical sensor to be a network composed of one or more sub-networks, where each
sub-network is a logical sensor. The computation units of the logical sensor are the
nodes of the network. The network forms a rooted directed acyclic graph. The graph
is rooted because, taken entirely, it forms a complete description of a single logical
sensor (versus, for example, being a description of two logical sensors which share sub-
networks). We also say that it is rooted because there exists a path between each
sub-network and a computation unit of the final logical sensor. Logical sensors may
not be defined in terms of themselves, that is, no recursion is allowed, and hence the
graph is acyclic.

All communication within a network is accomplished via the flow of data from one
sub-network to another. No explicit control mechanism, such as the use of shared vari-
ables, alerts, interrupts, etc., is allowed. The use of such control mechanisms decreases
the degree of modularity and independent operation of sub-networks. Hence the net-
works described by the logical sensor specification language are data flow networks,
and have the following properties [8]:

1. A network is composed of independently, and possibly concurrently, operating
sub-networks.

2. A network, or some of its sub-networks, may communicate with its environment
via possibly-infinite input or output streams.

3. Sub-networks are modular.

3 A Syntax for Logical Sensor Specification

We have shown that a logical sensor has the following properties:

1. A logical sensor is a network composed of sub-networks which are themselves log-
ical sensors. This composition is tantamount to saying that the input sources to
a logical sensor are logical sensors, or null. Allowing null input permits physical

5



sensors which have only an associated program (the device driver) to be described
as a logical sensor. Thus, uniformity of sensor treatment can be obtained.

. A logical sensor may be defined only in terms of other, previously defined, logical

SEeNnsors.

. A computation unit is an integral part of the definition of a logical sensor.

. A logical sensor produces output of the type declared by its characteristic output

vector, and the declaration of the characteristic output vector is also an integral
part of the definition of a logical sensor.

It should be noted that there may be alternate input paths, subtrees, to a particular

sensor. These alternate subtrees form a different sub-network for a particular logical
sensor. That is, the alternate subtrees provide a different input path should a node in
the sub-network fail. Thus, there may be one or more paths through which a logical
sensor produces data, but regardless of the path taken, the output will be of the type
declared by the logical sensor’s characteristic output vector.

With these points in mind, a syntax for describing the logical sensor system can be

formed:
1. <logical_sensor_list> ::= <logical_sensor>
{;<logical_sensor>}.;
2. <logical_sensor> ::= <logical_sensor_name>
<characteristic_output_vector>
<alternate_subtrees>;
3. <logical_sensor_name> ::= identifier;
4. <characteristic_output_vector> = <name_type_list>;
5. <name_type_list> ::= identifier : type
{,<name_type_list>};
6. <alternate_subtrees> ::= <input_list>
<computation_unit_name>
{l<alternate_subtrees>};
7. <input_list> 1:= <> | <sensor_list>;



8. <sensor_list> <logical_sensor_name> [<index_list>]

{,<sensor_list>};

9. <index_list>

integer {,<index_list>};

10. <computation_unit_name> identifier;

We have developed both a user interface and a parser for this specification language.
The user interface allows the user to interactively enter sensors into the system. The
program prohibits the user from defining sensors based on non-existent sensor names
but allows the user to see existing sensors, their various alternate sub-trees and the
types of their output vectors . Furthermore, the program computes the dependency
relation between sensors, and this relation can be used for dynamic reconfiguration.
For example, should a sensor in the current subtree fail, the system could switch to an
alternate subtree which provides the necessary input streams and therefore maintains
the sensor’s functionality. From this interactive sensor specification, a sensor program
is produced which conforms to the syntax given above.

The parser takes a sensor program as given above and parses for syntactic correct-
ness. The parser was developed using the compiler tools LEX and YACC on the UNIX
(a registered trademark of Bell Labs) system. Currently, the parser simply checks the
input language for syntax errors and does no semantic checking. Much of the semantics
of the language is enforced through the interactive interface. For example, undefined
sensor names, uniqueness of names, alternate subtrees, etc. are detected during input.
This parser can be further used to produce machine independent interpretable code to
define the manner in which the system should be run.

4 The Semantics of Logical Sensors

Below we present a high level description of the operational semantics (i.e., the execu-
tion effect) for each rule of the grammar:

1. A logical sensor list declaration establishes a series of logical sensor definitions
as being known to the system. This is used to ensure that logical sensors are
defined only in terms of other, previously defined, logical sensors.

2. A logical sensor declaration provides an associated name for the logical sensor
used for identification purposes, a characteristic output vector to declare the
type of output for that logical sensor, and establishes the subordinate logical
sensors (the alternate subtrees).



9.
10.

A logical sensor name declaration associates a (unique) identifier for the logical
Sensor.

A characteristic output vector declaration establishes the type of output for the
logical sensor.

A name-type list declaration establishes the precise nature of the output type
as declared by the characteristic output vector. It consists of a cross product of
types, with an associated name.

An alternate subtree declaration establishes a series of input sources, computa-
tion unit name tuples, thus making known which logical sensors and computation
units are part of the definition of the logical sensor being declared.

An input list declaration establishes which legal input sources (either none, or a
series of logical sensors) are to be used as input to the computation unit.

A sensor list declaration associates logical sensor names to an index list and is
used to check that logical sensors specified as input sources have previously been
declared.

An index list is a list of integers.

A computation unit name declaration establishes the name of the actual program
which will execute on the declared input sources.

We are also currently working on providing more formal semantics for the logi-
cal sensor specification language. Many works provide denotational semantics (i.e.,
semantic schemes which associate with each construct in the language an abstract
mathematical object) for general data flow networks [6, 7, 8]. When such semantics
have been given for the networks represented by logical sensors, we will be able to
formally prove desired network properties, such as [6]:

1.

2.

A network can execute forever.

If one of the sub-networks within a network stops at some time for an extraneous
reason, the entire network would stop. (We say that a sub-network stops only if
each of its alternate subtrees stops.)

We will also be able to prove that the output of a specified logical sensor has
particular properties of interest (e.g., that its type matches that of the characteristic
output vector).



5 The Multi-sensor Kernel System

The Multi-sensor Kernel System (MKS) provides more than just a mechanism for the
specification of logical sensors. Our approach is to first take the vectors produced
by the logical sensors and organize them into a useful low-level representation, the
@b(spatial proximity graph). The nodes of the spatial proximity graph are the vectors
themselves, and an edge exists between two nodes if the vectors they represent are
within a specified distance. Many high-level modeling techniques can be supported by
such a representation. Feature-based models can be directly matched to vectors from
the sensors, but structural models will, in general, require some kind of processing of
the spatial proximity graph [5, 1].

In the runtime environment, alternate subtrees combined with the dependency re-
lation of the logical sensors provide a mechanism for efficient system reconfiguration
should a sensor fail. A failed sensor can be handled by means of a device time-out in-
terval, a failure bit propagated through the network, etc., and all sensors which depend
on the failed sensor in their currently operating sub-network must be notified. These
sensors can switch to an alternate subtree defined at the specification level. Moreover,
the alternate subtree may be invoked at the closest hierarchical level, thus lessening
the impact of the failed sensor. Through this scheme, dynamic system reconfiguration
can be achieved.

6 Conclusion

The formal specification of logical sensors allows the organization of many diverse
kinds of sensors and supports data abstraction. This increases the facility with which
dynamic configuration of a sensor system can be achieved and hides implementation
details. Thus, software functions can be migrated to hardware in a straightforward
way. Moreover, within such a system it is possible for a higher level planning module
to automatically specify logical sensors in order to obtain relevant sensor data in a
systematic way.

References

[1] Wu So Fai. A multi-sensor integration and data acquisition system. Master’s
thesis, University of Utah, Salt Lake City, Utah, June 1983.

[2] J.D. Foley and A. Van Dam. Fundamentals of Interactive Computer Graphics.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1982.



[3]

[10]

1]

Thomas C. Henderson and Wu So Fai. A multi-sensor integration and data acqui-
sition system. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 274-280. IEEE, June 1983.

Thomas C. Henderson and Wu So Fai. Pattern recognition in a multi-sensor
environment. Computer Science UUCS 83-001, University of Utah, July 1983.

Thomas C. Henderson and Wu So Fai. Some experiments with the 3-d hough
shape transform. Computer Science UUCS 83-002, University of Utah, July 1983.

G. Kahn. The semantics of a simple language for parallel programming. In Pro-
ceedings of IFIP, pages 471-475, 1974.

G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In
Proc. IFIP 77, pages 993-998, 1977.

R.M. Keller. Denotational models for parallel programs with indeterminate op-
erators. In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts,
pages 337-366. North Holland Publishing Co., 1978.

H. Kuhlmann Pfaff, G. and H. Hanusa. Constructing user interfaces based on
logical input devices. Computer, 15(11):62-69, November 1982.

D.S. Rosenthal, J.C. Michener, G. Pfaff, R. Kessener, and M. Sabin. The detailed
semantics of graphics input devices. Computer Graphics, 16(3):33-38, July 1982.

N. Wirth. On the compostion of well-structured programs. In E.N. Yourdan,

editor, Classics in Software Engineering, pages 153-172, London, 1979. Yourdon
Press.

10



