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Abstract

Multi- sensor systems pose the problem of how to coherently and efficiently treat the
data provrded by the various sensors. However, the avatlability of greater numbers of
sensors also broadens the ability to build fault tolerant sensor systems We define a
framework in which sensors can be abstractly defined m terms of computatlonal
processes operatmg on the output from other sensors. Such processes are called logical
sensors. Logtcal ‘sensors make sensor configuration and mtegratlon easier and facilitate

reconﬂguratlon of sensor systems so that fault tolerance can be both expressed and

acmeved.

‘Thls work was supported in part by the System Development Foundation and NSF Grants ECS-8307483 and
MCS-82-21750 ’ : R



1. Introduction

Both the availability and need for sensor systems is growing, as is the complexity in
terms of the number and kind of sensors within a system. For example, most pattern
recognition systems to date have been designed around a single sensor or'a small
number of sensars, and ad hoc configuration techniques have been used for sensor
integration and operation. In the future, however, such systems must operate in a
reconfigurable multi-sensor env:ronment for example, there may be several carﬁeras
(perhaps of different types), active range finding systems, tactile pads, and so on. In
addition, a wide variety of sensing devices of different kinds, including mechanical,
electronic, and chemical, are available for use in sensor systems, and a sensor system
may include several kinds of sensing devices. Thus, in a multi-sensor system, the need
to develop a coherent and efficient treatment of the information provided by many

sensors, particularly when the sensors are of various kinds, becomes paramount.

The emergence of multi—sensor systems is one of the principal motivations for logical
sensor specification. In addition, multi-sensor systems present a chal!engving opportunity
to turn what is in one case a source of weakness (thé number and variety of sensors)
into a source of strength in terms of building fault tolerant sensor systyems'. This is the
issue which we concentrate on in this paper. Other motivations include: the benefits of
data abstraction and modularity, and thé penefits of a hardware/software tratpspérencv o]

that smart sensors can easily replace software.

In single sensor systems, backup sensors would generally be duplicates of the failed
sensor, or would be “functionally’ equivalent” to it. By “functionally equivalent” we mean
that the backup sensor performs similarly to the failed sensor. However, having sensors
which are to act solely as packups is not only expensive, but may also be dlfﬂcult due to
physical space hmntatlons Stopping the system in order to replace a sensor limits the
effectiveness of this fault tolerance mechanism in sensor svstems which are expected to
run continuously or near-continuously. One answer to this problem lies in extending our
view of “functionally equivalent.” We concentrate on determining whether data is
functionallv‘ équivalent, rather than determining if physical sensors are functionally
equivalent. Wé take this approach to maximize the possibility of using sensors which are
aiready doing duty in the system to produce data which is "gquivalent” to that which the

failed sensor would have produced. For example, the kind of data produced by a physical



laser range finder sensor could be “functionally equivalent” to that produced by two
cameras and a partlcular stereo program Thus, one backup for the Iaser range finder
could be a module composed of the two cameras and the stereo. ‘program . As this
example lllustrates, backups may well not be simple replacement of sensors . b‘ut

rep!acements which mvo|ve one or more sensors, and one or more software modules.

_ Thus m order to take advantage of the greater opportunities for buuldlng‘fault"tolerant
sensor svstems, it is necessary to express the replacement of a smgle sensor wrth a
sensor-softyvare ”package" to the system. In addition, the user mav need guudehnes to-
~help determine t"functional equivalence.”  The Logical Sensor Specmcatlon Language’
makes use of data abstraction to build “packages” and to express fault tolerance We

explam how thls is accomphshed by the Logical Sensor Specmcatlon Language and
descnbe the extensnons wh:ch |mpiement fault tolerance and which wull help users desngn :
sensor systems ‘with a greater degree of fault tolerance. We note that the ‘inherent

hardware/software transparency has been exploited as the basrs for a umform approéidh :
to fault tolerance mechamsms We show how these extensaons together W|th this

uniform approach can also constltute a tool for automatic sensor system specification.

2. Loglcal Sensors
Logical Sensors constltute one ma;or component of the Multr sensor Kernel System

(MKS). | MKS has been proposed as an efflcnent and umform mechamsm for dealmg wuth
data taken from several dtverse sensors [1 2, 3, 5] MKS ‘has three ma;or components

low- tevel data organization, high- Ievel modelmg, and log|ca| sensor specnf:catlon The
first two components of MKS concern the choice of a low-level representatlon of real-
world phenomena and the mtegratlon ~of that representatton into a. meanmgful‘
mterpretatnon of the real world and have been dlscussed in detatl elsewhere [5] The
logical sensor specmcatlon component aids the user in the (re)conftguratlon and
integrati‘on of data such that, regard|ess of the number and klnds of sensing devices, the
data is represented consustently with regard to the low—level orgamzatlon ‘and high-level
modellng technlques ‘that are contamed in MKS However a use for logical sensors is
evudent in any sensor system which is composed of several sensors or where sensor
reconfiguration is desrred and the Ioglcai sensor specification component mav be used

independently of the other two MKS components.



Multi~sen$or svsiéms can present a user with a confusing plethora of details concerning
both the sensors and associated software. However, not every detail is important in
,everv’sensdr system. Logical sensors are a means by which to insulate the user from
unnec’g'ssarv détails, and thereby allow the user to concentrate on the information which-
" is actually necessary to détefmine ‘system configuration. This is éccomplished by
: creatih'g ”backages" of sensors, and allowing only some info/rma‘tionuabvbd\i'the package to
be visible to the rest of the system. Going back to our earlier example, the type of data
" produced by the phys'i'cai laser range finder s’e‘nso’r was also the typ,enproduc:e‘d“ by the
two ca;neraé éﬁ'dvthe( ‘sfe‘reo,‘progr‘am. Th’is similarity  of output resulf renders the
alternate methpds funétional!y equivalent, and is more important thanv detail‘s “con‘cerning
the methodsﬂthemsélves.’ Logical sensor specification allows the Lnser to ignoré‘”; such
differences of how output is>prﬁod0c‘ed[ and treat different means of ob}tain‘i'ng& "equivalent”
data as 'r'ﬁlogi{.callv" the same. We note, however, that from the fault tolerance viewpoint,
type of output alone mé\fnot be enough to determine “functional Aequivalence”:and henée‘

a logical sensor should have visible features other than type.

A Ioéical sensor is defined in terms of four parts:

1. A logical sensor name. This is used to uniquely identify the lpgica! sensor.

2. A characteristic output vector. This is basically a vector of types which
B serves as a description of the output vectors that will be produced by the:
logical sensor. Thus, the output of a logical sensor is a set (or. stream) of
vectors, each of which is of the type declared by that logical sensor’s
characteristic output vector. The type may be any standard type (eg’.,' real,.
~integer), a user generated type, or a well-defined subrange of either. When
an output vector is of the type declared by a characteristic output vector (i.e.,
" the cross product of the vector element types), we say that the output vector

is an “instantiation” of that characteristic output vector.

‘3. A selector whose inputs are alternate subnets (below). The role of the
‘selector is to detect failure of an alternate and switch to a different alternate.
_ If switching cannot be done, the selector reports failure of the logical sensor.

4 Alternate Subnets. This is a list of one or more alternate ways in which to~
~ obtain data with the same characteristic output vector. Hence, each alternate
subnet is eqUivalent, with regard to type, t0 ail other alternate subnets in the
list, and can serve as backups in case of failure. Each alternate subnet in the
list is itself composed of: ' | :

* A set of input sources. Each element of the set must either be itself a



logical sensor, or the empty set (null) Allowing null input permits.
physical sensors, which have only an associated program (the device
driver), to be described as a logical sensor, thereby permitting unlformlty
of sensor treatment. ‘

- % A computation unit over the input sources. Currently such computation
units are software programs, put in the future, hardware units may aiso
pbe used. In some cases, a special “do- -nothing” computatlon unit may
be used. We refer to this unit as PASS. :

A loglcal sensor can be viewed as a network composed of sub -networks which are’
themselves loglcal sensors: Communication within a network is controlled via the flow of

data from one sub -network to another. Hence, such networks are data flow networks.

3. Fault Tolerance , |

The Loglcal Sensor Specmcatlon Language has been designed in accordance with the -
view that languages should facilitate error determination and recoverv As we have -
explamed a logical sensor has ‘a selector which takes possnbly many alternate subnets as
‘mput. The selector determlnes arrors, and attempts recoverv via swntchmg to an another
alternate vsubnet. 'Each' alternate subnet is an input. source - computatlon umt pair.
vSelectors can detect failures whlch arise from either an input source or the computatlonf‘
unit. Thus the selector together with the’ alternate subnets constltute a fallure and
substitution deVlce that is, a fault tolerance mechanism, and both hardware and software
fault tolerance can be achleved Thls is particularly desirable in hght of the fact that

“fault tolerance does not necessarllv require diagnosing the cause of the fault or even

deciding whether it arlses from_the hardware or software” (emphasis added) [4] In a

multl-sensor svstem partlcularly ‘where continuous- operation is ’expected, tr\/lng' to

determine and correct the exact source of a failure may be prohlbmvelv tlme-coneuming.

Substitution choices may be based on either r eglication or replacement. Reglication
" means that exact duplicates of the failed component have been speclﬂed as alternate
; subnets n replacement a dlﬂ‘erent unit is substituted. Replacement of software modules
has long been recogmzed as necessary for software fault- tolerance with the hope, as
Randall states, that using a software module of mdependent design will facnlltate coping
“with the circumstances that caueed the main component to fail” [4]. We feel that
“replacement of physical“ sensors should be exploited both with Randall'e point in view,

and because extraneous considerations, such as COSt, and spatial limitations as 1o



placement ability are very Iikely to limit the number of purely back-up physical sensors

which can be involved in a sensor system

 3.1. Recovery Blocks

The recovery block is a means of implementing software fault tolerance [41.4 A recovery
block contains a serles of alternates which are to pe executed in the order listed. Thus,
the first in the series of alternates is the primary “alternate. An acceptance test is used to
ensure that the output produced by an alternate is correct or acceptable. First the
primary alternate is executed and its output scrutinized via the acceptance test. lf it

passaes, that block is exited, otherwise the next alternate is tried, and so on. If no

alternate passes, control switches to a new recovery block if one (on the same or higher' ”

level) is available; otherwise,an error results.

Similarly, a selector tries, in turn, each alternate subnet in the list, and tests each one’s
output via an acceptance test. However, while Randall’s scheme requires the use of
complicated error ‘recovery mechamsms (restoring the state, and so on) the use of a
data-flow model makes error-recovery relatively easy. Furthermore, our user interface
computes the dependencv ‘relation between logical sensors [1] Thns permits the svstem

to know whlch other sensors are possibly affected.

The general difficulties relating to software acceptance tests such as how to devise
them, how to make them simpler than the software module bemg tested and so on,
remain. 13 i570ur view that some acceptance tests will have to be designed by the user
and that our goal is simply to accommodate the use of the test. Unlike‘ Randall, we
envision the recovery block as a means for ‘both hardware and software fault-tolerance,
and hence we also allow the user to specify general hardware acceptance te-rs.  Such
tests may be based for example, on data link control information, 2-way handsnaking and
other protocols it is |mportant to note that a selector.must be ‘specified even if there is
only one subnet in a Iogrcal sensor’'s list of alternate subnets Without at least the
minimal acceptance test of a “time-out, " a logical sensor could be placed on hold forever
even when alternate wavs to obtain the necessary data could have been executed. Given
the minimal acceptance test the selector will at least be able to signal farlure to a higher

level selector which mav then institute a recovery. However we also wish to devise

special schemes for acceptance tests when the basis for substrtutron is replacement.



While users will often know which logical sensors are functionally equivalent , it is also
likely that not all possible substitutions of |og|cat sensors will be considered. Thus, we
are interested in helping the user expand what is considered functionally equuvalent
Such a tool could also be used to automancally generate Iogtcal sensors. We give an
example logical sensor network in Figure 1. This example shows how to obtain surface
point data from possible alternate methods. The characteristic output vector of
Range | Fmder is (x:realy:realz: real) and is produced by se!ecting one of the two alternate
subnets and “projecting” the first three elements of their characteristic output vectors.
The preferred subnet is composed of the logical sensor Image Range This logical sensor
has two alternate subnets which both have the dummy computational unit PASS. PASS
does not effect the type of the logical sensor. These alternatlves WIll be selected in turn
to produce the characteristic output vector (x: realv real, z.real,l.mteger). If both alternates
fail (whether due to hardware or software) the lmage Range sensor has failed. The
Range_Finder then selects the second subnet to obtain the (x: realy real,z:real) information
from the Tactile_Range’s characteristic output vector. If the Tactile Range subsequently
fails, then the Range Finder fails. Each subnet uses this mechanism to provide fault

tolerance.

3.2, Remifications of Fault-ToIerance Based on a Replacement Scheme

Many difficult issues arise when fauit tolerance is based on a replacement scheme.
Because the replacement scheme is |mp|ernented through the use of alternate subnets,
the user can be sure\thavt the type of output will remain constant, regardless of the
particular source subnet. ldeally, however, we consider that a replacement based scheme
is truly fault tolerant only if the effect of the replacement is within allowable limits, where
- the allowable limits are determined by the user. As a simplified example consnder a
sensor system of one camera, A, and a back- up camera, of another type, B. Suppose
camera A has accuracy of + 0.01%, and camera B has accuracy of +0.04%. If the user has
derermined that the allowable |irnit on accuracy is +0.03%, then replacement of camera A
by camera B will not yield what we call a truly fault tolerant system; if the allowable limit
is +0.05%, the replacement does yield a_rruly fault tolerant system, as it will if the user

has determined that the systern should run regardless of the degree of accuracy.

As mentioned above, determining functional equivalence may necessitate seeing more

of a logical sensor than merely its type. This example illustrates this point in that we
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FIGURE 1: Logical sensor network for Range Finder.



have isolated a need to know more about Ieaf'logical sensors (physucal sensors).
However, We also mentioned that the above example was simplified. Let us now assume
in addition, that the user can use a vanety of algonthms to obtam the desired final
output. Suppose one of those algonthms incorporates interpolation techmques which
could increase the degree of accuracy over camera ‘B's input. In this case, the user may
be able to use camera B and this algorrthm as an alternate subnet and have a truly faul‘t'
tolerant system , even if camera B’s output is not itself within the allowable accuracy
limit. Thus, when we consnder a slightly more complex example, we see a general need
for riaving features (beside type of output) of loglcal sensors visible, and a need to

propagate such information through the system.

Feature propagation, together with allowable limit information, is needed for
replacement pased fault-tolerance schemes, and constitutes an écceptance‘ test
mechamsm ‘In . addition, such feature propagation has a good potential for use in
automatic logical sensor system specnfucatnon/optlmization For example, consider a work
statlon with several sensors. Once various logical sensors have been defmed and stored,
feature propagation can be used. to conﬂgure new Ioglcal sensor wrth propemes in
specmed ranges, or to determine “the "best” (w:thm the specmed perhaps weighted,
parameters) logical sensor system Thus feature propagation is necessarv for both fault
tolerance and automatic generation of logical sensor systems, and it is our view that the

basic scheme will be the same in either case.

4. LSS: An Implementation of Logical Sensors

A Logical Sensor Specification system, LSS, has been developed and implemented in the
“C* programming language under UNIX, a reglstered trademark of Bell Labs. This
specification system provides a user- —interface for interactivly editing sensor systems,
networks. This svstem allows the capabmty of providing alternate subnets for assisting
the fault—tolerance issue as well as computing the ‘dependency relation between sensors

as previously mentioned.

Wwhen entering a new system, the user begins by building logical sensors based on the
physical sensors available These sensors may be used to construct other logical sensors
consisting of input vectors from other logical sensors, a computational unit, and a

characteristic output vector. The user may specify alternate subnets to be selected in



case of sensor failure by giving a- computational unit and its various input vectors. All
.alternate subnets for a particular sensor produce the same characteristic output vector,
The system facilitates interactive edmng of sensor svstems by allowing the user to either
delete or~'mod|fv a particular logical sensor thus mod:fymg subnets. If this alteration

affects any other sensors in the network, the user is notified of this préblem.

To exemplify this, we present portions. of the specmcatlon of the sensor system given in
Figure' 1 Figure 2 shows the screen layout after the declaration of the physical device,
camera_1,‘used in the logical sensors: LS, Fast Stereo and Slow _Stereo. This logical
sensor has no inputs since it is a physical device and is characterized by the output
vector (x: realy reali:integer). The computational unlt is the device driver for the Camera.

There are no alternate subnets specified for this |og|cal sensor.

LOGICAL SENSOR NAME: camera_!

‘__________________________________________________,__________________________ 5

| ALTERNATE SUBNET 1 PROGRAM ID: camera_ driver
| INPUT SENSOR NAME INPUT VECTOR CHARACTERISTIC OUTPUT VECTOR -
- ELEMENT NAME ELEMENT TYPE
X - ! real
y real
i ' ' integer

enter command> input camera_ 1
Another Subnet? [y or nl n
enter command>

FIGURE 2. CRT screen after speciﬁ;ing camera_]l
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Figure 3 demonstrates the specification of Fakst_'Stereo. This logical sensor is specified
in terms of two input vectors, from camera_1 and camera_2, the computational unit
"fast_steréo" énd the characteristic output vector, (x:'real,y:real,z:real,i:integer). This logical
sensor has no alternate subtrees defined. The asterisks by the input vectors indicate

which elements are to by used by the computational unit.

LOGICAL SENSOR NAME: Stereo_1

| ALTERNATE SUBNET 1. . PROGRAM ID: fast_stereo

I
| INPUT SENSOR NAME ~INPUT VECTOR ' CHARACTERISTIC OUTPUT VECTOR i
l o ELEMENT NAME ELEMENT TYPE |
| camera_1 i * x X real |
| * y y real |
| * i 2 real I
‘ , i integer |
| camera_2 * x
l *y
I ® i
|
l
l

enter command> input Stereo_l1

Type '*' to Select input or space to skip
Another Subnet? [y or nl n

enter command> '

FIGURE 3: CRT screen after specifying Stereo_1
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Next we’ll show the ‘specification for the top level logical sensor Range_Finder. This
logical sensor has the characteristic output vector (x:real,v:real,z:reai) and is composed of
two alternate sUbnetSl. The first alternate subnet is shown in Figure 4. This subnet is
composed of the input vector, (x:feal,v:reél,z:real,i:integer), from the logical sensor
‘ I_mage_Range and the computational unit "Project 1_2_3" which will project the first threé

elements of its input vector.

LOGICAL SENSOR NAME: Range_Finder

| ----------—-—--————-—-————f—--—-;-----;——-—-——--—------——--ﬁ—-‘— -------------- \

| ALTERNATE SUBNET 1 PROGRAM ID: Project_123
| INPUT SENSOR NAME INPUT VECTOR CHARACTERISTIC QUTPUT VECTOR
| o ELEMENT NAME ELEMENT TYPE
| image_range * x X real ’
| ‘ *y y real
L 2 real
i

enter command> input Range_Finder

Type '#*' to Select input or space to skip
Another Subnet? [y or nly

enter command>

FIGURE 4: CRT screen after specifying first subnet of Range Finder
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Figure 5 shows the specification of the second alternate subtree which consists of the
input vector, (x:real;v':real,z”:real,f:r‘eal), from the logical sensor Tactile_Range and the same
computational unit as the first alternate subnet, “Project 1 2 3". The remaining portions

of the entire network were defined in a similar way.

LOGICAL SENSOR NAME: Range Finder |

P e R -

l ALTERNATE SUBNET 2 PROGRAM ID: Project_1.2_
| INPUT SENSOR NAME ~ INPUT VECTOR CHARACTERISTIC OUTPUT VECTOR
| | ELEMENT NAME  ELEMENT TYPE
| tactile_range * x X real
| *y y real
* 7 z . real
f

l
\
l
l
l
|
l
|
|
|
I
l
l

enter command> input Range_Finder ‘
Type '*' to Select input or space to skip
Another Subnet? [y or nl n

enter command>

FIGURE 5: CRT screen after specifying Range_Finder

5. Current Research Issues

“We are currently investigating several aspects of logical sensor systems:

* Semantics of Logical Sensor Systems. Both the operational and denotational
semantics of logical sensor systems require thorough investigation if the
fundamental properties of logical sensor systems are to be understood.

» Sensor/Algorithm Performance Evaluation. It is crucial in many applications to
know the effect of passing data of known characteristics through some
algorithm implemented on a certain architecture. For, example, if an algorithm
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merges data' from two different resolutions, its output most probably is of the
lower resolution of the two. On the other hand, some algorithms actually
improve the quality of the data (e.g., subpixel feature detectors in images).

Automatic Logical Sensor Generation. Given an expert system on sensors and
algorithms which work on those sensors, it may be possible for an Al system
to demand new logical sensors pased on the kinds of objects or features that
it needs to detect in the world. The simplest example would be new sensors
with constants instead of variables for some element of the characteristic
output vector. E.g., given a logical sensor which detects circles of any radius,
a logical sensor could be easily generated to detect circles of a fixed radius.

Implementation Issues. Finally, there are the issues of efficiency and
robustness which must be addressed. It is imperative tO provide a system

which performs in real-time and with low probability of unrecoverable error.

Even the characterization of the probability of error is difficult.
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