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Abstract
The Bayesian Computational Sensor Network methodology is applied to small-scale structural
health monitoring. A mobile robot, equipped with vision and ultrasound sensors, maps small-
scale structures for damage (e.g., holes, cracks) by localizing itself and the damage in the map.
The combination of vision and ultrasound reduces the uncertainty in damage localization. The
data storage and analysis takes place exploiting cloud computing mechanisms, and there is also
an off-line computational model calibration component which returns information to the robot
concerning updated on-board models as well as proposed sampling points. The approach is
validated in a set of physical experiments.
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1 Introduction

Structural health monitoring of aircraft poses a significant problem in their exploitation and
maintence. To address this issue, the major specific objectives of our work are to:

1. Exploit Bayesian Computational Sensor Networks (BCSN) [14] to detect and identify
structural damage. Here we demonstrate the combination of a Simultaneous Localization
and Mapping (SLAM) method with the use of ultrasound to map damage in a small-scale
structure.

2. Exploit an active feedback methodology using model-based sampling advice which informs
the sample point selection during path planning for the monitoring task.

3. Provide a rigorous model-based systematic treatment of the uncertainty in the process,
including stochastic uncertainties of system states, unknown model parameters, dynamic
parameters of sensor nodes, and material damage assessments.

4. Achieve goals 1-3 exploiting cloud computing.

Procedia Computer Science

Volume XXX, 2015, Pages 1–10

ICCS 2015. International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

1



Figure 1: Small-scale Structural Health Monitoring in the
Cloud.

This work addresses 3 of
the 4 DDDAS (Dynamic Data-
Driven Analysis Systems) in-
terdisciplinary research compo-
nents: applications modeling, ad-
vances in mathematics and statis-
tical algorithms, and application
measurement systems and meth-
ods, and more specifically ad-
dresses several questions raised in
the DDDAS-InfoSymbiotics 2010
Report [8] by Working Group
3 (WG3) Large and Hetero-
geneous Data from Distributed
Measurement & Control Sys-
tems (Alok Chaturvedi, Adrian
Sandhu): “DDDAS inherently in-
volves large amounts of data that
can result from heterogeneous and distributed sources which require analysis before automati-
cally integrating them to the executing applications that need to use the data.” Figure 1 shows
a conceptual layout of the problem addressed here.

The mobile robot (SLAMBOT) is placed on the structure to be monitored (here an air-
craft wing), and performs its analysis by interacting with storage and computational agents in
the cloud. In our work, the interaction is mediated by means of a highly customizable data
sharing model which provides low latency between sensing and computational resources (us-
ing optimized socket applications), and dynamic routing. The various components include (1)
the SLAMBOT, (2) storage capabilities for image and ultrasound data, (3) off-line simulation
agents which can dynamically calibrate models and provide optimal sample point locations,
and (4) some form of HCI agent (e.g., smartphone app or data analysis center). For another
view, see [4].

In the remainder of the paper, we describe the following aspects of the small-scale structural
health monitoring system:

1. Robot Monitoring Agents: a high-level monitoring agent is developed using the Con-
tract Net approach; this agent is invoked by the human inspector. It in turn contracts
with the SLAMBOT to gather damage location information in terms of a map created
during the ultrasound examination of the small-scale structure.

2. Ultrasound Analysis Model: An ultrasound range sensor is described which exploits a
computational model of Lamb wave propagation through the structure to be monitored.

3. Cloud Computing Architecture: the cloud computing architecture allows various
agents to efficiently exchange data and information.

4. Validation Experiment: a physical experiment using an aluminum plate, and a mobile
robot is described which provides bounds on the uncertainty of the operation of the
monitoring process.
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2 Robot Monitoring Agents

The monitoring task is divided between a virtual agent which manages the monitoring process
(the manager), and a set of inspection agents (the contractors) which are physical robots capable
of mapping damage in the structure of interest. In addition, the manager may request bids
on other aspects of the problem (e.g., computational simulations for model calibration, etc.).
This approach has been chosen so as to make the solution more general and applicable to a
wide variety of scenarios. For example, in aircraft inspection, we envision a set of SLAMBOT
type robots which may be tracked ground vehicles, or quadrotors that are available to provide
inspections, but which must be contracted to perform the work. The Contract Net protocol
[21] is used which follows the following sequence:

• The manager agent issues a general broadcast task announcement with an eligibility
specification, a task abstract, a bid specification and an expiration time.

• The contractor agents bid on tasks they can handle, and provide some information about
their capabilities.

• The manager agent then awards bids (perhaps multiple).

• The contractor agents then proceed with the task and may exchange information with
other agents as necessary to complete the task. They also store the acquired data in the
cloud so that it is available to other agents involved in the process. Once the task is
completed they announce that to the manager and submit a final report.

2.1 The SLAMBOT

In the current version of the system, we have developed the SLAMBOT [26] (see Figure 2).

Figure 2: SLAMBOT for Structural Health
Monitoring.

The SLAMBOT is equipped with a cam-
era for SLAM, and two ultrasound sensors
(front and back) for damage analysis in the
structure. When taking ultrasound readings,
the SLAMBOT lifts itself up on the ultra-
sound sensors so as to press them firmly
against the material surface. The SLAM-
BOT is built on a Systronix Trackbot chas-
sis and is a differential drive robot. The vi-
sion, motion, actuation and localization algo-
rithms are implemented on-board by a mini-
computer (pcDuino), which runs a version of
the Ubuntu operating system and interfaces
with the robot’s hardware directly. Its wi-
fi capability enables it to communicate with
the cloud server and other agents as neces-
sary. The SLAMBOT is equipped with a Logitech C250 webcam for measurement (for locating
landmarks and ensuring a collision-free motion on the surface being inspected). The ultrasound
sensor carried by the robot is a VS900-RIC Vallen Systeme high sensitivity Acoustic Emission
(AE) sensor.1

1From their website: ”High sensitivity AE-sensor (wide band) with integral preamplifier (34 dB) and cali-
bration bypass. Optimized for applications requiring sensitivity from 100-900 kHz. Able to drive long cables.”
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2.2 SLAM

We have implemented the SLAM algorithm from Thrun et al. [23] with the following modifi-
cations. For a landmark located at [xL, yL]T , and robot pose [x, y, θ]T , the sensor returns the
landmark’s coordinates with respect to the robot frame. The return z = [u, v]T can be written
as a function of [x, y, θ, xL, yL]T as:

z =

[
u
v

]
= h(x, y, θ, xL, yL) =

[
c∆x+ s∆y
−s∆x+ c∆y

]
where s = sin θ, c = cos θ, ∆x = xL − x, and ∆y = yL − y.

Then the Jacobian of h at [x, y, θ, xL, yL]T is:

H̃(x, y, θ, xL, yL) =

[
−c −s −s∆x+ c∆y c s
s −c −c∆x− s∆y −s c

]
According to the algorithm, the sensed data is considered to be from a new landmark if the
likelihood is low that it is from an existing landmark. Let µ̄ be the mean of the current beliefs.
The mean with new landmark locations is µ = [µ̄, xL, yL]T , where xL and yL are the unique
values such that h(µ̄x, µ̄y, µ̄θ, xL, yL) = z. In our case,[

xL
yL

]
=

[
µ̄x + c̄u− s̄v
µ̄y + s̄u+ c̄v

]
where c̄ = cos µ̄θ and s̄ = sin µ̄θ.

The update of the covariance matrix is more complicated. Since the new landmark was
unobserved before, it is natural to extend the current covariance matrix to

Σ̄ex =

[
Σ̄ 0
0 γI2

]
.

for some large γ. γ is taken to be in < to make computation possible. We use the limit result
as γ →∞ later in this subsection.

The Bayesian inference using the Extended Kalman Filter is given as follows. Let Q be the
covariance of the sensing noise, and let F ∈ <5×(3+2(N+1)), where N is the number of existing
landmarks. All the entries of F are zeros except the upper 3 by 3 and lower 2 by 2 block
matrices which are the identity. Let

H = H̃


µ̄x
µ̄y
µ̄θ
xL
yL

F, Ψ = HΣ̄exH
T +Q, K = Σ̄exH

TΨ−1.

Then the new covariance is:

Σ = (I −KH)Σ̄ex,

where in the limit case

Σ = limγ→∞Σ(γ) =

[
Σ̄ A
AT B

]
with A ∈ <(3+2N)×2, A2,i = σi,1 −∆yσi,3, and Ai,2 = σi,2 + ∆xσi,3; B ∈ <2×2, B1,1 = c2q1,1 −
2csq1,2+s2q2,2+σ1,1+∆y2σ3,3−2∆yσ3,1, and B2,2 = s2q1,1+2csq1,2+c2q2,2+σ2,2+∆x2σ3,3+
2∆xσ3,2, and B1,2 = B2,1 = c2q1,2 +csq1,1−csq2,2−s2q1,2 +σ1,2 +∆xσ1,3−∆yσ2,3−∆x∆yσ3,3
where Q = (qi,j) and Σ̄ = (σi,j).
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3 Ultrasound Range Sensor

Much work has been done on the theory and application of Lamb waves to structural health
monitoring (see [20, 7, 9, 10, 11, 16, 17, 27, 1, 2, 3, 5, 6, 12, 18, 19, 24, 13]). We make use of
these methods in our work. Given a received signal f : < → < and a time interval (t0, t1), the
range finder estimates the trivial time of maximum energy delivery that is defined by the CWT
(Continuous Wavelet Transform) based scaled-average wavelet power (SAP) (see [22], p. 166
for a description of this method) in (t0, t1). Define function peek : C2(<)×<2 → < such that

peek(f, t0, t1) = arg max
t∈(t0,t1)

sap(f)(t).

The peek function returns a t such that the SAP of signal f is maximized in (t0, t1). Then the
range finder is defined by

arg max
d∈<+

|peek(f, t0, t1)− peak(sig(d),−∞,∞)|,

where sig(d) is the signal that should be received at distance d away from the actuator in the
homogeneous plate. In our simulation, we model the wave propagation by the 2D Helmholtz
Equation

∆u+ k2u = g,

where g is the actuation signal and u is the wave function, and Sommerfeld radiation condition

lim
|x|→∞

√
|x|(n · ∇u− iku) = 0,

uniformly for all |n| = 1. If the actuator is located at xs and emits a signal g, the solution of
u is that

u(xr, t) =
1

2π

∫ ∞
−∞

dωĝ(ω)G(xs,xr, ω)e−iωt,

G(x,y, ω) =
i

4
H

(1)
0 (k|x− y|),

where H is the Haenkel function, and k is the wave number that is a function of ω in dispersive
materials. For a thin plate, k can be approximated by the Lamb Wave approximation (see [25]).
Our sig function is defined as

sig(d)(t) = u(xr, t)

for all |vxr − vxs| = d.
An ultrasound signal is transmitted by the emitter, and the receiver gets the directly prop-

agated signal from emitter to receiver, followed by any signals reflected from features in the
material (e.g., damage locations, edges, etc.). Thus, the time of arrival of the reflected signal
allows the calculation of the distance traveled by that signal, and this means that the feature
causing the reflection is located somewhere on an ellipse around the emitter-receiver pair.

The following discussion follows our exposition in [15]. Several measurements are needed
to get the best location estimate for a feature; these range values are collected by having the
robot place the actuator and receiver at different locations, and the location is constrained by
the corresponding ellipse. Thus, by using an accumulator array and adding a ’vote’ to each
location on the ellipse, these six sensed range values allow the determination of the most likely
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location of the reflecting point (damage in this case). This ’voting’ is done with a Gaussian
spread which leads to a smooth accumulator surface.

Observed and simulated reflected A0 mode signals with known minimized possible reflection
range have significant overlap between the directly propagated and simulated reflected signals.
This necessitates a method to separate reflected versus directly propagated waves in the ob-
served data. In addition, we would like to isolate the main component of the reflected signal
in the data. To achieve this, signals outside a certain reflection range are eliminated. Figure 3
shows the windowed signals versus the simulated signals as described above. In this form, the
peak amplitude is not clearly identifiable. We therefore compute the CWTbased scaled-average
wavelet power (SAP) (see [22] page 166, for a description of this method). The computed SAPs
are shown in Figure 4; as can be seen in this figure, the peaks are more clearly discernible.
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Figure 3: Windowed SAP Signal versus Simulated Signal.
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Figure 4: Computer Scaled-Average Wavelet Power (SAPs).
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4 Data Routing Model for Distributed Cloud Computing

This is a highly customizable data sharing model between sensing and computing resources.
The model enables multiple sensing nodes to open connections with computing resources
and retrieve results. The presence of multiple processor and broker nodes nodes reduces
the chance of failure. RabbitMQ message broker provides reliable, flexible, highly available
and multi-protocol communication system. It also provides the ability to handle multiple
protocols and supports message tracing. Figure 5 shows the current implementation layout.

Figure 5: Cloud Component Architecture for Small-scale
Health Structure Monitoring.

As can be seen above, the sys-
tem gains its advantages from the
five main components: (1) sensor
nodes, (2) router, and (3) processor
nodes. A model as customizable as
this enables failsafe and quick com-
munication between resources while
providing isolation between sensing
and computing resources. The dy-
namic queuing eases development
and scalability.

Sensor Nodes The sensors on
the individual devices communi-
cate with network connected sensor
nodes which in this case are phys-
ical SLAMbots. This communica-
tion can be over the preferred sensor
protocol. For example, GPS sensors
can exchange data over I2C or RS-232(serial) interconnects with the nodes. The sensor nodes
are applications running on host devices that have the capability of posting messages onto the
rabbitMQ message broker queues. The sensor nodes gather sensor data, serialize it and put
them onto the relevant work queues. Thus, they are unaware of the computing resources on
the cloud. Any processor capable of handling the work posted on the relevant work queue can
pick it up. Also, the node only needs to subscribe to the work queue that is relevant to it.

RabbitMQ Message Brokers This is a highly reliable message broker that has several
built in features. This has allowed us to create a fault tolerant, persistent messaging system
between processes running on disparate devices. Work queues can be spawned by remote
applications dynamically. This allows creation of a highly configurable easy to use messaging
system. It contains routing tables contain routing information regarding the available processing
and sensing nodes.

ContractNet Manager This agent arbitrates allocation of work awards to sensor node
agents that bid on a task. It accepts tasks provided by the user and sets up contracts. It
has knowledge of contractor capabilities that it uses in making this decision.

RabbitMQ/ContractNet Management Interface A web interface to a service running
on the message broker and contract manager allow us to monitor the messaging activity. This

Bayesian Computational Sensor Networks: Small-scale Structural Health Monitoring
Wang, Joshi, Tirpankar, Erickson, Cline, Thangaraj, Henderson

7



helps in not only debugging the system but also in managing a large environment. This interface
allows manually declaring queues, sending and receiving messages and monitor connections.

Processor Nodes This application runs on a remote machine that has a good computing
capability. This application generally handles singular responsibilities but can also be used to
consolidate data from multiple sensors and take a decision based upon the multiple data points.

5 Validation Experiments
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Figure 6: Results from a SLAM Run.

The aluminum panel in the exper-
iment is 121.92cm2, and 1.6 mm
thick, the sensors were VS900-RIC
Vallen transducers, and the excita-
tion signal was a 200 KHz 5 cy-
cle, Hann-windowed waveform. Fig-
ure 6 shows a trace of a sample
SLAM run; as can be seen, the lo-
calization results are good for the
robot and for nearby landmarks.
However, more distant landmarks
are poorly localized due to the
failure of the underlying assump-
tions. We are planning on perform-
ing a multi-robot SLAM with an-
other tracked robot on the surface
and a quadrotor hovering above the
plate.

Figure 7 shows ellipses produced
by reflections from the boundary.

Figure 7: Range Data from the Boundary.

6 Conclusions and Future Work

We have developed a cloud-based architecture which supports multiple agents working together
to provide a structural health monitoring capability on a small-scale structure. This includes
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not only agents who contract for monitoring service and those that deliver it, but also agents
that analyze the data delivered by the monitoring robot (e.g., here this includes both camera
and ultrasound data; the Lamb wave based range finder function is performed by an off-line
agent in Matlab and that information can be exploited by the mobile robot running Python).
The combination of Lamb wave damage analysis with a robot SLAM methodology allows for
more autonomous mapping of damage in structures.

We are currently investigating the following aspects of the system:

• More precise mathematical characterization of the uncertainty in the results. While the
covariance matrix of the EKF SLAM method gives some insight into the uncertainty,
we believe that this can be further constrained by using multiple robots, and a better
understanding of the Lamb wave uncertainties.

• The system is being extended to include multiple robots in order to reduce the uncertainty
in the the localization results. Moreover, we are looking to use other bases for the SLAM
technique itself; e.g., Lamb wave reflection patterns at individual locations (e.g., similar
to visual SLAM based on the appearance of the surface), as well as other robots to locate
the ultrasound sensors on the surface.

• We also are looking at extending the system to inspecting composite materials. This will
be especially important for aircraft monitoring.
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[3] M. Barker, J. Schroeder, and F. Gürbüz. Assessing Structural Health Monitoring Alternatives
using a Value-Focused Thinking Model. Master’s thesis, Air Force Institute of Technology, Ohio,
March 2009.

[4] B.Liu, Y. Chen, A. Hadiks, E. Blasch, A. Aved, D. Shen, and G. Chen. Information Fusion in
a Cloud Computing Era: A Systems-Level Perspective. IEEE Aerospace and Electronic Systems
Magazine, 29(10):16–24, October 2014.

[5] M.S. Bond, J. A Rodriguez, and H.T. Nguyen. A Systems Engineering Process for an Integrated
Structural Health Monitoring System. Master’s thesis, Air Force Institute of Technology, Ohio,
March 2007.

[6] J.S. Crider. Damage Detection using Lamb Waves for Sructural Health Monitoring. Master’s
thesis, Air Force Institute of Technology, Ohio, March 2007.

[7] Q.-T. Deng and Z.-C. Yang. Scattering of S0 Lamb Mode in Plate with Multiple Damage. Journal
of Applied Mathematical Modeling, 35:550–562, 2011.

[8] C.C. Douglas and A. Patra. AFOSR/NSF Workshop on Dynamic Data Driven Application sys-
tems. Unpublished report, October 2011.

Bayesian Computational Sensor Networks: Small-scale Structural Health Monitoring
Wang, Joshi, Tirpankar, Erickson, Cline, Thangaraj, Henderson

9



[9] V. Giurgiutiu. Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active
Sensors for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures,
16(4):291–305, April 2005.

[10] S. Ha and F.-K. Chang. Optimizing a Spectral Element for Modeling PZT-induced Lamb Wave
Propagation in Thin Plates. Smart Mater. Struct., 19(1):1–11, 2010.

[11] S. Ha, A. Mittal, K. Lonkar, and F.-K. Chang. Adhesive Layer Effects on Temperature-sensitive
Lamb Waves Induced by Surface Mounted PZT Actuators. In Proceedings of 7th International
Workshop on Structural Health Monitoring, pages 2221–2233, Stanford, CA, September 2009.

[12] S.J. Han. Finite Element Analysis of Lamb Waves acting within a Thin Aluminum Plate. Master’s
thesis, Air Force Institute of Technology, Ohio, September 2007.

[13] J.B. Harley and J.M.F. Moura. Sparse Recovery of the Multimodal and Dispersive Characteristics
of Lamb Waves. Journal of Acoustic Society of America, 133(5):2732–2745, May 2013.

[14] T.C. Henderson. Computational Sensor Networks. Springer-Verlag, Berlin, Germany, 2009.

[15] Thomas C. Henderson, Kyle Luthy, and Edward Grant. Reaction-Diffusion Computation in Wire-
less Sensor Networks. Jounral of Unconventional Computing, page to appear, 2014.

[16] B. C. Lee and W. J. Staszewski. Modelling of Lamb Waves for Damage Detection in Metallic
Structures: Part I. Wave Propagation. Smart Mater. Struct., 12(5):804–814, October 2003.

[17] B. C. Lee and W. J. Staszewski. Lamb Wave Propagation Modelling for Damage Detection: I.
Two-dimensional Analysis. Smart Mater. Struct., 16(5):249–259, 2007.

[18] E. Lindgren, J.C. Aldrin, K. Jata, B. Scholes, and J. Knopp. Ultrasonic Plate Waves for Fatigue
Crack Detection in Multi-Layered Metallic Structures. Technical Report AFRL-RX-WP-TP-2008-
4044, Air Force Research Laboratory, December 2008.

[19] F. Ospina. An Enhanced Fuselage Ultrasound Inspection Approach for ISHM Purposes. Master’s
thesis, Air Force Institute of Technology, Ohio, March 2012.

[20] J. L. Rose. Ultrasound Waves in Solid Media. Cambridge University Press, Cambridge, UK, 1999.

[21] R.G. Smith. The Contract Net Protocol: High-Level Communication and Control in a Distributed
Problem Solver. IEEE-T Computers, C-29:1104–1113, December 1980.

[22] Z. Su and L. Ye. Identification of Damage using Lamb Waves. Springer Verlag, Berlin, Germany,
2009.

[23] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge, MA, 2005.

[24] R.T. Underwood. Damage Detection Analysis Using Lamb Waves in Restricted Geometry for
Aerospace Applications. Master’s thesis, Air Force Institute of Technology, Ohio, March 2008.

[25] W. Wang. Imaging in a Homogeneous Aluminum Plate using Ultrasonic Waves, Honors Thesis,
University of Utah, December 2014.

[26] W. Wang, T.C. Henderson, A. Joshi, and E. Grant. SLAMBOT: Structural Health Monitoring
using Lamb Waves. In Proceedings of the 2014 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI 2014), Beijing, China, September 2014.

[27] Y. Ying, Jr. J.H. Garrett, J. Harley, I.J. Oppenheim, J. Shi, and L. Soibelman. Damage Detection
in Pipes under Changing Environmental Conditions using Embedded Piezoelectric Transducers
and Pattern Recognition Techniques. Jnl of Pipeline Systems Engineering and Practice, 4:17–23,
2013.

Bayesian Computational Sensor Networks: Small-scale Structural Health Monitoring
Wang, Joshi, Tirpankar, Erickson, Cline, Thangaraj, Henderson

10


	Introduction
	Robot Monitoring Agents
	The SLAMBOT
	SLAM

	Ultrasound Range Sensor
	Data Routing Model for Distributed Cloud Computing
	Validation Experiments
	Conclusions and Future Work

