SLAMBOT: Structural Health Monitoring Robot using Lamb Waves
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Abstract— We propose the combination of a mobile robot and Dynamic Data-Driven Model Accuracy Assessment
a computational sensor network approach to perform structusal

health monitoring of structures. The robot is equipped with

piezoelectric sensor actuators capable of sending and receiving Sensed Data
ultrasound signals, and explores the surface of a structure to be

monitored. A computational model of ultrasound propagation

through the material is used to define two structural health Control Action

monitoring methods: (1) a time reversal damage imaging ¥ Data Response

(TRDI) process, and (2) adamage range sensor (DRS) (i.e., A orior Validation | Quantites System Status
it provides the range to damaged areas in the structure). The Knowledge Verification [ oo Model Accuracy
damage in the structure is mapped using the DRS approach. 4 Response Quantities Assessment
The model is validated in an experimental setting. Contral Action f

I. INTRODUCTION

Models > Computation

Periodic inspection of aircraft structures is required ¢e d

termine if maintenance and repair must be performed due . 1. verification and Validation for Bayesian ComputatibiSensor

damaged elements. Since down time for the aircraft is gostlyetworks.

uncertainty bounds are useful to making cost effectiveirepa

decisions. The Dynamic Data Driven Application System i ) i )

(DDDAS) approach acquires data dynamically, and COmpar&(per[ments are used to help with experlment design as well

that to a model of the structure to solve this problem. Thas to inform the computational modeling process.

use of Bayesian methods allows an iterative process in whigQ' jjtrasound-based Damage Assessment

the computational model is updated (e.g., Young’s modulus, . ) .

diffusion constants, etc.), and inverse problems can bd use Agtlve SHM is performed by exciting the structqre to be

to improve knowledge of the sensor system and the dataglon'tore_d with waveforms produced by an actuating trans-

produces (e.g., pose, noise, hysteresis, etc.). ucer. SlgnaI§ p_ropagated from each actuator are collected
Current ultrasonic sensing systems based on Lamb Wa\/%tssensors distributed on the structure. Assuming that we

are mostly experimental (see [24] for a very good overvie\b_ave baseline sig_nals collected from the structure at some
of this topic), and one of our goals is to develop robus?me’ any change in the structure (for example, new damage)

methods for structural health monitoring which can the _'” result in corresponding changes in the sensor §|gnals.
igure 2 shows an example. The bottom left panel displays

be applied even when there are uncertainties in the me X :
%ﬁ sensor signal from a healthy structure. Assuming that ne

surements, system models and sensor locations, as wh introduced in the struct h in the t
as possible time variations of the underlying systems. Th amage was introguced in the structure as snown in the top
overall goal of this work is to advance the DDDAS state-rlght panel, we can expect new measurements using the same

of-the-art by developing a framework in which the datéransducer-sensor pairs to contain reflected components of
acquired for a specific aircraft allow the most cost effea:tivthe excitation waveforms from the boundaries of the damage.

determination of whether damage has been produced in tﬁge waveform depicted in the bottom right panel describes

structure, and the location of the possible damage such a scenario. Based on the properties of the received

Previous work by the authors has shown how CompLﬁ'gnals’ the damage state of the structure is estimated. In

. the example of Figure 2, one may estimate the time of
tational Sensor Networks (CSN) [14], [13], [15], [16], [17] _ . .
combine computational models of physical phenomena (e. rrival of the directly propagated waveform and the reflécte

heat flow, ultrasound, etc.) with sensor models to monita dmponent. Knowing the velocity of propagation (we assume

and characterize a variety of systems. Our overall DDDAY! this example that the structure is isotropic), we can @efin

approach is shown in Figure 1. This approach is based on t§E08|::pieF.onrgvg'c\?v.:mh;eﬂgf“g? rr?olﬁcj'n:jea;};:t“z;r-zglssfr
validation, calibration and prediction process as deedrify wn In F1gu - W P utip u

Oberkampf [21]. Experiments are used to establish paramf%glLs’ V\;e th1ay thoetrr: esnm;te dthf blo un(gary tﬁf t:e anomal)(;
ters in the computational model, and these in turn affect tg e structure. er methods for focating the damage an

result of the validation metric. Both simulations and pbwgsi cﬁmractenzmg t_he extent qf the damage are also available.
These algorithms are implemented so that automated

LUniversity of Utah, SLC, UT monitoring of the structure may.be achieved. An alternate
2North Carolina State University, Raleigh, NC approach to bonding or embedding sensors on the structure



Dynamic Data-Driven Structural Health Monitoring

Healthy Structure Damaged Structure

Damage

L]
Sensor 3

[ p——

1 1o mod . Damage signal
] soMade /

\

] b Fig. 4. Lamb Wave-based Structural Health Monitoring.

Fig. 2. Ultrasound Transducer Sensor Network.
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Fig. 5. Lamb Wave Dispersion Curves.

any location of the structure depends on the product of the
Fig. 3. Damage Detection with Ultrasound Network. frequency of excitation and the thickness of the structure
at that location. Figure 5 displays the phase velocity of
different Lamb wave modes in an Aluminum plate. Because
is to employ mobile robotic elements to sense at selectel the frequency dependent velocity profiles, the propagati
locations on the structure. Such a technique is under study df these modes is dispersive. For a detailed introduction to
our research. Knowledge of the input wave, time differencgitrasound waves, see [23]; there has also been a lot of
between transmission and reception of different companenfork in the application of these techniques in SHM (see
in the sensor waveform, as well as the wave propagatiqm], [8], [9], [10], [18], [19], [28], as well as a number
properties of the structure, taken together allow the estimof Air Force Masters theses on the topic [1], [2], [3], [5],
tion of damage existence, location and scale. [6], [11], [20], [22], [26]. For an excellent recent study on
The basics of robot sensing for structural health monitory data-driven approach, see [12]. Overlapped original and
ing is as follows. A picture of a robot equipped with tworeflected modes (from boundaries or damaged areas) are
sensors used in this work is shown in Figure 14. The robehen separated, and finally damage locations are identified
has two ultrasound transducers fixed at a distance L apa@dsed on this knowledge. Online model accuracy assessment
as shown in the figure. A set of samples are taken over the crucial since the multimodal and dispersive charadiesis
surface of the structure, and assuming that parameters chgf Lamb waves may change due to changes in environmental
acterizing the undamaged structure are available, a baselconditions and structural properties. Such changes maitres
model of the sensor signal for each actuator-sensor pair cgn the failure of static damage localization models, and
be estimated. thus in the DDDAS approach, the models are updated (re-
By moving the robot and obtaining several range estialibrated) in every data collection step.
mates, the intersection of the ellipses provides an estimat o ) )
of the damage location. By circumnavigating the detectefi- TRDI: Imaging in a Homogeneous Aluminum Plate Using
damage location, the robot can use the range information tgtrasonic Waves
determine the reflecting boundaries of the damage, and thus]n this approach we image the cracks or other damage us-
its extent. ing the Kirchhoff migration method which exploits the waves
scattered from the cracks to image them. The aluminum
Il. LAMB WAVES IN STRUCTURAL HEALTH MONITORING  pjate is considered sufficiently thin so that the Lamb wave
Figure 4 lays out the approach to using Lamb waveapproximation determines the modes that travel in the plate
for SHM. Lamb waves are guided waves that propagate o boundary effects occur since the plate is assumed infinite
solid structures. In active SHM systems, Lamb waves malirst we present the Lamb approximation for the propagation
be induced in the structure by ultrasound transducers thaft waves in a plate. At a high level, this is described as
may act as actuators and sensors as needed. The propagdtitiows: Green’s function is given througt{w) = % and
takes place in multiple modes. The velocity of each mode atave propagation is given by the convolution of t%e source



function and Green’s function. Then the imaging technique a0 Disperson Cunve o First synmetic Mode
is explained, and finally numerical results are given.

Suppose each transducer emits an identical signal source.
Denote the source function kfyas a function a time. Assume
the wave propagation satisfies Helmholtz equation:

5430

Au+ k?u=0

5425

for each frequencyw, wherek = —”5 is a function of

(w)

w, and ¢(w) is the phase velocity. Green’s function is

5420

Phase Velocity of First Symmetric Mode (m)

the solution of the Helmholtz equations. In the frequency sus|

domain,G‘(S, R,w) indicates the wave propagates Roif a

unit point source is emitted & at angular frequency. In sl
a two-dimensional plate(’(S, R,w) = ﬁHél)(k||S — RJ)). e e (6

A signal received from sourc# to receiverR is given by:

s(S,R,t) = f(t) « G(S, R, t)

1. »
- % /_ fore) f (W) G ( S7 R’ w ) e 1Wt dw ’ . i D\s[‘JErslun CIJ‘[\IE of F\r?t Anl\*syr‘ﬂmemc M‘ude
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Fig. 6. Dispersion Curve of First Symmetric Mode
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wheref(w) = [*°_ f(t)e’*'dt, and( is the two point Green
function at radian frequency.

Let D be a range of passive scatterers, which is quiet and
can be detected and imaged from scattered signals received.
Then using the Born approximation, the signal received from
sourceS to D and scattered to receivét is:
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Phase Velocity of First Anti-symmetric Mode (m)

P(S,R,t) = %/ P(S, R,w)e” “dw,

400

where
A~ 2 ~ ~ A *20500 *20‘00 *15‘00 *10‘00 *5&0 é 560 10‘00 15‘00 20‘00 2500
P(S,Rw) = @) [ p)G(S,p)Gly. R.w)dy
D
with p the reflectivity function onD, k = % is the Fig. 7. Dispersion Curve of First Anti-symmetric Mode

wavenumber, and’(w) is the phase velocity at frequency
w. We model damage as passive scatterers.

Wave propagation in an aluminum plate with uniform
thickness is described as Lamb waves. The central frequer@fyd 0.8mm, respectively. At each angular frequency
€0 we use is2 x 10> Hz. In our setup, only two Lamb wave corresponding phase velocities are numerical solutions of
modes need to be considered: the first anti-symmetric mogguations 1 and 2 byfzero functions in MATLAB for
(Ao) and the first symmetric modeg). We neglect the effect w > 10K Hz. Initial values for the firsw > 10K Hz are
of all the other modes. For each mode, the Green functigiven by5500m /s and1500m/s for the Sy and Ay modes,
is G(A, B,w) = e #*@IA-BIl wherek(w) = O] is the respectively. Due to the continuity of solutions with resipe
wave number of corresponding frequency, various in differe t0 w, initial values for eachw are taken from solutions

modes. C' is solved numerically based on the followingfor the previousw. Note, solutions of equations 1 and 2
equations: Lep? = (&)% — k% and¢? = (&)? — k2. For ~are even functions. So it suffices to solve only nonnegative
the A, mode, ! : frequencies. Frequencies of less thaik H » are, in general,

5 not easily solvable by thézero function. To avoid singular
tan(qh) dkpg (1) cases, spline interpolation is applied to those frequencie

tan(ph) = (g% — k?)?

We are givenN received signaldy, P, ..., Py with N

and pairs of source and receive locatioss,, ..., Xg,, and
tan(gh) | (¢* —k*)* 0 @ Xmooo Xay The unknown reflectivity functiop is im-
tan(ph) 4k2pq aged by applying time reversal techniques. The idea of time
for the Sy mode.C,, C,, andh are material constants, which reversal is to reverse the signaf§, P, ..., Py and back

are compressional wave velocity, shear wave velocity, arwopa_lga_te them numerically. The back propagated _S|gnals
half plate thickness, respectively [23]. Dispersion liela In prln(_:lple will fO(_:US on the scatf[erers with magmtude
for first symmetric and anti-symmetric models are shown iHroportlonaI to the integral 0b on neighborhood regions.

Figures 6 and 7 witl",,, C; andh equal6270m/s, 3140m/s To image the unknown reflectivity(y) on search poing,



Image of Parallel Line Scatterer with Symmetric Mode Signals and Singal Path

X Scatter

— Source Image of Parallel Line Scatterer with Anti-Symmetric Mode Signals and Singal Path

'

Receiver
x  Scatter
—<— Source

Receiver

0 10 20 30 40 50 60 70 80 90 100
X (cm)

. . ) . 0 10 20 30 40 50 60 70 80 90 100
Fig. 8. Image of Parallel Line Scatterer with Symmetric Modenglg and X (em)

Signal Path
Fig. 9. Image of Parallel Line Scatterer with Anti-SymmetricdédSignals
and Signal Path

we evaluateP; at deterministic arrival times

_ I Xs; =yl [ XR;, —yll

ti(y,w) =
Image of Perpendicular Line Scatterer with Anti-Symmetric Mode Signals and Singal Path
. . 70
forall j = 1,2,...,N andw € R. Hence the Kirchhoff e Seater
. . . . . . . —— Source
migration imaging functional [4] is given by: 65 Receiver

N o
500 =3 3 | P esp(ity ()

Note: the imaging functional is linear with respect to =
received signals. This implies that is it computationally >
effective as an online algorithm, and suitable for dynamic s
data driven system.

1) Numerical ResultsHere we provide numerical results
of imaging an aluminum plate as modeled above. Computa-
tion that involves continuous Fourier transformationsror i
verse Fourier Transformations are approximated by Riemann — * 3020 30 40 s e 7 s s 100
sums by using the fast Fourier transform. We use sets of e
finite points as representatives of scatterer regionse&wisdf  rig. 10. Image of Orthogonal Line Scatterer with Anti-SymmeMode
integrating over scatterer regions, we sum the correspgndiSignals and Signal Path

function at scatterer points and use the source function
) (t—t9)?
f(t) = et~ 55 wherew, = 47 x 10°,0 =

3 x 10°, and t, is the signal emit time. In the following
figures, red, blue and black crosses indicates sourceyezcei
and scatterer locations, respectively. In Figures 8 to X0, w
image line scatterers itvn x 0.4m windows with different
modes of signals and intersection angles between path of
measurements and scatterer. By comparing 8 and 9 we see
that imaging with Anti-symmetric mode signals has higher
resolution. Figures 9 and 10 shows that making measure-
ments orthogonal to the line scatter helps resolution. The
following images are done by processing Anti-symmetric
mode signals. Figures 11 to 13 show images in scenarios
such that a robot is carrying sensors, moving, and making 25
measurements idm x 2m plate. Robot paths in Figures 11

to 12 were pre-designed with certain patterns. It was found
experimentally that measurements often exhibit artifdmis

40

Fig. 11. Image with Backand-Forth Path



considered point landmarks since the reflected signal re-
turned from the closest reflecting point determines theeang
value. The range calculation method described earliem{sho

in principle in Figure 3) is used by finding the arrival time of
the second Lamb wave signal received (the first being from
the straight line path from the transducer). The total numbe
of features is controlled by the data acquisition procesd, a
both the range data and the robot motion are assumed to
have been corrupted by additive Gaussian noise.

Because we only use positive landmark detection (land-
marks that show up in the range data as opposed to those
Fig. 12.  Image with Three Rounds Circular Path occluded by other objects), as well as the conditions given
above, EKF SLAM works in this setting (see [25]). We
therefore estimate the robot pose = (z,y,0) as well
as the landmark location&F; = f; . fiyfis) @ = 1...n,
simultaneously using a combined state vector. Then given a
motion mode for the robot:

P(St ‘ Ut, Stfl)

wherewu; here indicates the robot control. The measurement
model is:

P(Zt | s¢, F, nt)

Fig. 13. Image with Random Walk Paths The SLAM problem is to find all landmark locations and the
robot’'s pose using the measurements and control valuds; tha
is, the posterior:

that the path generated by a simple symmetric random walk
as shown in Figure 13 has less artifacts in general. p(s', F | 2" u")

B. SLAMBOT : Simultaneous Localization and Mapping We assume feature correspondence is known, and use Algo-
using Lamb Waves rithm EKF SLAM known correspondencésee Table 10.1

We are currently developing a mobile robot platform22l: P- 314). The results of a simulation of the Lamb wave
which can move around on a structure to take data (s@@S€d range finder are shown in Figure 15 (left). In this
Figure 14). Based on a modified Systrofisackbotmobile ~ €X@mple, a 2 m X 2 m aluminum plate is used with the
platform, the SLAMBOT has two attached actuation system@19in at the center (thus range in = [-1,1] and range
which cause the robot to be lifted off the surface when th ¥ = [—1,1]) with one damage location &t-0.4, ~0.4).
ultrasound sensors are used, thus, reducing the intecterer] '€ robot places the actuator and receiver at six different
from the robot on the sensor signals. Our current work i@cations around the damage, and each range value cosstrain
on Simultaneous Localization and Mapping (SLAM) usingthe location of the reflectlng p.omt to be on an ellipse _W|th
Lamb waves (see [25] for a detailed account of the sLAMe actuator and receiver locations as foci. Thus, by using a

methodology). The damage (and boundary) locations afscumulator array and adding a 'vote’ to each location on the
ellipse, these six sensed range values allow the deteriotinat

of the most likely location of the reflecting point (damage
I in t.hIS case). This 'voting’ is done with a Gaussian sp.read
Data Acquisition i o which leads to the smooth accumulator surface shown in the
figure. Figure 15 (right) shows a 2-D visualization of the
strength of damage location likelihood based on this data.
st Figure 16 shows the experimental layout for our testing
scenario. The aluminum panel was 1.6 mm thick, the sen-
sors were VS900-RIC Vallen transducers, and the excitation
signal was a 200 KHz 5 cycle, Hann-windowed waveform.
e (Note that we have not fully implemented the SLAM ap-
proach in the experimental setup, but are now able to acquire
Fio 14 SLAMBOT for D - Data Acaisition. The SLAMBOT | data and obtain range results.) The actuator and receiver
sf%wn bn the left; on (t)f:e r)i/gf?tTItEe Zttﬁjctﬁ?gIissltlggéitedeireelqdifferentls Sensors ar_e plac.ed as shown and_ a sensor regdmg tak(_an for
locations, and the final column is the received signal for paote that the €ach location. Figure 17 shows five range ellipses derived
reflected damage signal can be seen trailing the direct signal from the ultrasound signals. As can be seen, the intersectio
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Fig. 15. Simulation of Damage Localization using the Lamb Waaede
Sensor. On the left is a surface plot view of the accumulathreg on the
right a 2-D image representation.
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Fig. 17. Ultrasound Signals Received (4 locations).
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of the signals localizes the damage in the structure (in thiS 21 20 300 40 00  e0 70 a0 0 1000
case a hole in an aluminum plate). Figure 18 shows observed EF.,,A.,JMVAVAVAVAV‘AVAVAVAVAW‘WM‘MW MNWN{

signals and simulated reflected AO mode signals with Known 20 20 0 a0  s0 0 70 80 %0 1000
2

minimized possible reflection range. The simulated reftecte | ,AW‘NﬂvAvnvAan‘AVAWMlw,MWMWWw.,v.ﬂ.,,,,WN VVVVVVVVVV P
signal has much overlap with directly propagated signals in %m0 20 a0 a0 =0 eo 70 0 w0 1000

. . . 2 T T T T T T T T T
the real data in first two cases. This means there must be a | — ,VUVAVﬂUAVﬂUAvﬂUAVmvwm.meMmW,N,,vnwww.WVANm{
good way to separate directly propagate waves (between the % 1w 20 0 40 w0 0 70 @0 00 1000
. 2 T T T T T T T T T
actuator and receiver transducers) and the reflected waves , AR AR AAA A A s AR RAS AR v{

in the observed data, otherwise, data taken with a reflected % 100 200 300 400 500 600 700 800 900 1000
distance smaller than some threshold cannot be considered. ' _ . N

. . . . Fig. 18. First Step in DSR Sensor comparing Actual Data withu$ated
Another issue is that some of the earliest reflected &gnaé%nal_
are not the main component reflected signals in the data. To
avoid these two issues, we simply window out signals outside

a certain reflection range. Figure 19 shows the windowed

0.5 T T

signals versus the simulated signals as described above. In o% R A T —{
this form, the peak amplitude not clearly identifiable. We o 0 200 30 40 50 60 70 80 s0 1000
therefore compute the CWhased scaled-average wavelet 0 AR

power (SAP) (see [24] page 166, for a description of this 0 Wm0 w0 a0 w0 w0 70 a0 0 1000

method). The computed SAPs are shown in Figure 20; in  ° ‘ A ‘ ‘ ‘

this figure, the peaks are more clearly discernible. Qo0 20 0 40 %0 0 70 B0 %0 1%
o AR A

IIl. CONCLUSIONS ANDFUTURE WORK (;;0 00 20 300 40 500 600 700 800 900 1000

We propose a Bayesian Computational Sensor Network ° ‘ ‘ W ‘ ‘
approach as a formal basis for Dynamic Data Drive Appli- . 20 0 40 0 &0 70 #0 o0 w00

cation Systems. To date, we have shown that this can be ¢ N LA
effective in the 1D domain of heat flow, and we are cur- os; % *° 3‘?‘; S T

. . FAAA P i -

rently working to develop a robust aircraft structural leal 0 Wil ———

0 100 200 300 400 500 600 700 800 900 1000

monitoring framework based on the use of Lamb waves.
A dynamic data acquisition method using a mobile robot Fig. 19. Windowed SAP Signal versus Simulated Signal.
has been described. We performed experimental validation
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Fig. 20. Computer Scaled-Average Wavelet Power (SAPSs).

(9]

[20]

(1]

[12]

(23]

[14]

[15]

of the approach and achieved good results. Future work
includes a formal analysis of the uncertainty quantificatio [16]
We are constructing several mobile robots and will perform
further experiments using single and multiple robots to map
damage in plate structures. Once these results are aeailabl

the feasibility of application development will be better

understood.

[17]

We are currently exploring the field of uncertainty quan-
tification [27] in order to provide bounds on the confidencé*el

of inferences about the behavior of tB& AMBOTbased on

computational models and sensor data. In particular, we ail¥?]

to characterize the uncertainty properties of the rangsmen

function described earlier.
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