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Abstract—Autonomous mobile robots (AMRs) operating in un-
known environments face twin challenges: 1) localization and
2) efficient directed navigation. This paper describes a two-tiered
approach to solving these challenges: 1) by developing novel
wireless-sensor-network (WSN)-based localization methods and
2) by using WSN-AMR interaction for navigation. The goal is to
have an AMR travel from any point within a WSN-covered region
to an identified target location without the aid of global sensing
and position information. In this research, the target is reached
as follows: 1) by producing a magnitude distribution within the
WSN region that has a target-directed pseudogradient (PG) and
2) by having the WSN efficiently navigate the AMRs using the PG.
This approach utilizes only the topology of the network and the
received signal strength (RSS) among the sensor nodes to create
the PG. This research shows that, even in the absence of global
positioning information, AMRs can successfully navigate toward
a target location using only the RSS in their local neighborhood
to compute an optimal path. The utility of the proposed scheme is
proved through extensive simulation and hardware experiments.

Index Terms—Goal-directed navigation, pseudo topological
gradient, wireless received signal strength (RSS), wireless-sensor-
network (WSN)-assisted target localization.

1. INTRODUCTION

UTONOMOUS mobile robotics systems operating in un-

known and unstructured environments face fundamental
challenges as follows: 1) localizing events within the region and
2) navigating autonomous mobile robots (AMRSs) to identified
locations in an efficient manner. These target locations can
be emergent, such as fires, chemical leaks, accidents, natu-
ral disasters, and search-and-rescue operations, or preplanned,
such as area explorations, agricultural operations, and robotic
area cleaning. In either scenario, environmentally embedded
wireless sensor networks (WSNs) can provide distributed intel-
ligence and information richness [1]. For environmental mon-
itoring applications, WSNs present advantages because of the
following: 1) low cost; 2) low energy; 3) multifunctionality;
4) robustness; and 5) scalability. Their multifunction capability
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allows them to be randomly distributed and in large numbers.
The diverse range of sensors that can be used with WSN, e.g.,
seismic, magnetic, thermal, and visual, can provide a wealth
of information regarding the state of the environment that
they are monitoring [1]. In certain applications, e.g., searching
for land mines and disaster relief operations, it is considered
appropriate to use autonomous agents along with the WSN.
Commonly, it is AMRs, with their inherent intelligence and
autonomous behavior, that provide a cooperative interaction
with the distributed static WSN [12]-[14], [19]. Such interac-
tive WSN-AMR coordination poses interesting challenges in
itself, including the need for the following: 1) the development
of localization algorithms; 2) the provision of time-critical
response capabilities; and 3) the development of efficient and
distributed WSN-AMR interaction mechanisms.

Of particular interest here is efficient WSN-AMR interac-
tion, such that the coordination between the distributed WSNs
and AMRs can be optimized. '

A. Problem Formulation

The goal of this research is to provide the:

“efficient navigation of AMRSs to localized targets using
only RSS in statically deployed WSNs in unknown envi-
ronments.”

In this system, wireless sensors are randomly deployed to
cover an unspecified geographical area, such that they form a
connected network. When any wireless sensor detects a target,
each wireless sensor node gets a magnitude assigned to it.
This magnitude is a function of the node’s communication
distance from an identified target location. As a consequence,
the sensor node closest to the target (target node) has the highest
magnitude assigned to it. A “pseudogradient” (PG) is created
in the region, one that AMRs placed into this environment can
follow to reach the target from any location within the region.
Fig. 1(a) illustrates the concept. Since global positioning infor-
mation is not available, it is only the wireless received signal
strength (RSS) that is used to generate the PG. Using RSS to
assign the node magnitudes has proved to be advantageous in
such unknown environments, because it is a low-complexity
approach; RSS can also give a good indication of noise and
obstacle presence in the environment [17].

I'This paper is an expansion of the research published in [9].
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Fig. 1. PG in a region using PG algorithm. (a) Magnitude distribution in the
WSN. (b) Interpolated image depicting the function magnitude distribution.

B. Contributions

Novel techniques for target localization and WSN-guided
AMR navigation are introduced in this paper, including the fol-
lowing: 1) providing a distributed target localization algorithm
that generates a navigable path for AMRSs in the WSN-covered
region, an algorithm that uses wireless RSS information only;
2) providing a localized WSN—-AMR interaction algorithm that
navigates the AMRs by estimating the PG at each sensor node
location; and 3) providing performance metrics which compare
the implementations of these algorithms in the simulated and
real worlds.

The remainder of this paper is organized as follows.
Section II discusses related work in this area. Section III
introduces the algorithm and discusses its applicability, while
Section IV introduces the WSN-assisted navigation protocol.
Section V discusses the implementation of the algorithm with
experimental results. Section VI summarizes this paper with a
note on future work.

II. PREVIOUS WORK

The research in this paper was inspired by the research into
WSNs and AMR navigation in [3], [7], [12]-[14], and [19]. Ba-
sically, there are two research themes in the field; these are cen-
tered on the development of the following: 1) position-aware
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algorithms and 2) position-unaware algorithms. Position-aware
schemes require a global positioning capability for WSN nodes,
like GPS or a prior implemented localization scheme. Con-
versely, position-unaware schemes require algorithms that are
independent of the locations of the nodes. They utilize the
present topology of the WSN and base their control strategies
on the immediate neighborhood of the nodes. The algorithms in
this paper are in the position-unaware category.

A. Position-Aware Approaches

Li et al. [14] show WSNs using artificial potential fields to
navigate AMRs to a goal location keeping as far away from
“dangerous” (obstacle) sites as possible. In [11], Henderson
and Grant present three algorithms for a gradient-following
technique for an AMR to reach a detected target. The inherent
gradient present in the phenomenon being sensed is utilized
for the purpose. Kotay et al. [13] explore the use of synergy
between GPS-enabled AMRs and networked sensors to provide
localization, path planning, and improved navigation. In [24],
Verma et al. propose a scheme assuming the availability of a
positioning device to guide the mobile sensor nodes to a goal,
assisted by a WSN, with artificial potential field methods. In [4]
and [26], the authors discuss how WSNs are used to mediate
AMR task allocations and algorithms for optimized sensor
deployment. Arora et al. [2] present an exhaustive theoretical
and experimental analysis of a distributed sensing architec-
ture for target detection, classification, and tracking. Finally,
Severino and Alves [20] demonstrate a centralized scheme
where a control station, using the distance information to a
target and known anchor nodes, estimates the location of the
target using a min—max-based localization algorithm.

As is seen, all these methods require some technological
ability to ascertain their position in a global frame (e.g., GPS
and magnetic compass).

B. Position-Unaware Approaches

Chen and Henderson [7], the early proponents of the “smart”
WSN as an “information field,” use a model for temperature
dissipation in a region to estimate internode distances and assist
multiple AMR coordination. In [3], Bachrach et al. present
a scheme using the following: 1) communication hops (and
RSS) of nodes from only one known node location to estimate
distances and 2) iterative gradient descent to arrive at the (z,y)
node positions. In [8], Corke et al. describe a scheme using
a flying robot to perform the following: 1) to localize sensor
nodes and ii) to navigate AMRs and humans through the region
using localized nodes. Sheu et al. [21] propose a scheme where
the direction of motion of the AMR is based on to-and-fro
movement of the AMR itself. This implementation is vulner-
able to the environmental variation in RSS values as well as
not being quick and efficient with all the back-and-forth move-
ments. In [5], Batalin er al. describe a value-iteration-based
method where the AMR uses preassigned transition probabili-
ties between sensor nodes to maximize its probability of reach-
ing a target. Luthy et al. [15] discuss the coordination of AMRs
in repairing disconnected WSNs, based on RSS. The variability
and interference issues in RSS are presented through several
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hardware experiments. Reich and Sklar [19] propose a scheme
using communication hop-count-based gradients for AMR nav-
igation. The implementation does not account for proximity/
distance of nodes to targets or to each other, nor the RSS values.
Jiang et al. [12] present a scheme introducing the following:
1) an RSS-based farthest-node-forwarding (FNF) broadcast
method and 2) a tree-assisted AMR navigation scheme. The au-
thors show improved performance in time and energy efficiency
of the WSN-AMR coordination.

IIT. DISTRIBUTED ALGORITHM FOR
TARGET LOCALIZATION

Fig. 1(a) is also a depiction of the PG distribution in the form
of a color dispersion in an AMR navigation region of interest.
The target node is “dark red,” and the color fades to “blue”
away from the target node. It is up to the PG algorithm to
present a directed path from start-to-end to the AMR. In effect,
the complexity and burden of motion planning are now shared by
the AMR and the distributed intelligence inherent in the WSN.

Two important characteristics of WSN-based systems are as
follows: 1) RSS and 2) communication hop count.

1) The RSS gives an indication of the intensity of the signal
in a wireless communication link [10]. It provides a metric
for assessing how stable a connection is given environ-
mental changes, e.g., noise, obstacles, and interference.
For instance, if an RSS value is —70 dBm, then the
communication channel will result in better quality of link
between the transmitter and receiver than when the RSS
value is —90 dBm. On the other hand, if ideal environ-
mental conditions are assumed, then the same reduction
in RSS is an indication of increasing distance between
the transmitter and the receiver. Signal strength versus
distance estimates have been empirically analyzed in [6]
and [25].

2) Hop count gives an indication of the Euclidean distance
of a particular node in a WSN from a source node that ini-
tiates a flooding message. This value is dependent on the
communication range of the nodes as well as the physical
distance of the nodes themselves. This concept essentially
derives from the breadth-first search tree [23], where each
node maintains a minimal hop count to the source node.

A. Sensor/AMR Model

The locations of the sensor nodes are assumed to be drawn
from a uniform random distribution over a 2-D planar region.
It is assumed that the WSN is connected, i.e., there exists a
communication path (of any length) from every node to every
other node in the WSN [23].

Each node in the WSN has a unique identification (ID) and
consists of a processing unit, memory, radio, power source, and
one or more sensors of different types. Factors such as size,
cost, and lifetime constrain the sensor nodes in their memory
and energy consumption. The communication range of these
nodes is also limited such that the entire network cannot be
traversed in a single communication hop. Every WSN node has
a variety of sensors attached to it, including thermal, chemical,
accelerometer, pressure, humidity, etc.

The PG algorithm is initiated by a target node. With the
absence of a global reference frame, a sensor node that can
sense a target cannot determine how many other sensors can
sense the same target, except its neighbors. It is assumed that
the sensors can estimate an intensity of the sensed target at their
locations. This intensity can be used to indicate the distance
of the sensed event from the sensor. Then, whether a sensor
node identifies itself as the target node is inversely proportional
to this estimated distance. Using a simple back-off-before-
transmission algorithm, the neighborhood of the node closest
to the target resolves the identity of the rarget node. Relatedly,
having multiple rarget nodes can also be advantageous since it
can allow AMRs with multiple approach directions to a target.
This artifact is explored in a separate paper.

The AMR is equipped with wheels for locomotion along with
computing capabilities. It has the capability to communicate
with the WSN—it uses directional antennas for bearing esti-
mation and an omnidirectional antenna for RSS-based ranging.

B. Algorithm

The PG algorithm requires each sensor to calculate a mag-
nitude. The magnitude depends on its communication distance
from the target itself, which, in turn, utilizes the communication
hop count and the RSS in the node neighborhood. Each sensor
node implements the algorithm (Algorithm 1) independently
by interacting with its immediate neighborhood. The algorithm
utilizes the best total RSS estimate to a particular target node
to calculate the magnitude at each node. In essence, every node
senses its vicinity for a particular target. The node closest to
the target marks itself as a farget node and initiates a packet
exchange via the flooding mechanism. This allows subsequent
nodes to set their hop count as well as a magnitude, denoted
by “pseu_g.” The target node sets its own magnitude as the
highest in the region (this value is available to all the nodes as
a preset). The hop count for the target node is set as zero.

Algorithm 1 PG Magnitude Distribution Algorithm

1: Set MAX_PG; Hop Count = MAX_HC;

2: if target = nearby then node = target node

3: Hop Count = 0;

4. pseu_g = MAX_PG;

5: broadcast [pseu_g; Hop Count];

6: else > node is not tfarget node

7:  Get RSS;, Hop Count,, pseu_g; from neighbor ¢
8: Calculate pseu_g*! from

pseu_gi® = pseu_g; o (RSS;) ()

9: Hop CountfELIC = Hop Count,; + 1;

10: if (Hop Count$™® < Hop Count) && (pseu_gf*'° >
pseu_g) then

11: Store Hop Count = Hop Count,;

12: Store pseu_g$*l° as pseu_g;

13: broadcast [pseu_g; Hop Count];

14:  end if

15: end if
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As shown in the algorithm, the calculated value of pseu_g
at a node scales the received pseu_g; value from the neighbors
by their respective RSS values. Logarithmic values of RSS are
used here, and since the dBm values of RSS are negative [10],
they are scaled to the interval [0, 1], based on the maximum
and minimum sensitivity settings of the TMote Sky nodes
[16]. A key aspect of the algorithm is that the sensor node
retains the highest pseu_g value after getting updates from its
neighbors. Therefore, every node only broadcasts its highest
pseu_g value to its neighbors, avoiding retransmission of any
redundant messages.

For a 50-node WSN, the black dots in Fig. 1(b) represent the
node locations with their elevation representing the magnitudes.
As seen, the global maximum exists close to the actual target
location (the highest node is the farget node). The magnitude
then decreases away from the target.

C. Analysis of Algorithm

This section presents the theoretical analysis for the PG
algorithm. For the purposes of analysis, the only assumption
made is that the network is a connected graph. This assumption
implies that, even if the environmental conditions are nonideal,
i.e., noise, obstacles, node or link failures, etc., every node
in the network has at least one neighbor node within active
communication range.

1) Hop-Distance Model: 1t is noted from the algorithm that
the rarget node initiates the flood, after setting its hop count to
zero. Each subsequent sensor node increments the hop-count
value that it receives by one, before broadcasting the message
to its neighbors. In this way, every sensor node maintains a
minimum hop count to a target node. This minimum hop count
becomes the length of the path from a node to the rarget
node in terms of communication distance. Since a constant
communication radius of r is assumed, a sensor node with a
hop count of A would be at most a distance of A * r from the
target node.

Theorem 1: There is no local maximum in the pseu_g
magnitude distribution in the WSN, except at the farget node.

a) Proof: As shown in Algorithm 1, the farget node has
the MAX_PG value. For a connected network, the hop-distance
model implies that each node will have a neighborhood with
at least one lower hop-count neighbor. (Ideally, each node has
neighbors with hop counts one higher than, equal to, and one
lower than itself [3].) The only exception would be the farget
node having all neighbors with a higher hop count. A local
maximum in this scheme would imply that a node has a higher
pseu_g value than all its neighbors. As per Algorithm 1 and
(1), this implies that this node has a lower hop count than
all its neighbors. The only node that satisfies this condition is
the rarget node itself. This means that the maximum is global,
not local. In other words, any node other than the target node
in the network would have a positive gradient at its location,
navigating the AMR toward the farget node. |

Theorem 2: If a node has a pseu_g value, then there exists a
path from that node to any target located in the region covered
by the WSN.
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Fig. 2.

Target-node neighborhood for PG algorithm.

b) Proof: Since the network is a connected graph, if a
node has a pseu_g value, then it indicates that the node has a
neighborhood with atleast one other node. Following Theorem 1,
there exists a positive PG at this node. Thus, the node has a
path leading toward the target node. Consequently, a connected
graph implies that this node would have a path to any target
within the coverage area of the WSN. |

2) Preferred Navigation Path: The following analysis illus-
trates how the distribution of pseu_g values impacts the choice
of the navigation path for the AMR.

The PG algorithm assigns pseu_g values at a node by scaling
the received pseu_g value from its neighbors by the RSS
value of the message. Assuming an ideal environment, the RSS
value decreases with increasing distance. It is known that the
RSS—distance relationship is nonlinear. In the absence of any
knowledge of the environment and the atmospheric conditions
of a deployed region, it is generally assumed that RSS varies as
the inverse square of distance [10].

In Fig. 2, node F is a target node, and node A lies on
the straight-line path between nodes E and F'. All nodes are
assumed to have the same communication radius r values (the
dotted lines indicate ). Assume that the node arrangement in
Fig. 2 is such that dgp = x/2. The corresponding RSS values
are RSSg4, RSSgr, RSSEkc, and so on. Without loss of
generality, the RSS values are calculated using the following
equation [10]:

gl

RSS = (distance)?

2
where - is a constant. From triangle inequality, it is noted that
dpa+dar < dgp + dpp. Therefore, the distance estimate
for node F' is the lowest for a message from node A. For a
general location of node B, Z/BFE A can have any value in the
interval (0, 7/3). Then, ZEF B varies in the interval (0, 7/3).
For purposes of analysis, it is assumed that /BEA = /4.
Then, dpr = 1.684 - z.

The pseu_g value of node E is MAX_PG (from Algorithm
1). It is noted from Algorithm 1 that nodes A and B have a hop
count of one and node F' has a hop count of two. Considering
these locations, the calculated pseu_g values? at each node
using (1) are shown in Table L.

2The pseu_gY notation is read as pseu_g value [19] at node y due to
message from node z.
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TABLE 1
pseu_g VALUES AT EACH NODE

‘ Node Pair ‘ pseu_g-value ‘ Node Pair ‘ pseu_g-value
A MAX_PG F MAX PG | 1
pseu_gp v pseu_ga =23 22
B | 4MAX PG F | 4MAX PG . 1
pseu_gg 22 pseu_gp %2 (1.684-2)2

Clearly, fora MAX_PG value and an “x” greater than or equal
to one unit, and any value of ZBEA on the interval (0, 7/3)

pseu_gi < pseu_gg.

Thus, the message from a node on the straight-line path, i.e.,
node A, does not necessarily result in the highest pseu_g value
for node F' It is observed that the node with a higher total RSS
product, i.e., node B, results in the higher pseu_g value. This
is an important result for the proposed scheme. It is observed
that the path resulting in the highest total RSS product to the
target node is preferred over the path with the shortest distance.
This implies that, although the chosen path of the AMR may be
suboptimal in terms of distance, without any prior knowledge
of the environment, this choice is preferable, since it indicates
a clearer path between nodes with fewer obstructions and lesser
interfering entities.

IV. WSN-ASSISTED NAVIGATION SCHEME

For AMRs, target-directed navigation is a standard motion
planning problem. The key difference here is that the motion
space is discretized by the locations of the WSN nodes. The
node density of the WSN dictates how closely the motion space
can be approximated by this discretization. The advantage is
that the AMR does not concern itself with the nonrepresented
space between two neighboring nodes, because it moves in
straight-line paths between them.

Algorithm 2 shows the process followed by the AMR in
navigating toward the farget node.

Algorithm 2 PG-Following Navigation

repeat

@, 9

Locate close to a node “n” (guide node) using RSS

1:

2

3 of node “n” do Get pseu_g;
4. 8t = pseu_g; — pseu_gn;

5: end for

6

7

8

9:

€99

for all neighbors “i

8y = mViX (61) »ifall 6° <0, “n” is target node
nextNode = “*" neighbor corresponding to 6,,;

@, 9

. Move to nextNode as node “n
until “n” is target node, i.e.,. target is reached

The AMR discovers the “nextNode” by communicating in
the neighborhood of the guide node. Once this is determined,
the AMR interacts with this node (guide node) alone, in order to
navigate toward it. By using the directional antennas and RSS,
the bearing of a signal is estimated. The particular directional

(a)

Fig. 3.  AMR platform and directional antenna radiation. (a) AMR platform.
(b) Antenna radiation pattern on AMR.

antennas used for experimentation in this research are shown in
Fig. 3(a) [18]. Its wireless radiation pattern [Fig. 3(b)] indicates
a gain of 7 dBi in 0° [18]. Based on the radiation pattern, a 120°
offset positioning of three-directional antennas maximizes the
coverage around the AMR while minimizing the overlap of the
radiation patterns. The AMR platform used for the experiments
is shown in Fig. 3(a).

A weighted triangulation mechanism is used to estimate the
bearing of the incoming wireless signal. Based on the RSS
values at each directional antenna, two antennas with the higher
values are chosen. Algorithm 3 shows the bearing estimation
example for the “front” and “left” antennas being the antennas
with the higher RSS values. The algorithm biases the bearing
toward one antenna more than the other, based on the actual
RSS values at the antennas. The furnThreshold parameter, used
to determine this biasing, depends on the directional antenna
gains and the maximum possible difference in the RSS values
at the antennas.

The AMR, commanded to turn the computed bearing, then
moves a predetermined distance in that direction. This bearing
estimation and predetermined move sequence is continually
repeated as the AMR incrementally moves toward the guide
node. Once the RSS of the guide node at the AMR reaches
a predetermined threshold, it is assumed that the guide node
has been reached. The AMR is then commanded to repeat
Algorithm 2 for the next guide node, and the navigation se-
quence begins again.

Algorithm 3 RSS Bearing Estimation (in degrees)

1: biasR = 0.5 + (0.5 - [Left — Front/turnThreshold]);

2: biasL = 1 — biasR;

3: turnFactor = [(biasR - Left — biasL - Front)/ (biasR -
Left + biasL - Front)];

4: Bearing = turnFactor - 60 + 60;

V. EXPERIMENTAL ANALYSIS

Two critical requirements with respect to WSN-assisted
AMR navigation act as performance bounds for the system.

1) There needs to exist a geographic path from any starting

point for the AMR to traverse and reach the target.
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Fig. 4. Hardware setup for PG algorithm (indoor and outdoor).
TABLE 1I
PARAMETERS FOR HARDWARE TESTING
| Parameter I Value | Parameter I Value |
Tx Power -25 dBm Area (Outdoor) 256" x 873"

Area (Indoor) | 96" x 2328 | AMR travel / step | 0.3048 m (1 ft.)

The environment considered in our experiments is with
or without obstacles. The physical region and obstacle
placement need to be such that the target is not completely
occluded from the AMR in terms of path traversal.

2) If a geographic path exists, then the WSN deployment
shall be such that there exist nodes physically located on
or close to that path. The proximity of the nodes to this
path, a necessary condition for the algorithm to be useful,
depends on how narrow or broad the allowable trajectory
for the AMR is.

The implementation of the PG algorithm is tested in sim-
ulation and hardware (indoor and outdoor). The simulations
were conducted with 30 different random generations of node
locations, and a 95% confidence interval is computed for the
data. For the simulation data, the Free-Space and Log-Normal
shadowing (hereinafter, referred simply as Shadowing) path-
loss models [10] are used. For the Free-Space model, the gains
and the loss factor are assumed unity. Based on empirical tables
for the Shadowing model [10], the path-loss exponent (3) for
the indoor setting is chosen to be 1.5, while for the outdoor
setting, it is two. The sigma (oqp) for both cases is assumed to
be five. For communication, the TMote Sky nodes implement a
basic low-level Carrier Sense Multiple Access protocol, which
is also adopted for the simulations. Since traditional flooding is
used, time synchronization of the nodes is not necessary.

Fig. 4 shows a photograph of the indoor and outdoor test beds
for the hardware experimentation. Table II gives the parameters
used for the hardware implementation. The algorithm was
tested in a 21-node network. One grid layout of 7 x 3 nodes and
three different random layouts (in the same area, with the same
overall dimensions as the grid layout) were implemented. The
random locations were drawn from a uniform distribution over
the interval defined by the area dimensions. In each scenario,
node ID “0” was assigned to be the target node. MAX_PG
was set to 1000, and MAX_HC was set to 250. The maximum
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receiver sensitivity was kept at —95 dBm, and the minimum
was kept at —5 dBm, based on the TMote Sky datasheet [16].
For each layout in the indoor and outdoor settings, the data
presented are averaged over three experimental runs, giving a
total of 12 experiments. The grid layout data are themselves
averaged over two experiments, by exchanging nodes “0” and
“1” to overcome any location bias.

The following performance metrics are used for the
analysis.

1) Correlation coefficient: It gives insight into the simulated
and real-world performances; its value defines the quality
of the linear relationship between the data obtained in the
scenarios.

2) Travel-distance ratio: It is the ratio of the actual distance
traveled by the AMR to the Euclidean distance between
its start location and the rarget node.

3) Number of nodes in trajectory: It is the number of guide
nodes in the AMR trajectory from its start location to the
target node.

4) Area of trajectory: It is the area under the curve of the
trajectory from the AMR start location to the farget node,
bounded by the straight line connecting the two locations.

5) Bearing estimation: It displays the relationship between
the actual bearing and the estimated bearing for the AMR
as calculated using Algorithm 3.

A. Network Experiments

For the PG algorithm, comparing the magnitude distributions
in simulation and hardware (Fig. 5), it is observed that the
values follow the same trend of peaks and troughs based on the
node locations, although the absolute values show variation. It
is also observed that nodes at same hop-count level and/or the
same physical distance away from the target node tend to show
up at different distances. Although an artifact of the shadowing
and interference effects on radio propagation, this property is
advantageous since it indicates quality of link between nodes
at particular locations. The variation is also attributed to the
orientation of the sensor nodes on the ground, which, in turn,
affects the signal strength in different directions. The TMote
Sky nodes have an onboard inverted-F antenna [16] that has a
nonideal radiation pattern.

For the correlation coefficient, the variables are the
21-element pseu_g-value vectors, one each for the hardware
experiment, the Free-Space simulation, and the Shadowing
model simulation data. Fig. 6 demonstrates the correlation
coefficients for the “Free-Space Model-to-Hardware” and the
“Shadowing Model-to-Hardware” data relationships, for the
indoor and outdoor test beds. Evidently, the choice of the path-
loss model plays a critical role in the accuracy of the simulation
experiments vis-a-vis the hardware experiments. The corre-
lation coefficients demonstrate good-to-strong correlation be-
tween the RSS values in the real world and the simulated world.
As expected though, the Shadowing model shows only good
correlation, where the data for outdoor scenarios show even
lower correlation. This is attributed to lack of good approxi-
mation for the Shadowing model parameters and environmental
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variation. It is noted that humidity and temperature in outdoor
environments also impact the values.

B. AMR Navigation Effectiveness

To analyze the effectiveness of the algorithm, the PG algo-
rithm was compared to mechanisms proposed in [12] (FNF
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Fig. 7. AMR trajectories. (a) Trajectories for the four schemes. (b) AMR
trajectory (in feet) for single-node navigation using Algorithms 2 and 3.
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scheme), [14] (LiRosaRus scheme), and [19] (Reich scheme).
Fig. 7 shows the difference in trajectories for the four methods
from the same starting point to a target. Figs. 8 and 9 show the
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travel-distance ratio and number-of-nodes parameter. Two key
observations are made from the figures.

1) As seen, the PG algorithm performs better than all
the other comparable schemes. Since RSS is used to
scale the magnitude in a neighborhood, the effect is
to create a steeper gradient in the neighborhood [see
Fig. 1(b)], which leads to a shorter path for the AMR to
follow.

2) The trends depend on the number of nodes in the region. It
was observed that, for lower numbers (10-50), the region
is not covered optimally, implying that the AMR has to
travel longer distances between nodes. It also requires to
use more guide nodes since the region is sparsely covered.
As the node count increases, the coverage improves,
thereby reducing the travel distance and the number of
required guide nodes.

This simulation performance of the navigation scheme is
then compared with that of the 21-node hardware implemen-
tation. The signal variations in the physical experiments have
a significant impact on the AMR trajectory. The hardware lay-
outs were also simulated with the Free-Space and Shadowing
models to obtain simulated trajectories to compare with the

IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

actual AMR ones. Fig. 10 shows a comparison of trajectories
that the AMR would take in moving from a starting node to the
target node (shown as node “07). It is immediately seen that
the hardware experiments perform worse than the simulation
experiments. The data for Tables III and IV summarize the
related performance metrics.

The following observations can be drawn from the tables.

1) It was observed that the communication ranges for the
nodes in simulation were higher than the range that the
hardware nodes experienced, for the same transmission
power. Due to this, the simulation experiments allowed at
most a one-hop or two-hop communication between the
target node and all other nodes in the network. In con-
trast, the hop counts during the hardware experimentation
were much higher. This impacted the trajectories for the
respective methods. This is also expected following from
the correlation data in Fig. 6.

2) The grid layout experiments perform better than the
random layouts. This is expected since the grid layout
allows uniform and regular coverage of the region, reduc-
ing the travel distance and communication overhead for
the AMR.

3) The numbers for indoor experiments are much lower than
those for outdoor experiments. In addition to the multi-
path fading, interference, and environmental variations,
this is also attributed to the waveguide effect [22]. The
walls of the corridor confine more electromagnetic waves
along its length, assisting the propagation of the wave
further than in the outdoor case, causing more nodes to
receive the target-node message in the first hop itself. This
reduced the trajectories for the indoor layouts.

4) For the indoor experiments, the Shadowing model ex-
periments perform the best, while for the outdoors, it
is the Free-Space model experiments that outperform
the others. This again follows from Fig. 6. The model
parameters in the indoor scenario are more stable than
those in the outdoor environment.

It is evident from the tables that, the higher the number of
nodes in the trajectory, the greater are the trajectory area and
the travel-distance ratio. In observing the data, the indoor data
show more variations in the metric values over the layouts than
the outdoor data. This is again an artifact of multipath effects
and signal interference.

The bearing estimation algorithm for the directional antennas
of the AMR was tested using a stationary wireless transmitter
node at three distances—35, 15, and 25 ft. For each distance, the
AMR was rotated in place counterclockwise, in steps of 30°, for
the full 360°. Then, based on the algorithm, the output bearing
for the AMR was determined.® Fig. 11(a) is a glimpse of the
variation in RSS value variation at the three antennas—here, for
5-ft distance in outdoor setting. The readings follow the over-
all expected trend of crests and troughs for counterclockwise
rotation of the AMR.* Generally, for the indoor and outdoor

3Zero degree is with the front antenna of AMR pointing in the direction of
the stationary transmitter.

4Antenna (crest, trough): Front (0°, 180°), Left (120°, —60°), Right
(—120°, 60°).
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TABLE III
TRAJECTORY PARAMETERS (INDOOR)
| Area of Trajectory (ft) | Travel-Distance Ratios Traj. Number of Nodes
| Hardware Free-Space Shadowing | Hardware Free-Space Shadowing | Hardware | Free-Space | Shadowing
Grid Layout 214.7 322.1 73.4 1.012 1.000 1.000 4 3 2
Layout 1 1810.0 153.3 85.6 1.024 1.000 1.000 5 3 2
Random | Layout 2 82.08 90.13 57.3 1.000 1.000 1.000 3 3 2
Layout 3 6671.0 4276.0 584.2 1.008 1.000 1.000 4 4 2
TABLE IV
TRAJECTORY PARAMETERS (OUTDOOR)
| Area of Trajectory () | Travel-Distance Ratios Traj. Number of Nodes
| Hardware | Free-Space Shadowing | Hardware | Free-Space Shadowing | Hardware | Free-Space Shadowing
Grid Layout 1.022 0 0 1.202 1.000 1.000 5 2 2
Layout 1 5839.0 203.1 635.4 1.706 1.000 1.025 7 3 2
Random | Layout 2 85.63 23.1 46.95 1.541 1.000 1.120 6 3 2
Layout 3 1793.0 56.0 139.4 1.369 1.000 1.012 6 3 2

experiments, similar trends were observed, with more noise in
the outdoor experiment data, as expected. It was observed that,
as the distance increases, the absolute values reduce.

Based on [18], the directional antenna has a gain of 7 dBi in
its zero heading. As can be seen in Fig. 3(b), if the incoming
signal is directly in line with the “Front” antenna, then the ideal
gain of the signal received at the “Front” antenna will be 7 dB
over that for a colocated omnidirectional antenna. At the same
time, the “Left” and “Right” antennas will show a negative gain
of 5 dB, since the signal is recorded at —120° and 120° angles
from the zero heading. Therefore, the theoretical rurnThreshold
for the setup will be 7 — (—5) = 12 dB. Fig. 11(b) shows the
error in bearing estimate calculated using this turnThreshold
value. As is seen, the error is significant, and the outdoor data
show a higher error in the bearing estimate. It is also observed
that, for indoor environments, the closer node is resolved better
than the farther node, while the converse is true for the outdoor
environments. Fig. 7(b) shows an example trajectory for the
AMR (indoors) using Algorithms 2 and 3, with the node located
10 ft away. A combination of factors, including the overlap

of the radiation patterns of the antennas, the proximity of the
antennas to each other on the AMR body, and variations in
the RF signal propagation, is responsible for the nonoptimal
trajectory. Further experimentation in this context can help
determine a dynamic turnThreshold, which will weigh the three
antenna readings proportionally.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel mechanism for localizing targets in
unknown environments using a static WSN has been demon-
strated. The important feature of the technique is that it does not
rely on global positioning information and utilizes only RSS
to navigate the AMR. This fact allows the “PG” algorithm to
operate inside buildings or forested areas, without having to
resort to any sophisticated hardware like GPS. The utility of
the algorithm is successfully demonstrated via simulation and
hardware implementations. This paper has introduced five met-
rics for performance analysis, and the PG algorithm has shown
better performance in comparison to other existing schemes.
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Notably, the metrics also help understand the quality of results
obtained in simulation and hardware. The metrics bear out the
communication burden of the sensor nodes, the travel time and
distance for navigation to a target, and the utility of the RF
path-loss modeling for the environment. The low computational
complexity of the PG algorithm allows it to be robust enough to
be applied in real-world applications. As expected, hardware
experiments perform worse than the simulation experiments,
and this aspect needs further investigation.

For future research, three aspects that shall be explored
extensively include the following: 1) performance degradation
in harsh environments with obstacles, as well as node and
link failures; 2) coordinated multiple AMR navigation; and
3) probabilistic way-point-based navigation. It is clear from the
data on the bearing estimation that more intelligent strategies
are required to be adopted. Probabilistic filtering of the bearings
will account for the uncertainties in the RSS—distance rela-
tionship and the antenna radiation patterns. Early experiments
of such a scheme have shown promising results, giving much
smoother shorter trajectories, allowing for coordinated motion
of multiple AMRs. Further hardware experimentation is needed
to ascertain the level of accuracy and robustness of the mech-
anism using real-time WSN-AMR coordination. The research
continues.
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