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Abstract—This paper presents a low-complexity, novel ap-
proach to wireless sensor network (WSN) assisted autonomous
mobile robot (AMR) navigation. The goal is to have an AMR
navigate to a target location using only the information inherent
to WSNs, i.e., topology of the WSN and received signal strength
(RSS) information, while executing an efficient navigation path.
Here, the AMR has neither the location information for the WSN,
nor any sophisticated ranging equipment for prior mapping. Two
schemes are proposed, that utilize particle filtering based bearing
estimation with RSS values from directional antennas in the
WSN-AMR interaction. Real-world experiments demonstrate the
effectiveness of the proposed schemes. In the basic node-to-node
navigation scheme, the bearing-only particle filtering reduces
trajectory length by 11.7% (indoors) and 15% (outdoors), when
compared to using raw bearing measurements. The advanced
scheme further reduces the trajectory length by 22.8% (indoors)
and 19.8% (outdoors), as compared to the basic scheme. The
mechanisms exploit the low-cost, low-complexity advantages of
the WSNs to provide an effective method for map-less and
ranging-less navigation.

Index Terms—WSN-assisted navigation, received signal
strength, particle filtering, bearing estimation

I. INTRODUCTION

Navigation of autonomous mobile robots (AMRs) in un-
known and unstructured environments is confronted with a
three-tier challenge: (i) identification of target locations, (ii)
planning trajectories to identified locations, and (iii) execut-
ing the planned trajectories. Several research studies have
explored the solutions to this challenge, either with expensive
technology, such as laser range-finders and global positioning
systems (examples in [20]), or with sophisticated planning
algorithms with high computational complexity [18]. Wireless
sensor networks (WSNs) deployed apriori in the environment
provide a wealth of information regarding the state of the
environment, e.g., seismic, magnetic, thermal or visual [1].
AMRs interacting with the distributed WSNs to navigate
a region has been the topic of extensive research as well
[2], [3], [7]. The AMRs utilize the information from the
WSN to coordinate their behaviors, and have been used in
applications including area coverage, search-and-rescue, target
detection and tracking, cooperative transport, etc. [9], [10],
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[16]. Through this cooperative interaction, the AMRs can
effectively address the three-tier challenge. The research in
this paper presents a novel approach to utilizing this WSN-
AMR interactive navigation.

Navigation of AMRs in a WSN-covered region has been
a subject of extensive research over the years. The research
follows three main perspectives:

1) Mapping/Localizing for navigation: The WSN topology
is used to map the navigation environment (similar to
SLAM) and/or localize the WSN nodes which then assist
the navigating AMR. Authors in [2] describe a Value-
Iteration based probabilistic method for navigation. The
transition probabilities at each WSN-node guide the
AMR, and must be pre-assigned by an AMR that
traverses the network several times before. Authors in
[3] implement a two-step scheme: (i) the WiFi in the
environment is first recorded for an RSS map; (ii) the
AMR navigates the region using a perceptual model
combining the live and the pre-recorded RSS data.
Twigg et al. [21] demonstrate a combination of explo-
ration and navigation to determine local RSS gradients
while navigating towards the signal source.

2) Navigation with global positioning information: Known
locations of WSN nodes, through technology (GPS) or
algorithms (as above), informs the AMR as it navigates
in the WSN-covered region. Li et al. [10] show the
ability of WSNs in acting as guides to navigate AMRs
using an artificial potential field based method - repul-
sion from “dangerous” (obstacle) sites and attraction to
“goal” sites. The scheme utilizes GPS coordinates for the
sensor node locations to assign the artificial potentials.

3) Navigation without location information: This perspec-
tive involves the AMR interacting with the WSN in
real-time while navigating to desired target locations in
unknown areas. The authors in [16] propose artificial
gradients in the WSN that assist the navigating AMR.
Similarly, Jiang et al. [9] present an RSS-based gradient
in the WSN and a WSN-assisted navigation scheme for
the AMR.

Yet, most of the prior art employs methods which are expen-
sive, either in terms of: (i) technology [5], (ii) computation
[18], (iii) time [2], [9], or (iv) economics [11].

In contrast to this prior research, the novel research explores
the combination of low-complexity, probabilistic methods with
low-cost hardware technologies to allow the AMR to navigate
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a WSN field in an online manner, i.e., with and/or without an
initialization phase. Two schemes are presented:

1) A basic scheme, where the AMR estimates the bearing
to a neighboring WSN node. Received signal strength
(RSS) values from the node are used to estimate the
bearing. This allows the AMR to implement node-to-
node navigation in an online manner, without requiring
any initialization or setup phase.

2) An advanced scheme, where the AMR utilizes the RSS
values from all the nodes in its neighborhood to estimate
an overall bearing and thereby its next way-point in the
neighborhood. This allows the AMR to execute network
navigation trajectories by utilizing a prior initialization
phase of the WSN.

This paper presents bearing-only methods of AMR navigation
using RSS and online particle filtering. To be sure, integrating
RSS measurements into a particle filter is not a novel approach.
Ozdemir et al. [14] present the utility of particle filtering
in overcoming the uncertainty in wireless communication
channels, as well as the limitations of low-cost sensor nodes
while tracking targets in a WSN field. The related research in
[4] discusses the use of a distributed particle filter where the
WSN nodes maintain particles of possible target trajectories.
Liu et al. [11] show the use of a particle filter mechanism
based on RSS values in an indoor RFID field. The scheme
requires the robot to traverse the region in a training phase to
build a fingerprint map of RSS values at various locations. Lu
et al. [12] present a similar fingerprinting-based mechanism
to generate a database of RSS values in a WiFi field. The
particle filter is used to process the position estimate of the
vehicle based on the database look-up and a constant velocity
model.

This research presents novel methods wherein neither the
location information for the AMR or the WSN, nor any
ranging or prior mapping information in the WSN field, are
required. They do not require the AMR to explore the region
in determining local RSS gradients, nor do they require the
localization of the WSN prior to navigating the field. They
allow the AMR to come online and navigate towards a target
immediately upon being introduced in the WSN field. The
schemes do have certain limitations, which are noted later in
the paper. As is the case with different navigation schemes,
the choice shall depend on which parameter is critical for
particular cases: cost, complexity, technology, or time.

II. SYSTEM DESCRIPTION

Prior investigation by the authors in [6] and [7] demon-
strated algorithms for optimized AMR trajectories in WSN-
assisted navigation. In [7], the algorithms were shown to
perform significantly better than [9], [10], [16]. One of the
main points noted was that RSS provides enough information
so that the AMR can traverse the field while interacting with
the WSN as it moves, i.e., online, without a setup phase.
Obtaining bearing information from RSS simplifies the task
of the AMR in determining the next waypoint [21]. It is

advantageous because it: (i) is readily obtained using low-
cost directional antennas and a simple triangulation scheme,
(ii) can be obtained in an online manner, without requiring
prior setup or initialization, and (iii) facilitates the online
localization of the neighborhood of the AMR, as done in
[7], instead of requiring to localize the complete network in
a prior initialization step. These advantages are utilized in a
bearing-only approach to RSS-based navigation planning in
the presented schemes.

As shown in Fig. 1b, the RSS at the directional antenna is
a function of the angle of the signal. Based on the radiation
pattern of the directional antennas, the AMR platform has
3 of them in a 120o offset positioning, as seen in Fig. 1a.
A triangulation method is then used to approximate the raw
bearing θ of each node, using the angles at each of the
directional antennas (Fig. 2a), similar to the method in [13].
The cost of the antennas is $50 each [15]. This is considerably
less expensive as compared to on-board GPS devices, costing
upwards of $500 [13]. The TMote Sky motes, having on-board
omni-directional antennas, are used as network nodes - the
communication parameters are noted in Table II.

 

7 dBi 
10 dB / div 

-5 dBi 

(a) (b)

Fig. 1. Directional Antenna Setup and Radiation Pattern (from [15]).

III. PARTICLE FILTERING ALGORITHM FOR BEARING
ESTIMATION

In order to characterize the bearing measurement using the
raw RSS values, trials were conducted with the AMR and a
stationary node at three separate distances: 5′, 15′, and 25′.
At each distance, the AMR was rotated “in place” counter-
clockwise for the full 360o, with RSS being recorded every
30o. Figure 2b shows the error in bearing measurements for
the stationary node using the triangulation method, averaged
over 100 samples. Clearly, some form of post-processing and
filtering of the bearing data was required to overcome these
errors, to allow efficient navigation.

The particle filter algorithm (PFA), a non-parametric imple-
mentation of the Bayes filter algorithm [20], is used to form
the posterior estimation of the neighbor-node bearing. PFA
allows the estimation process to account for factors impacting
the RSS measurements that make them non-linear, e.g., multi-
path effects, interference, shadow fading, etc. [8]. Due to its
online nature, the filter recursively updates its estimation of
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Fig. 2. Triangulation-based bearing estimation and Bearing characterization
statistics

the neighbor-node bearing. The introduced variables are noted
in Table I.

Table I
VARIABLES IN PARTICLE FILTERING ALGORITHM.

Variable Description

Xt

Set of N particles x[n]
t (n = 1, 2,..., N), hypotheses of

the bearing estimate at time t. Each x[n]
t (n ∈ N)is

given as [r θ]T . r is the range and θ is the bearing.

w
[n]
t (n ∈ N) Importance weight assigned to each particle.

zt Current measurement of the state, denoted as [r θ]T .

ut

Control input to the AMR at time t, [d φ]T . d is

the commanded travel and φ is the commanded

turn. It is used as the odometry update.

[ḋ φ̇]T Commanded linear and angular velocities.

In order to satisfy the Markov assumption of the Bayesian
filtering process, the range information must assist in the state
update of the prior pdf of the bearing particle, incorporating
the odometry update. But for the execution of the navigation,
the AMR does not require range information. Therefore, the
measurement update step excludes it. For ranging-less imple-
mentation, a constant neighborhood of the AMR is considered
(a unit square - 1 m x 1 m) around itself (Fig. 2a).

X0 is initialized to a set of uniform randomly distributed
values over the interval [−180o, 180o) for θ, and u0 and r as
zero, the following procedure is used to implement the PFA.

1) State Update: The bearing particles are updated based
on the control input given to the AMR. The process
model used in this step is given by:

x
[n]
t = x

[n]
t−1 − ut + ωt ∀ n particles (1)

The process noise variable ωt implies that the AMR’s
odometry update ut is trusted with an associated un-
certainty. The uncertainty is generally a variable drawn
from a normal distribution.

2) Measure: The new state measurement zt consisting of
the bearing (and the range information) from the 3-
antenna triangulation method noted earlier.

3) Measurement Update: The importance weight of each
particle incorporates the new measurement into the
state’s representation. Following Bayes’ rule, a measure-
ment model p(zt|x[n]t ) relates the state to the measure-
ment. In this paper, a Gaussian relationship sufficiently
demonstrates the improvement in efficiency. The weights
for each particle are updated using the equation:

w
[n]
t = e−

zt−x
[n]
t

η + ε (2)

ε is a small value (‘> 0’) to ensure w[n]
t > 0 always.

η is the uncertainty with which zt is trusted. A high η
value indicates that zt is very noisy, while a low η value
implies greater zt accuracy. Also, as noted earlier, the
‘r’ term in zt is ignored while updating the weights.

4) Resample: The ‘Select with Replacement Resampling’
algorithm (pp. 33, [17]) is considered in this research.
The probability that a particle will propagate to the next
iteration is equal to its importance weight, implying that
particles with higher weight have a higher probability of
being copied multiple times for the next iteration. The
count N of the particles is the same for every iteration.

A. Characterization of PF-based Bearing Estimation

Figure 3a shows a visualization of the PFA as it is applied
in hardware, for a node held stationary at 45o from the AMR.
As can be seen, the particles start off in all possible directions.
As the number of observations increases, the particles get
resampled and the estimated bearing converges to the best
estimate. Figure 3b shows the convergence of the bearing
estimate from the PFA as compared to the raw bearing
observations using triangulation, over 9 time steps.
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Fig. 3. Characterization of PF-based Bearing Estimation.
(a) The images show the top-view of the AMR with the particles around it and the node
(‘brown’ blob at 45o) near it. The particles are depicted as ‘yellow’ arrows with the
arrow head pointing to the bearing estimate of that particle. The top image is at time
step 0 instant, and the bottom image is at the end of the trial.

From Fig. 3b, it is noted, that the mean error in the bearing
estimate using the PFA is non-zero, 5.98o. Since the Gaussian
model does not ideally model the noise and the interference in
the directional antennas, an average error of zero would not be
possible. But as is seen in the actual experiments, this model
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lends itself sufficiently in significantly improving navigation
efficiency.

B. Analysis Parameters
To enhance the quality of the RSS readings, the mean RSS

value at each antenna is calculated over 50 communication
packets, with an inter-packet interval of 100 ms. Table II
lists the various parameters used during experimentation. The
AMR is assumed to have reached a target-node when its RSS
value at the AMR is above the preset threshold value of -40
dBm. The values were computed after extensive trials in the

Table II
PARTICLE FILTERING - PARAMETER CONFIGURATION

WSN Transmit Power (Pt) -3 dBm

Number of RSS packets (m) 50

Inter-packet Interval (t) 100 ms

Path Loss Exponent 1.6 (Indoors), 2.4 (Outdoors)

Number of Particles 250

ωt 0.1c η (3/4)π

ḋ 0.25 m/s φ̇ 35 deg./s

experiment scenarios, following the suggestions in [8], [19],
[20]. Performance metrics are used to analyze the effectiveness
of the methods. Two of them are stated here:

1) Travel-Distance Ratio: is measured as the ratio of the
actual distance traveled by the AMR to the Euclidean
distance between the start location and the target loca-
tion. This impacts its energy expenditure as well as its
quick-response capabilities.

2) Number of Way-points: is the number of intermediate
locations required by the AMR in its trajectory from the
start location to the target. The intermediate locations are
points where the AMR communicates with WSN nodes
to compute the next way-point. This impacts the WSN-
AMR communication overhead during navigation.

IV. BASIC NAVIGATION SCHEME

In the basic scheme, the AMR executes node-to-node nav-
igation. In the hardware implementation, the AMR incremen-
tally moves towards the nodes, estimating the bearing after
traveling a specific distance in the direction of the previous
bearing estimate. The navigation procedure followed is:

1) The PFA from section III estimates the bearing θ for the
neighbor-node.

2) The way-point is then issued in the form of control input
[d φ]T , where φ is simply the estimated bearing θ. For
these experiments, d is maintained a constant 0.3 m (~
1 ft.).

It is noted that in the basic scheme, there is no initialization
and setup phase with the WSN. The AMR can initiate navi-
gation to the nodes immediately upon deployment. A sample
experiment is shown in Fig. 4a, comparing the trajectories
adopted by the two methods – with and without PFA1. As

1Initially, the AMR has its heading away from the node.
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Fig. 4. Basic Navigation Scheme Trajectory - Comparative Analysis.
(b) The ‘Bearing Estimate’ is calculated as the weighted mean of all the resampled
particles as mentioned in section (III). The ‘Bearing Observation’ is the latest raw bearing
obtained using triangulation.

is observed, without PFA, the AMR takes more time steps
and travels a longer, more tortuous route than the one using
the PFA. Figure 4b details the estimation of the posterior
distribution of the bearing variable over time. The distribution
of the particles at time step 1 confirms that the AMR begins
with its heading opposite to the node. As the AMR turns
around and traverses towards the stationary node, the particles
begin to cluster around the best estimate of the bearing, which
would be in front of the AMR, around 0o. In contrast, the
raw estimates calculated without PFA - annotated on the same
figure at the respective time steps - show low convergence
properties.

Table III summarizes the statistics for the basic navigation
scheme experiments using a single node. The experiments
were conducted indoors and outdoors for three different dis-
tances between the AMR and the node - 5′, 10′, and 15′. At
each distance, two trial runs were conducted and the averaged
readings are reported here.

V. ADVANCED NAVIGATION SCHEME

As seen earlier, the basic navigation scheme is improved
significantly by using the bearing-only PFA. But it does not
utilize the inherent information in a deployed WSN, which
can assist the AMR in further optimizing the trajectory. The
advanced network navigation scheme is introduced which
relies on a prior initialization phase of the WSN for the
information of the target location. The ‘Interpolation-based’
navigation method introduced in [7] is utilized. The method
is described here in brief:

1) In the WSN field, a Pseudo-Gradient (P-G) is generated
(P-G algorithm, [6]), that has its peak closest to a target
in the region.

a) The node closest to the target marks itself as a
target-node and initiates a packet exchange via a
flooding mechanism2.

b) A magnitude (termed pseu_g) is assigned to each
sensor node. This is a function of the node’s
communication distance (in terms of hop-count and

2A target could be an event (seismic, fire, chemical leak, etc.) or a moving
entity. The nodes are assumed to be capable of sensing the target. This artifact
shall be explored in a separate paper.
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Table III
BASIC NODE-TO-NODE NAVIGATION - WITH AND WITHOUT PARTICLE FILTERING

Travel-Distance Ratios Number of Way-points

Setting Indoor Outdoor Indoor Outdoor
Method without PFA with PFA without PFA with PFA without PFA with PFA without PFA with PFA

5′ 1.94 1.77 1.68 1.37 15 10 14 8
10′ 1.87 1.57 1.85 1.57 22 17 21 17
15′ 1.79 1.64 2.04 1.81 30 26 32 28

Average 1.88 1.66 1.86 1.58 - - - -

RSS) from the target-node. So, the target-node had
the highest magnitude assigned to it.

The P-G is based on the WSN topology and RSS [6].
2) Once this initialization phase is over, the AMR is

introduced in the WSN field and it generates way-
points by interpolating the distribution of P-G in its
immediate neighborhood. It uses the estimated bearings
of the neighbor-nodes and Implicit Surface Interpolation
[7]. This is a surface fit using the pseu_g values at
the neighbor-nodes, which allows the AMR to compute
a local neighborhood way-point. The overall trajectory
from this method is shown to be shorter and more
efficient than comparable existing methods in literature,
as noted in [7]. Figure 5 shows the improvement in
trajectory with the interpolation scheme, reproduced
from [7].
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Fig. 5. Advanced ‘Interpolation-based’ navigation in simulation.
(a) Comparative AMR trajectories for Basic and Advanced navigation schemes. (b)
Comparative performance of different navigation schemes.
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Fig. 6. Advanced navigation - sample trial setup (outdoor) and corresponding
trajectory. All coordinates in feet.

The bearing estimate and range of each neighbor-node is
obtained as shown in Fig. 2a. The bearing is then filtered using

the PFA. The P-G on the unit-square sub-neighborhood is then
interpolated, and its peak becomes the next way-point.

The navigation procedure followed is:
1) The AMR obtains the pseu_g-values and the hop-counts

of the neighbor-nodes.
2) It estimates the bearings of the neighbor-nodes with the

PFA. Each neighbor-node has a PF associated with it.
3) The filtered bearing estimates and the range values (unit

square) are then used to estimate the next neighborhood
way-point using the interpolation method in [7].

4) The command [d φ]T consists of the bearing φ and the
travel distance d to this estimated way-point.

A sample trial setup is shown in Fig.6a. Figure 6b shows
the trajectory for the AMR generated through the interpolated
surface fits. The interpolation of the pseu_g-values is done
with the AMR at the center of the surface fit. The next way-
point is in the direction of the peak of the surface (highest
value) at each location. It travels the fixed distance in that
direction and repeats the above procedure for the next way-
point.

Experiments were conducted using the above procedure
with low-density networks - a 2-hop network indoors, and a
3-hop network outdoors. The hop-count values and the pseu_g-
values were pre-assigned to the WSN nodes by executing the
P-G algorithm, [6]. The actual distance between the AMR start
location and the target-node was 30.4′ (outdoor) and 24.5′

(indoor). Figure 7 (a) and (b) show the sample trajectories
in the two setups for the basic and the network navigation
methods. The chosen layouts satisfied the necessary and suf-
ficient condition of number of neighbor nodes for successful
interpolation and way-point computation [7]. Three trials were
conducted for the navigation methods in both the setups.

Table IV summarizes the statistics for these experiments.

VI. DISCUSSION

As is observed, in the basic scheme, particle filtering based
navigation demonstrates superior performance. The PFA ap-
proach allows a 11.7% reduction indoors and a 15% reduction
outdoors in the AMR Travel-Distance, over the values when
PFA is not used. Similarly, the Number of Way-points is also
reduced an average of 22.5% against the values when PFA is
not used.

It is also clear that the advanced network navigation scheme
performs significantly better than the basic navigation one.
Here, even more pronounced reductions in metric values are
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Table IV
COMPARISON OF BASIC AND NETWORK NAVIGATION METHODS (BOTH WITH PFA)

Travel-Distance Ratios Number of Way-points

Setting Indoor (2-hop) Outdoor (3-hop) Indoor (2-hop) Outdoor (3-hop)
Method Basic Network Basic Network Basic Network Basic Network
Trial 1 1.65 1.28 1.74 1.41 43 15 50 20
Trial 2 1.60 1.23 1.71 1.42 40 14 48 20
Trial 3 1.61 1.25 1.71 1.32 41 15 48 19

Average 1.62 1.25 1.72 1.38 41.3 14.7 48.7 19.7

(a) Indoor Setup

(b) Outdoor Setup

Fig. 7. Setup for navigation experiments - with basic and advanced schemes.

observed. The Travel-Distance is reduced by 22.8% indoors,
and 19.8% outdoors. The Number of Way-points is reduced by
64.41% indoors, and 59.5% outdoors. This also corroborates
the simulation results in [7].

The overall response time of the AMR in arriving at the
detected target is the third performance metric. Equation 3
presents the relationship.

Tresp =

P∑
i=1

ni ·mi · ti +
P∑
i=1

di

ḋi
+

P∑
i=1

φi

φ̇i
+ P · ε (3)

Here, P is the number of way-points in the trajectory. ni is
the number of WSN neighbor-nodes at way-point i. ε accounts
for computation time of a way-point (including any inter-
communication between peripherals). Its value is set to 10 ms.
The other variables are noted in Table II, and in sections IV
and V separately. The average values of the calculated from
(3) and the actual response times for the experiments are noted
in Table V.

The response times show a trend similar to that of the other

Table V
AMR RESPONSE TIMES COMPARISON (SECONDS)

Basic (Single Node) Navigation

without PFA with PFA

Indoor Outdoor Indoor Outdoor

Calculated 180.7 282.8 146.2 221.0
Actual 184.4 287.3 148.4 223.2

Advanced (Network) Navigation

Basic Network

Indoor Outdoor Indoor Outdoor

Calculated 336.3 428.1 266.7 353.9
Actual 338.1 429.8 286.8 367.4

two metrics. With PFA, the basic navigation experiences a
19.5% reduction indoors, and a 22.3% reduction outdoors, in
the actual response times averaged over 5′, 10′, and 15′. For
the advanced navigation, the actual response times reduce by
13.6% (indoors) and 14.5% (outdoors) over the basic scheme.

Limitations of the schemes

The significant gains obtained in the response times point to
the clear advantages of the bearing-only, PF-based navigation
schemes. Yet, evidently the schemes suffer from drawbacks.

1) The advanced navigation scheme has a higher response
time than the basic navigation scheme. This is because
the advanced scheme has to interact with multiple nodes
as it navigates, instead of just one, as in the basic
scheme.

2) The overall response times to navigate distances between
10 - 20 ft. are rather high. This is attributed to the
communication overhead to mitigate the noisy RSS
values.

3) The schemes do not have a way of avoiding obstacles,
since they only have RSS sensors on-board.

Yet, these limitations are offset by the improvements offered
by the schemes in: (i) reduced trajectory lengths thereby
reduced energy expenditure, (ii) lower complexity, (iii) simpler
technological requirements, and (iv) lower overall cost. The
strategies allow online AMR navigation and can be readily
adopted in WSN-assisted methods.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, low-cost and low-complexity schemes were
explored in WSN-assisted AMR navigation. Using an RSS-
based, bearing-only, particle filtering mechanism, the two nav-
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igation schemes demonstrated online navigation and efficient
execution of trajectory, both with and without the requirement
of an initialization phase. Real-world experiments with the
schemes also corroborate the simulation results observed in
[7]. The basic method is a naive node-to-node navigation
implementation, important in cases where the AMR can com-
municate with only one neighbor-node. The advanced method
takes advantage of the information in the WSN to improve
its trajectory, but requires more communication overhead. The
quantum of improvement in the trajectory length and the num-
ber of way-points has a direct impact on the overall response
times of the AMR, presenting a reduction between 13.6% and
22.3%. The critical advantage of the schemes, in addition
to these enhancements, is their capability of operating in
environments without the need of global positioning, ranging,
or prior mapping information.

In future research, two key aspects that shall be investigated
are: (i) utilizing the RSS information for obstacle avoidance;
one of the methods was discussed in [6], and (ii) decoupling
the AMR motion from the RSS measurement and bearing
estimation. This will allow for a more smooth and continuous
trajectory execution. Some of the other important aspects that
will be explored are: (i) including RSS-based ranging infor-
mation without assuming its Gaussian distribution (similar to
[18]), and (ii) testing the robustness to link and node failures
during navigation. The investigation will include the analysis
with presence of multiple targets and coordinated multiple
AMR navigation as well.
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