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Abstract

We propose the use of symmetry theories as the basis for the interpretation of sensorimotor
data and the creation of more abstract representations. Here we outline a cognitive archi-
tecture to implement such an approach and provide a set of specific mechanisms for 1-D,
2-D and 3-D sensorimotor processing. The overall goal is to integrate low-level sensorimo-
tor data analysis and behavior with more abstract affordance representations. Sensorimotor
affordance and cognition is an essential capability for self-learning robots. Given only min-
imal innate knowledge but well-defined sensorimotor cognitive mechanisms, a robot should
be able to identify useful relations between its different actuators and sensors. Symmetry
plays an important role in identifying invariant sensor-actuator signal relations, and these
invariances can be effectively exploited if such relationsare bundled for future use. We
call these collections of simultaneous symmetries in actuator commands and sensed sig-
nalsSymmetry Bundles. Along with the theoretical framework and semantics of Symmetry
Bundles, we define new practical approaches to detect, classify and bundle the inherent
symmetries present in signals in order to form useful affordances. The overall cognitive
architecture is called theCognitive Symmetry Engine.
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1 Introduction

We explore the thesis that symmetry theory provides key organizing principles for cog-
nitive robot architectures. Cognitive systems perceive, deliberate and act in unstructured
environments, and the development of effective mental abilities is a longstanding goal of
the AI and intelligent systems communities. As described byVernon et al. [69], cognition
”can be viewed as a process by which the system achieves robust, adaptive, anticipatory,
autonomous behavior, entailing embodied perception and action.” Their survey consid-
ers two basic alternative approaches to cognition:cognitivist (physical symbol systems)
andemergent(dynamical systems), where the cognitivist paradigm is more closely aligned
with disembodied symbol manipulation and knowledge representation based on a priori
models, and the emergent paradigm purports dynamic skill construction in response to
perturbations to the embodiment. Basically, cognitivists maintain that patterns of symbol
tokens are manipulated syntactically, and through percept-symbol associations perception
is achieved as abstract symbol representations and actionsare causal consequences of sym-
bol manipulation. In contrast, emergent systems are concurrent, self-organizing networks
with a global system state representation which is semantically grounded through skill con-
struction where perception is a response to system perturbation and action is a perturbation
of the environment by the system. The emergent approach searches the space of closed-
loop controllers to build higher-level behavior sequencesout of lower ones so as to allow
a broader set of affordances in terms of the sensorimotor data stream. An important aspect
of this discussion which concerns us here is that raised by Krichmar and Edelman [31]:
”the system should be able to effect perceptual categorization: i.e. to organize unlabeled
sensory signals of all modalities into categories without apriori knowledge or external in-
struction.” We address this issue and propose that certain fundamental a priori knowledge
about symmetries is vital to this function.

Vernon later took up Maturana and Varela’senactionconceptual framework for cognitive
systems [68]. The goal there is to understand how to describethe role of development in
making an agent act effectively and gain new skills. The five basic elements of enaction
are: (1) autonomy, (2) embodiment, (3) emergence, (4) experience and (5) sense making.
The last one is considered the most important: ”emergent knowledge is generated by the
system itself and it captures some regularity or lawfulnessin the interactions of the system,
i.e. its experience. However, the sense it makes is dependent on the way in which it can
interact: its own actions and its perceptions of the environments actions on it.”

This is the key issue addressed in this paper: it seems somewhat contradictory to say that
”regularity or lawfulness” are captured ”without a priori knowledge.” How can a law or
regularity be recognized without knowing the law or rule? Our claim is that symmetries
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help characterize these regularities.

Our goal is to advance the state of the art in embodied cognitive systems. The requirement
for cognitive ability is ubiquitous, and its achievement isan essential step for autonomous
mental development. At its root, a cognitive architecture is a structural commitment to
processes and representations that permit adaptive control in an operating environment that
cannot be modeled completely a priori. A cognitive agent optimizes its behavior to achieve
an objective efficiently by finding models that resolve hidden state information and that
help it to predict the future under a variety of real-world situations. These processes in-
volve monitoring, exploration, logic, and communication with other agents. It is necessary
to create new theories and realizations for cognitive organization in complex, real-time
systems that consist of interacting domain specific agents,each with rich internal state and
complex actions in order to facilitate the construction of effectively organized cognitive
infrastructure.

The proposed technical basis for this is symmetry operatorsused in perception, represen-
tation and actuation. Our specific hypothesis is:

The Domain Theory Hypothesis: We propose that robot affordance knowledge acquisi-
tion and perceptual fusion can be enabled by means of a commonsensorimotor semantics
which is provided by a set of group symmetry theories embedded a priori in each robot.
These theories inform the production of structural representations of sensorimotor pro-
cesses, and these representations, in turn, permit perceptual fusion to broaden categories of
activity. TheDomain Theorypredicates:

1. a representation of an innate theory and inference rules for the theory,

2. a perceptual mechanism to determine elements of a set and operators on the set,

3. a mechanism to determine that the set and its operators area model of the innate
theory, and

4. mechanisms to allow the exploitation of the model in learning and model construc-
tion.

As pointed out by Weng [71], a major research question in autonomous mental development
is ”how a system develops mental capabilities through autonomous real-time interactions
with its environment by using its sensors and effectors (controlled by an intrinsic develop-
ment program coded in the genes or designed in by hand).” Thus, a representation is sought
derived from sensorimotor signals as well as the grouping ofsuch signals as processing
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takes place. Note that this assumes that no coordinate frames exist in this setting; see [65]
for a discussion of coordinate frames in biological systems. Asada et al. [2] give a good
account of the development of body representations in biological systems and maintain that
”motions deeply participate in the developmental process of sensing and perception.” They
review data ranging from spinal reflexes with fixed motor patterns, to motion assembly, to
mixed motion combinations in the cerebrum. Lungarella [40]also has much to say on this
issue, and of great interest here, states that ”spontaneousactivity in newborns are not mere
random movements ... instead organized kicks, arm movements, short phase lags between
joints ... may induce correlations between sensing and motor neurons.”

Our proposed method is to detect and exploit various symmetries in the sensorimotor data
in order to achieve the objectives. Symmetry [73] plays a deep role in our understand-
ing of the world in that it addresses key issues of invariance, and as noted by Viana [70]:

Figure 1: The Symmetry Engine.Perceptionrequires an appropriate set of operators to
constructG-reps; this includes vector constructors, symmetry detectors, and symmetry-
based data indexing and variance operators.Control actionrequires the ability to map
G-repsonto action sequences to achieve desired results in the world. Concept Formation
operators allow the exchange ofG-repswith other agents.

“Symmetry provides a set of rules with which we may describe certain regularities among
experimental objects.” Symmetry to us means an invariant, and by determining operators
which leave certain aspects of state invariant, it is possible to either identify similar objects
or to maintain specific constraints while performing other operations (e.g., move forward
while maintaining a constant distance from a wall). Operationally, the hypothesis is that
group theoretic representations (G-Reps)inform cognitive activity. In related work, Leyton
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proposedwreath products[35, 36] as a basis for cognition. Leyton argues that thewreath
group productis a basic representation for cognition as stated in theGrouping Principle:
“Any perceptual organization is structured as an n-fold wreath productG1 ≀ . . . ≀ Gn” and
proposes that “human perceptual and motor systems are both structured as wreath prod-
ucts.” We loosely use that formalism (the operator≀ indicates a group sequence), and
plan to demonstrate that symmetry-based signal analysis and concept formation allow us
to address (1) the sensorimotor reconstruction problem, (2) affordance learning, and (3)
affordance representation and indexing for life-long experience. A schematic view of our
proposed symmetry-based affordance architecture (theSymmetry Engine) is given in Fig-
ure 1. The successful demonstration of this approach will constitute a major advance in the
field of cognitive autonomous agents, and will also motivatejoint research programs into
human cognition. For a more biologically motivated cognitive architecture which learns
features for hierarchical models to recognize invariant objects, see [72] as well as other pa-
pers from the Honda research group on their approach to cognitive architecture [5, 6, 58].

Our major research thrusts to construct this robot cognitive architecture are:

• Symmetry (Symbol) Detection: This involves the recognition of symmetry tokens
in sensorimotor data streams. Various methods are proposedfor this in 1D, 2D and
3D data. Here symmetries are various invariant affine transformations between sub-
sets of the data, including translation, rotation, reflection, scaling, etc. Also important
is the detection of local and global symmetry axes.

• Symmetry Parsing: A collection of sensorimotor data gives rise to a set of tokens
which must be parsed to produce higher-level nonterminal symbols (or concepts). We
propose that a symmetry grammar is innate in the robot, but that experience informs
its specific structure for a given robot.

• Symmetry Exploitation: Symmetries can be used to solve the sensorimotor recon-
struction problem, to represent new concepts, and to discover and characterize useful
behaviors.

1.1 Cognitive Architecture

Figure 2 provides a more detailed view of our current cognitive architectural implementa-
tion based on theSymmetry Engine. A particularly important feature is the Behavior Unit
(in the middle of the figure). Behavior is encoded asObject-Action Complexes[1, 32] (in
brief, an OAC is a triple(E, T,M) where the execution is specified byE, T is a prediction
function on an attribute space, andM is a statistical measure of success of the behavior).
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Figure 2: General Cognitive Framework Architecture.

In Figure 2, theBehavior Selectionfunction chooses the next OAC sequence based on
the current OAC, the current states of theShort-Term Perception Memoryand theShort-
Term Motor Memory, as well as the available behaviors in theLong-Term Memory. As an
OAC executes, it provides context to both the perception andmotor pipelines. Data arrives
continuously from the sensors and first undergoes specific packaging and transformation
procedures, then is formed into percepts (symmetry characterizations), and finally, results
are stored in theShort-Term Memory. Similarly, motor commands are moved to theShort-
Term Motor memorywhere they are then interpreted according to modality and the specific
qualities desired, and finally, these more symbolic representations are decoded into specific
motor commands for the actuators.

As a simple example of the perceptual-motor duality of the architecture, consider a square
shape. As described in more detail below, the boundary of theshape can be represented as
a point which undergoes a specific sequence of symmetry transforms: translation (half the
side length), reflection (about the line perpendicular to the endpoint), and rotation (4-fold
about the z-axis). This same representation can be used to issue motor commands to trace
out the shape or to circumnavigate it (e.g., go around a table).

2 Symmetry Detection

Symmetry detection has played a large role in 2D and 3D image and shape analysis and
computer graphics; see [13, 16, 29, 28, 33, 34, 39, 47, 51]. Inrobotics, we have previously
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shown how to use symmetry detection in range data analysis for grasping [22]. Popplestone
and Liu showed the value of this approach in assembly planning [38]. More recently, Pop-
plestone and Grupen [53] gave a formal description of general transfer functions (GTF’s)
and their symmetries. Finally, Selig has provided a geometric basis for many aspects of
advanced robotics using Lie algebras [61, 62].

A symmetry defines an invariant; according to Weyl [73]:

An object is symmetrical if one can subject it to a certain operation and
it appears exactly the same after the operation. The object is then said to be
invariant with respect to the given operation.

The simplest invariant is identity. This can apply to an individual item, i.e., a thing is itself,
or to a set of similar objects where the operation is some geometric (or other feature like
texture) transform. In general, an invariant is defined by a transformation under which
one object (or a feature of the object) is mapped to another object (or its features). We
propose that sensoriomotor reconstruction can be more effectively achieved by finding such
symmetry operators (invariants) on the sensor and actuatordata (see also [10, 30]).

2.1 Symmetry Detection in 1-D Signals

Here we are looking for patterns in finite 1-D sample sets. Letti be the independent time
(sample index) variable andyi = f(ti) be the sample values (e.g., real numbers). Assume a
set of sensors,Y = {Yi, i = 1 . . . nY} each of which produces a finite sequence of indexed
sense data values,Yij wherei gives the sensor index andj gives an ordinal temporal index,
and a set of actuators,A = {Ai, i = 1 . . . nA} each of which has a finite length associated
control signal,Aij, wherei is the actuator index andj is a temporal ordinal index of the
control values. Symmetries are defined in terms of permutations of the sample indexes and
values. GivenYi,j, j = 1 . . . 2k + 1, a set of samples from a sensor, then symmetries are
detected as follows. The2k+1 sample points comprise a moving window on the data from
this sensor, and analysis takes place at the center point (Yk+1). The possible symmetries
are:

Constant Signal: (Any point maps to any other.) Under the mapx → x+ a, ∀a ∈ [−k, k],
and mapping the correspondingy values as well, the sample signal does not change. All
possible permutations of time-sample pairs leave the signal invariant (i.e.,Sn, the symmetry
group characterizes a constant signal).
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Figure 3: Various Symmetries in a Sin Wave.

Periodic Signal: (No point maps to itself.) Under the mapx → x + a, for some fixed,
non-zero valuea, and mapping the correspondingy values as well, the sample signal does
not change.

Reflection Signal: (Only one point maps to itself.) Under the mapx → a−x, ∀x in[−k, k],
and mapping the correspondingy values as well, the sample signal does not change.

Asymmetric Signal: (Each point maps only to itself.) The only map for which the signal
remains unchanged is the identity map:x → x. Note that most functions are like this, as
are pure noise signals.

Linear signal In order to detect a linear (non-constant) relation in the data, we take the
derivative of the sample data (i.e.,Y ′

j =
Yj+1−Yj

tj+1−tj
) and look for the constant signal.

Gaussian Noise Signal: Any signal for which the autocorrelation of the sample set results
in a low amplitude signal everywhere except zero.

Note that the above analysis could be performed on 1-D point sets on the real line by quan-
tizing the sample values, and then looking for specific patterns in symmetries existing on
those point sets. E.g., for a periodic pattern, all point sets would have the same translation
symmetry. Moreover, the analysis can also be done by parsingthe samples in terms of
grammars defining these symmetry types (see Section 3).
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A first level symmetry is one that characterizes a single signal as belonging to one of these
categories. Of course, composite signals can be constructed from these as well, e.g., the
sine function has a hierarchy of symmetries (see Figure 3). As seen in the figure, a sine
wave gives rise to several symmetries: there is a reflective symmetry about the vertical
axis for points between[0, π], [π, 2π], etc., and the predominant symmetry is the discrete
translational symmetry of period2π, i.e.,sin(x) = sin(x+2π). Such a signal at the highest
level is then represented by the tokenPb=sin([0,2π]),T=2π. Note that symmetry analysis may
be applied to transformed signals (e.g., to the histogram ofa signal; e.g., where a Gaussian
sample is of typeD1). Asymmetric signals will also be represented as a symbolicsequence,
i.e., using the Symbolic Aggregate Approximation method ofLin et al. [37].

Next, pairwise signal symmetries can exist between signalsin the same class:

• linear

– same line:a1 = a2, b1 = b2

– parallel:a1 = a2, b1 6= b2

– intersect in point: rotation symmetry about intersection point

• periodic

– same period:P1 = P2

– same Fourier coefficients:C1 = C2

• Gaussian

– same mean:µ1 = µ2

– same variance:σ2
1 = σ2

2

We have developed algorithms to detect these symmetries andhave used them to classify
sensor and actuator types in the sensorimotor reconstruction problem (see [26] and below).
This allows sensor classification without any actuation (i.e., much lower energy expendi-
ture), and achieves much greater classification correctness compared to previous methods.
The symbolic output of the 1-D symmetry analysis is one of:

• C1: an asymmetric signalb.

• T : a continuous translational signal; i.e., a line (segment)at+ by + c = 0.

• D1: a signal with reflective symmetry.
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• P: a periodic signal with base shapeb and periodT .

The extended analysis produces results for:

• GN(X): Gaussian noiseN (µ, σ2).

2.2 Symmetry Detection in 2-D Signals

Symmetries must also be found in 2-D and 3-D spatial data, like camera and range data
(note that the spatial layout of 1-D sensors - pixels - can be learned from the correlations in
the neighboring streams of 1-D signals [46, 49, 48]). Our view is that much like in the case
of 1-D data where a central signal value is chosen as the origin about which to find 1-D
symmetries, pixel-centric image transforms (e.g., the log-polar transform) can be used to
help bring out symmetries in 2-D shapes. Moreover, such an analysis is performed in terms
of a sensorimotor combination which is intrinsic to that object. For example, saccadic
movement of the eye relates motor control information coordinated with the simultaneous
image percepts. This issue is further explored below in symmetry exploitation.

The 2-D symmetries to be detected are:

• cyclic symmetry(denotedCn): rotational symmetry of2π
n

radians (e.g., yin-yang
symbol) with no reflection symmetry.

• dihedral symmetry(denotedDn): rotational and reflective symmetry (e..g., polygon).
[Note thatD1 has one reflection symmetry axis and no rotational symmetry;e.g., a
maple leaf with bilateral symmetry.]

• continuous rotational symmetry(denotedO(2)): can be rotated about the center by
any angle; also has an infinite number of symmetry reflection axes (e.g., circle).

These symmetries may be found on any point set and are not restricted to closed boundaries
or figures. Thus, a pair of aligned parallel line segments have aD2 symmetry.

In terms of 2-D image symmetry analysis, we have implementedand investigated a number
of existing symmetry detection algorithms, including rotation symmetry group detection
[34]. Figure 4 shows a chaos image with several types of symmetry. The four symmetry
sets are shown in Figure 5.
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Figure 4: Chaos Image from Lee [34].

However, our contribution to the detection of symmetry in 2-D shapes extends Podolak’s
planar reflective symmetry transform (PRST) [51]); this method computes a measure of
symmetry about each line through every point in a shape. Thisis a computationally expen-
sive method, and we propose to reduce this cost by choosing a subset of points at which
to apply the PRST, as well as the possible orientations. This can be achieved by using the
Frieze Expansion Pattern (FEP) [34] which is computed as follows. Pick a point,P , in the
shape; for a selected set of orientations, e.g., 1 degree increments from 0 to 360, take that
slice of the image and make it a column in the FEP. Figure 6(a,b) shows how the FEP is
formed, and the FEP of a square shape. If the FEP is formed at the center of mass of the
shape, then the following hold:

• A rotational symmetry exists if the FEP has a reflective axis through the middle row,
and the upper half of the FEP image has a translational symmetry (either continuous
or discrete).

• For a reflective symmetry axis to exist, it must occur at a maximum or minimum
on the upper half shape boundary curve of the FEP and have a maxor min at the
corresponding location on the lower half shape boundary curve of the FEP.

• Certain features in the 1-D curves found in an FEP can be used toidentify the shape
basis for aG-rep.

These can be robustly determined (see Figure 6(c)); i.e., the point sets do not need to be
perfectly symmetric.
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O(2) Continuous Rotation Group Dihedral 4 Group

O(2) Continuous Rotation Group Cyclic 5 Group

Figure 5: Symmetries Found in Chaos Image.

A 2-D reflective symmetry is a set of points in the plane that are invariant under reflection
across a symmetry axis line through the set. Podolak’s method considers every orientation
at every pixel. However, reflective axes can be found as follows: For every segmented
object with center of massCM and FEPF atcm, then ifF1 is the top half shape boundary
of F andF2 is the bottom half shape boundary ofF , then letF ′ beF2 flipped left right and
then flipped up-down; next check for translational similarity betweenF1 andF ′, and where
the similarity is high, there is a reflective axis. Figure 6 (c) shows the detected symmetry
axes. Given an FEP, if there are reflective axes, then the shape basis for the full figure must
be found between two successive reflective axes. This is shown in Figure 6 (c). In this case
for the square, this is any of the half side segments. It is also possible to use the polar image
for this analysis.

In addition to 2-D symmetries, shape boundaries may be represented as 1-D signals (e.g., in
the FEP), and then analyzed in terms of 1-D symmetries. An example of this is the periodic
symmetry in the FEP boundary of a square (see Figure 6 (b)).
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Figure 6: Frieze Expansion Pattern (a) Formation, (b) for Square, (c) Symmetry Axes.

2.3 3-D Signals

3-D surface points, homogeneous 2-D surfaces (e.g., planes), and 3-D surface normals may
all serve as basic symmetry elements for affordance learning. For example, a flat surface
with normal opposite the gravity vector allows platform locomotion. Data from a Kinect
or other range sensors allow easy acquisition of such data. We have developed the 3D FEP
to detect symmetries in 3D data. For example, Figure 7 shows the FEP for synthetic cube
data (expanded at the center), as well as an abstraction of the peaks and pits which are used
(in much the same way as maxima and minima in the 2-D FEP) to determine the symmetry
planes cutting through the cube (6 diagonal and 3 parallel).That is, any symmetry plane
must pass through maxima or minima of the 3-D FEP. Figure 8 shows the FEP for Kinect

Figure 7: Cube, FEP, and Symmetries.

data of a scene comprised of two corners of a cube viewed from inside the cube. As can be
seen,this method works well on real data.

The 3-D symmetries to be detected are:
13



Two Corner Kinect Data Two Corner Peaks in FEP Data

Figure 8: 3D FEP on Real Data.

• direct isometries(denotedSE(n)): rigid motions; also called the special Euclidean
group.

• indirect isometries(denotedDR): includes reflections; i.e.,D is a direct isometry
andR is a reflection.

3 Symmetry Parsing

As a simple example of concept representation, Leyton showshow symmetries can be
expressed as symbolic structures which capture not only theperceived layout of a shape,
but also to encode how the shape is produced (e.g., put a pen ata point; translate the
pen, rotate the pen, translate the pen, etc. to get a generative representation of a square
shape). That is, the sensorimotor data is converted into a sequence of symmetry symbols
which constitute a string in a language for which syntax and semantics exist. Note that
there is evidence that some such form of parsing takes place in the visual system [52];
Poggio et al. describe: ”a class of simple and biologically plausible memory based modules
that learn transformations from unsupervised visual experience. The main theorems show
that these modules provide (for every object) a signature which is invariant to local affine
transformations and approximately invariant for other transformations. [They] also prove
that, in a broad class of hierarchical architectures, signatures remain invariant from layer to
layer. The identification of these memory-based modules with complex (and simple) cells
in visual areas leads to a theory of invariant recognition for the ventral stream.” Bressloff et
al. describe symmetry and the striate cortex [8, 9]. Also see[17, 66] as well as early work
by Foeldiak [19]. Symmetry is also exploited in various learning paradigms: Ravindran and
Barto [55, 56, 57] exploit symmetry in reinforcement learning (see our work also [24]).

Group Representations (G-reps) Given a set of symmetry elements and axes produced
by the symmetry detection stage, it is necessary to determine how they are best represented
by sequences of symbols in a language. Little detail on this process has been given in
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the literature. Consider, for example, Leyton’s favorite example, the square. While it is
true thatMod ≀ T ≀ C4 (i.e., a line segment rotated 0,90,180, and 270 degrees) captures the
symmetries of the square, it also characterizes a ’+’ sign. Moreover, there is no association
of actuation events required to obtain sensor data for this object. For example, there is
control data associated with following the contour of the square either using (actuated)
sensors, or by tracing the path with the end effector, and symmetries in these control signals
must be parsed and paired with the discovered perceptual symmetries. The resultingG-rep
will be a description like:

T (d = 6cm; actuators1−3 : [a1i; a2i; a3i], i = 1 . . . n);

C4(90 degrees: [a1i; a2i; a3i], i = 1 . . . p)

This annotated group sequence gives basic shape information relating length of a side as

Figure 9: G-Rep for a Square Shape.

well as sensorimotor traces in terms of 3 actuators (ai). Figure 9 shows this schemati-
cally. We introduce reflection into the representation since this mirrors the actuation trace
required to move along an edge in which velocity starts at 0, increases to a max at the
middle, then slows to a stop at the end of the edge segment. Note that it may be more ap-
propriate to specify lengths and angles in terms of sensorimotor sequences of the specific
robot in case human defined units are not known. As opposed to asquare, a ’+’ sign will be
constructed as two separate strokes: start at a point, make astraight line motion (acceler-
ating and decelerating in reflective symmetry), lifting to the other line segment start point,
and again making a linear motion. Although the square and ’+’sign share the same sym-
metries, they are distinguished by their motor sequences. In fact, the square will be more
like any other polygon than like a ’+’ in terms of the actuation sequence. However, sym-
metry information (including asymmetry) provides a more abstract representation which
allows for discrete types of reasoning while retaining a tight grounding to the sensorimotor
traces. Thus, a robot can know that two squares are similar instructure, but of different
sizes.G-repsinclude information about other physical features like color, weight, material
type, etc. One issue not addressed here is the hierarchical nature of complex objects (e.g.,
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Figure 10: G-Reps Produced for a Scene.

a body has head, torso, legs and arms); however, this is addressed to some extent through
the use of the medial axis which provides a characterizationof an integral entity (e.g., a
human has arms, legs, head, and torso, all related by the various connected segments of the
3D medial axis). TheG-rep includes the following information:

• Group sequence representation of shape and process entities.

• Sensorimotor sequences of symbols (symmetries or SAX string) associated with en-
tities.

• Medial axis (along with classified characteristic points).

• Properties associated with symmetry elements. This includes not only geometric
information, but also semantic information like color, scale parameters, etc. As for
the shape itself, the essential characterization can be given in terms of what we call
theshape basis; this is the smallest part of the shape that informs the reflection and/or
rotation symmetries. Figure 11 shows the shape basis circled in the given shapes (the
second two shapes share theD4 symmetry of the first two, but their shape bases are
not a simple translation).

Figure 11:Shape Basisfor Each of Four Shapes.
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The output of the interaction with an environment such as that shown in Figure 10 is to pro-
duce symbol sequences (which encode both percept and motor symmetries) for the various
entities in the environment.

G-rep Grammar (1D) We next develop an attribute grammar [59] to define the transla-
tion semantics from signal values to symmetry symbols. Although currently restricted to
1D signals, this still allows analysis of 2D shapes by encoding their shape boundaries as
described from the FEP. The symmetry grammar,GS, is given as:

1. context-free syntax: standard grammar,G, for syntax

2. semantic attributes: symbols associated with vocabulary ofG

3. attribute domains: attribute value sets

4. semantic functions: describe how values are produced.

The productions are:
[This is a simplified description of the grammar].

( 1) F → S1S2{µ1 == µ2}
( 2)U → S1S2{µ1 < µ2}
( 3)D → S1S2{µ1 > µ2}
( 4)C → F
( 5)C → CF{constant(C) == constant(F )}
( 6)B → UD{slope(U) ≈ −slope(D)}
( 7)B → DU{slope(D) ≈ −slope(U)}
( 8)W → any permutation
( 9) P → W+W+{attributes(W 1 ≈ attributes(W 2)}
(10)Z → C | B | P
(11)R → UZD{slope(U) ≈ −slope(D)}
(12)R → DZU{slope(D) ≈ −slope(U)}
(13)R → FZF{constant(F 1) ≈ constant(F 2)}
(14)R → URD{slope(U) ≈ −slope(D)}
(15)R → DRU{slope(D) ≈ −slope(U)}
(16)R → FRF{constant(F 1) ≈ constant(F 2)}
(17)S → R | C | P
(18)A → U
(19)A → AU
(20)E → D
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(21)E → ED

Note that languages of repeated strings, as in production (11), generally require a context
sensitive grammar, but we strict the repeated string’s length, and can thus implement an
efficient parser. Constant strings can be recognized by FSAs and context free permutation
grammars exist (see [3, 11]).

In terms of our implementation, the 1D input string is first processed as described in [37];
i.e., a Piecewise Average ApproXimation (PAA) is found, andfrom this a Symbolic Ag-
gregate approXimation (SAX).GS then parses the SAX string to produce the basicG-rep.
Figure 12 shows the results of parsing a sine wave[0, 2 ∗ π], and Figure 13 shows the parse
for a square shape. The symmetry analysis produces the following symmetries for the sine
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Figure 12: Parse of a Sine Wave.
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Figure 13: Parse of a Square Shape.

Symmetry Start End Basic Symmetry Symmetry
Type Index Index Length Measure Index
periodic 1 189 63 0.7663
reflective 90 132 21 1.0000 111
reflective 27 69 21 0.9283 48
reflective 2 32 15 0.9239 17
reflective 159 189 15 0.9239 174
reflective 59 101 21 0.7334 80
reflective 121 163 21 0.7334 142

and these for the image of a square:

Symmetry Start End Basic Symmetry Symmetry
Type Index Index Length Measure Index
periodic 1 356 89 0.9775
reflective 2 98 48 0.4063 50
reflective 2 186 92 0.4168 94
reflective 2 276 137 0.3895 139
reflective 3 359 178 0.7410 181
reflective 87 359 136 0.4554 223
reflective 177 359 91 0.4673 268
reflective 265 359 47 0.4072 312
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Note that it is the symmetry axes which are important.

4 Symmetry Exploitation

Next we demonstrate two powerful ways to exploit symmetry analysis: (1) sensorimotor
reconstruction, and (2) symmetry bundles as robot affordances. (1) is the semantic compi-
lation of 1-D sensor signals into equivalence classes (i.e., determine similar sets of sensors).
This allows further analysis to determine spatial layout ofsensors, etc. (2) aims to detect
simultaneous sensor actuator symmetry sequences that leadto a useful behavior. For ex-
ample, pure translation for a two-wheeled robot results from constant (actuation) signals to
the wheels and results in a vertical translation symmetry inthe FEP. These can be grouped
to capture the notion ofmove forwardandmove backward. The experiments described here
have been performed on a Turtlebot based on an I-Create platform (see Figure 14) equipped
with cameras, IR, and a Kinect sensor.

Figure 14: Turtle Robot Platform.

4.1 Sensorimotor Reconstruction

The sensorimotor reconstruction process consists of the following steps: (1) perform actua-
tion command sequences, (2) record sensor data, (3) determine sensor equivalence classes,
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and (4) determine sensor-actuator relations. An additional criterion is to make this process
as efficient as possible.

In their sensorimotor reconstruction process, Olsson, Pierce [45, 50] and others produce
sensor data by applying random values to the actuators for some preset amount of time,
and record the sensor sequences, and then look for similarities in those sequences. This has
several problems: (1) there is no guarantee that random movements will result in sensor
data that characterizes similar sensors, (2) there is no known (predictable) relation between
the actuation sequence and the sensor values, and (3) the simultaneous actuation of multiple
actuators confuses the relationship between them and the sensors.

To better understand sensorimotor effects, a systematic approach is helpful. That is, rather
than giving random control sequences and trying to decipherwhat happens, it is more ef-
fective to hypothesize what the actuator is (given limited choices) and then provide control
inputs for which the effects are known. Such hypotheses can be tested as part of the devel-
opmental process. The basic types of control that can be applied include: none, impulse,
constant, step, linear, periodic, or other (e.g., random).

Next, consider sensors. Some may be time-dependent (e.g., energy level), while others may
depend on the environment (e.g., range sensors). Thus, it may be possible to classify ideal
(noiseless) sensors into time-dependent and time-independent by applying no actuation and
looking to see which sensor signals are not constant (this assumes the spatial environment
does not change). Therefore, it may be more useful to not actuate the system, and then clas-
sify sensors based on their variance properties. That is, inrealistic (with noise) scenarios, it
may be possible to group sensors without applying actuationat all. The general symmetry
transform discovery problem for sensorimotor reconstruction is: Given two sensors,S1 and
S2, with data sequencesT1 andT2, find a symmetry operatorσ such thatT2 = σ(T1).

Using the symmetries described above, we propose the following algorithms.

Algorithm SBSG: Symmetry-based Sensor Grouping

1. Collect sensor data for given period
2. Classify Sensors as Basic Types
3. For all linear sensors

a. Group if similar regression error
4. For all periodic sensors

a. Group if similar P and C
5. For all Gaussian sensors

a. Group if similar signals
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This algorithm assumes that sensors have an associated noise. Note that this requires no
actuation and assumes the environment does not change. Finally, the similarity test for the
above algorithm depends on the agent embodiment.

Algorithm SBSR: Symmetry-based Sensorimotor Reconstruction

1. Run single actuator and
collect sensor data for given period

2. For each set of sensors of same type
a. For each pair

i. If translation symmetry holds
Determine shift value
(in actuation units)

This determines the relative distance (in actuation units)between sensors. E.g., for a set of
equi-spaced range sensors, this is the angular offset. We have demonstrated this algorithm
elsewhere [25].

Any experiment should carefully state the questions to be answered by the experiment and
attempt to set up a valid statistical framework. In addition, the sensitivity of the answer to
essential parameters needs to be examined. We propose to address grouping correctness:
What is the correctness performance of the proposed groupinggenerator? This requires a
definition of correctness for performance and we propose thefollowing (for more details,
see [23]):

Correctness Measure: Given (1) a set of sensors,{Si, i = 1 : n} (2) a correct grouping
matrix,G, whereG is ann by n binary valued matrix withG(i, j) = 1 if sensorsSi andSj

are in the same group andG(i, j) = 0 otherwise, and (3)H ann by n binary matrix which
is the result of the grouping generator, then the grouping correctness measure is:

µG(G,H) =
n

∑

i=1

n
∑

j=1

[(δi,j)/n
2]

δi,j = 1 if G()==H(); 0 otherwise

We performed experiments with four types of physical sensors: microphone, IR, camera
and range (the latter two from a Kinect) to validate the proposed approach. Data was taken
for the static case (no actuation). The microphone providedone data stream, the IR was
used to make 12 data streams, while the camera and range data were taken from 625 pixel
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subset in the images. Thus, a total of 1,263 1D sensor data streams were analyzed. Fig-
ure 15 shows sample data from a camera and the microphone, as well as their histograms.
Figure 16 shows the grouping matrix for similar sensors,G(i, j) == 1 means sensorsi

Figure 15: Trace and Histogram of a Pixel Data Stream (left);Trace and Histogram of the
Microphone Data Stream (right).

Figure 16: Grouping Matrix (White indicates Similar Sensor).

andj are similar. The left side of the figure shows the 12x12 group of IR sensors (upper
left) and the two 625x625 groups of camera and range sensors.The right side of the figure
zooms in to show the 1x1 group (upper left) of the microphone sensor. The performance
of this grouping depends on a threshold, and we looked at the impact on the correctness
measure for a wide range of threshold value. The result is that the grouping correctness
measure was above 97% for all threshold values except at the very low and very high end.

4.2 Concept Formation

A low-level concept is formed with the discovery of a coherent set of sensor data exhibiting
symmetry. We demonstrate this on real 2D camera data from therobot’s vision sensor (see

23



Figure 17). The first step in this process is to segment the image to obtain object shapes
(boundaries) which can then be converted to 1D signals (in polar form) and parsed for
symmetries. A simple k-means clustering algorithm on the HSV transform of the origi-
nal image segments objects based on color, and object boundaries in different clusters are
obtained by using the gradient (edge) map of the original image. These 2D boundaries
are then converted to polar images from which 1D signals can be extracted to obtain the
SAX representation which is the input to the symmetry detector. The symmetry detector
successfully finds the periodic and reflective symmetries in3 out of 4 objects in the image
which are shown as vertical red lines in Figure 17. (Due to thesimplicity of our image
segmentation code, boundaries may not be detected well enough for some objects to obtain
good enough 1D SAX signals for symmetry detection; the book that is missed presents two
surfaces and this causes a poor segmentation. Implementingrobust image segmentation
techniques using multisensor data (e.g., range) would helpsolve this problem, and that is a
part of our future work.)

Figure 17: Symmetry Detection in Bookshelf Objects.

The following symmetries were detected in the bookshelf objects corresponding to the
numbered segments.
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Object 3 Start End Basic Symmetry
Symmetry Type Index Index Length Measure
periodic 1 270 90 0.5000
reflective 2 20 9 0.3497
reflective 2 88 43 0.4241
reflective 68 90 11 0.4152
reflective 2 176 87 0.4627
reflective 90 110 10 0.6862
reflective 87 179 46 0.4759
reflective 157 179 11 0.6412

Object 4 Start End Basic Symmetry
Symmetry Type Index Index Length Measure
periodic 1 270 90 0.6000
reflective 2.0000 42.0000 20.0000 0.5902
reflective 2.0000 90.0000 44.0000 0.6079
reflective 36.0000 102.0000 33.0000 0.4067
reflective 3.0000 179.0000 88.0000 0.6802
reflective 62.0000 164.0000 51.0000 0.3894
reflective 91.0000 179.0000 44.0000 0.4098
reflective 139.0000 179.0000 20.0000 0.5495
reflective 171.0000 179.0000 4.0000 0.5698

Object 7 Start End Basic Symmetry
Symmetry Type Index Index Length Measure
periodic 1 180.0000 90.0000 0.4333
reflective 9.0000 49.0000 20.0000 0.3173
reflective 2.0000 88.0000 43.0000 0.3473
reflective 74.0000 108.0000 17.0000 0.8864
reflective 111.0000 159.0000 24.0000 0.6126
reflective 136.0000 168.0000 16.0000 0.3159
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We are able to detect the reflective axes of objects close to the expected angles, as is evident
from above results. The reflective symmetry axes detected inthe previous step characterize
the symmetry of objects; Object 4 is characterized asD4 while Objects 3 and 7 are de-
termined to beD2 (note that each object has its own shape basis set, etc.). Although we
propose suchG-repsas direct representations for cognition, such results can also provide
advantages to other approaches. For example, the T functionof an OAC would benefit
from an attribute space augmented with such symmetry descriptors, particularly, during
execution of a particular action on an object. Interactionsbetween robot end effectors and
world objects can be well defined in terms of actions (E) over T, and expected outcome
(M), if certain attributes of those objects (e.g., symmetry groups) are known. Consider the
action“Push a cube in a straight line without effecting a rotation onit” which requires the
robot to push a cube to move it straight without rotating it. Knowing the symmetry axes of
the cube allows this whereas pushing at any point away from these axes induces a torque
and hence a rotation. Symmetries also provide the basis for structural bootstrapping: if a
robot has formed the concept that a Dihedral Group 4 symmetry(D4) object, like a square,
stays invariant under any multiples of 90◦ rotation about its center of mass, or being flipped
about its symmetry axes, the robot can then predict that the result of a similar action car-
ried out on any other object having aD4 symmetry would be the same. Concepts like these
help identify similar or dissimilar objects, and can be useddirectly as a representation or
to augment other approaches (like OACs) and therefore lends itself to learning interactions
between robot and the world.

4.3 Symmetry Bundles as Affordances

Once sensorimotor data is converted to symmetry symbol sequences, they must be filtered
by the effects that they afford. This may also be keyed to 3D space group symmetry (affine)
operations (translation, rotation), and grounded in the particulars of the objects involved.
As an example of some simple affordances, consider the following two.

Figure 18: Polar Image Optical Flow Method to Detect Pure Translation.
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Translation For our two-wheeled Turtle robot, if constant and equal torques are applied
to the two wheel motors, then the motion gives rise to a focus of expansion image in the
direction of motion. Figure 18 shows how this produces a columnar translation symmetry in
the polar image in that all motion is upward. To determine this, motion direction similarity
is used.

Rotation Constant but opposite torques on the two wheels results in a periodic translation
symmetry in image or range data. That is, a pixel produces a periodic sequence of values,
where the period is related to the rotational speed. Rotationshows up as a translation
(periodic) in the polar image.

Thus, by setting up innate mechanisms to look for combinations of symmetric (e.g., con-
stant, linear, periodic, etc.) actuator sequences that result in specific symmetries in the
sensor data, the robot will be able to find useful behaviors.

A robot learns affordances as follows: it sends control signals to its actuators which imme-
diately start receiving a stream of sensory signals (e.g., from cameras, odometers, micro-
phones, etc.). It is useful to find relations between these sensory and control signals, and to
characterize how one varies with respect to the other when interesting patterns or invariants
occur. The sensor-actuator signal sets are processed through the Symmetry Engine (SE)
architecture to find invariances, if any, and store them assymmetry bundles(see below);
the robot can re-use that knowledge should it encounter a similar situation again; this may
form the basis for structural bootstrapping [27]. Also, certain sensor signals can be better
analyzed if they are first transformed to another representation in which it is easier and
more efficient to identify certain forms of invariance.

4.3.1 Symmetry Bundles

A Symmetry Bundleis a combination of

1. The sensorimotor or transformed signals of a robot’s sensors and actuators.

2. The operator which transforms the signal into a representation where the symmetry
exists.

3. The corresponding symmetries observed in the resulting signals.
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Sensor/Actuator Signals (Sij) These consist of the 1-D, 2-D or 3-D actuator and sensor
signals (samples) produced or received during a specific behavior. Symmetry bundles with
no actuation signals are calledactuation-free symmetry bundles.

Transform Operator (T ) In the simple translation behavior described above,T is the
transformation of a camera image to the polar image followedby a histogram of the motion
direction angles.

Symmetry (Ψ) A symmetry is one of the 1-D, 2-D or 3-D signal symmetries defined
above. In the case of the translation behavior, the symmetryfor the both left and right
wheel actuation would be the same 1-D constant signal, whilethe symmetry in the polar
image would be the constant angle of motion direction (upward in each column).

We now describe in more detail the theory behind the translation behavior scenario. As-
sume a perspective projection camera model and a differential drive (two-wheeled) robot
(see Figure 14) that undergoes various motions (actuations) which cause a change in its
video (sensor) signal. We use the perspective projection theory given in [20] and [67]. We
now describe in more detail the theory behind the translation behavior scenario. Assume
a perspective projection camera model and a differential drive (two-wheeled) robot (see
Figure 14) that undergoes various motions (actuations) which cause a change in its video
(sensor) signal. We use the perspective projection theory given in [20] and [67]. Figure 19
depicts the perspective projection model and the simplifiedderivation can be stated as fol-
lows.

A point in the worldPw is mapped to a point in the image(xim, yim) as:

u− ox = −fx
r11X

w + r12Y
w + r13Z

w + tx
r31Xw + r032Y w + r33Zw + tz

(1)

v − oy = −fy
r21X

w + r22Y
w + r23Z

w + ty
r31Xw + r32Y w + r33Zw + tz

(2)

where,sx, sy is the pixel size in the horizontal and vertical direction, respectively,fx = f

sx

is the length in horizontal pixel units,fy = f

sy
is the length in horizontal pixel units,f is

the focal length, and(ox, oy) is the image center.

The intrinsic parameters are embedded in (2). Neglecting the radial distortion caused by
the lens, we can define the intrinsic and extrinsic transformation matricesMint andMext,
respectively, as
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Figure 19: Camera Model.

Mint =





−fx 0 ox
0 −fy oy
0 0 1





and

Mext =





r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz





Perspective projection can now be defined as:





x1

x2

x3



 = MintMext









Xw

Yw

Zw

1









(3)

If P ′ = [x, y, z]T is the image point andP = [X, Y, Z]T is the world point, then:

x =
f

Z
X, y =

f

Z
Y (4)

29



4.3.2 A Symmetry Bundle Example: Pure Translational Motion

Here we assume the camera is moving forward in the direction of its optical axis. A sym-
metry bundle for this motion can be produced as follows.

Actuation and Sensor Signals The actuation signals are constant and small values so
that the robot moves forward slowly. The sensor signal is histogram of motion directions in
the polar images derived from the sequence of camera images acquired during the motion.

Transform Operator The transform operator is the polar transform (defined above) fol-
lowed by the angle histogram operation.

Symmetries Three symmetries are found: (1) 1-D constant actuation signal for left wheel,
(2) 1-D constant actuation signal for right wheel, and (3) vertical translation for all pixels
in the polar image (i.e., similar motion direction angle ofπ

2
radians.

We now show that the vertical motion symmetry holds in the polar image for pure transla-
tional motion of the camera on the robot. We have from (4),

x = f

Z
X, y = f

Z
Y

Assuming that the focal length of the cameraf is 1, we have
x = X

Z
, y = Y

Z

Therefore, if we move the camera forward byδz, the image points in the new image will
bex′ = x

z−δz
, y′ = y

z−δz
.

Note that here we are assuming the camera frame and world frame to be the same, hence
thez axis from the optical center to the world reference (and the world point) is positive.
Therefore a shift ofδz in the direction of the world point should decrease thez value by
that amount, given byz − δz, assumingδz > 0. The vector representing the movement of
the image pixels can be defined as,




x
z−δz

− x
z

y

z−δz
− y

z



 =





xδz
z(z−δz)

yδz

z(z−δz)





30



Its direction is then given by
arctan[( yδz

z(z−δz)
)/( xδz

z(z−δz)
)] = arctan y

x

This means that the motion of each point in the polar image is along the column corre-
sponding to the angle that point makes with the epipole. The amount of movement of the
pixel is given by the magnitude of this vector as

r = (
√

x2 + y2) (
δz

z(z + δz)
) (5)

Notice that the movement of each point in the original cameraimage is along a vector
which projects out from the focus of expansion in the image (also called as theepipole).

Figure 20 (a,b) shows two images from a translation sequence, while (c) shows the motion
vector angle histogram for this pair. As can be seen, the majority of motion vectors are
aroundπ

2
radians.

Polar Form of Image 1 Polar Form of Image 2
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Figure 20: Pure Translation Sequence (a) and (b) and Resulting Motion Vector Angle His-
togram (c).

Although we do not exploit it here, note that range segmentation is possible for pure transla-
tional motion when the image is converted to log-polar form.The transform from Cartesian
coordinates,(x, y), to log-polar,(ρ, θ), can be given as [74]:

ρ = log
√

(x− xc)2 + (y − yc)2 is the distance of that point from the center of expan-
sion(xc, yc), and

θ = tan−1 y−yc
x−xc

is the angle.
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In case of a forward translating camera, the image points in consecutive images move
radially outwards from the center.

We know the distanceρ for this movement. This difference in the radial movement -
assuming the epipole is chosen as the center for log-polar transformation - can be derived
as follows.

ρ1 = log
√

(x
z
)2 + (y

z
)2 where x

z
and y

z
is the world point projected onto the image and

ρ2 = log
√

( x
z−δz

)2 + ( y

z−δz
)2 where x

z−δz
and y

z−δz
is the world point projected onto the

image after movingδz distance towards the world point.

The upward shift of this point in the log-polar image can be given as

ρ2 − ρ1 = log
√

( x
z−δz

)2 + ( y

z−δz
)2 − log

√

(x
z
)2 + (y

z
)2

= log
√

x2 + y2 − log(z − δz)− log
√

x2 + y2 + log z

= log z − log(z − δz)

This final value is a constant for all world points having the samez coordinate, and can
thus be used to perform range segmentation. This could, in fact, provide a motivation for a
robot to select pure translation behavior.

Perspective projection is demonstrated in Figure 21 where the paths followed by different
image points are given by the red and green curves. In this experiment, the camera is
rotated about its optical axis in the horizontal plane. A point with a greaterz-distance (and
constantx andy distance) from the optical center will be projected closer to the image
center than another non-collinear point which has a smallerz-distance, sincez is in the
denominator.

4.3.3 Rotational Motion - Y Axis

Using equation (3) we can represent any world point visible to the camera, on the image
plane. Assume that initially the camera reference frame (C) and the world reference frame

32



Figure 21: Lab Experiment.

(W ) are coincident and aligned, i.e.W ≡ C. However, if the camera rotates about the Y
axis ofW (or C), we have a rotation, sayR, applied to the camera frame (Note that there
is no translation involved if the camera is rotated about itsoptical center, since the origin
of both the camera frame and the world frame stay at the same position). This gives us





x1

x2

x3





imagepoint

= R MintMext









Xw

Yw

Zw

1









worldpoint

(6)

We use Euler angles [15] which differ from rotations in the Euclidean space in the way
they express the rotations in terms of the moving frame; To rotate frameA toB we can use
Euler angles rotation sequence asA

BRZ′Y ′X′(α, β, γ) also denoted as,

A
BR = A

B′R B′

B′′R B′′

B R,

orRZ(α) RY (β) RX(γ)

=





cosα − sinα 0

− sinα cosα 0

0 0 1









cosα 0 − sinα

− sinα 0 cosα

0 0 1









0 cosα − sinα

0 − sinα cosα

0 0 1





Since our camera rotates only about theY axis, we can setRZ(α) andRX(γ) to the identity
which yields
A
BRZ′Y ′X′(α, β, γ) = RY (β)

Therefore we have, from (6),
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x1

x2

x3





image

=





cosα 0 − sinα

0 1 0

− sinα 0 cosα



MintMext









Xw

Yw

Zw

1









world

(7)

Equation (7) gives the projection of a world point to an imagepoint given that the camera
has rotated by an angleα counterclockwise about theY axis.

An Euler angle rotation aboutZ−Y −X is equivalent to a Euclidean rotation about the
fixed axes taken in opposite order (viz.X−Y − Z), so this method can be used to rotate
the camera instead of the standard rotation method.

Assuming for the moment that the camera reference frame and world reference frame are
aligned, we haveMint = I andMext = I and therefore





x1

x2

x3





image

=





cos β 0 − sin β
0 1 0

sin β 0 cos β









Xw

Yw

Zw





world

(8)

=





Xw cos β − Zw sin β
Yw

Xw sin β + Zw cos β





world

(9)

Assumeu = x1

x3
andv = x2

x3
, therefore from (9) we have

u =
Xw cos β − Zw sin β

Xw sin β + Zw cos β
(10)

v =
Yw

Xw sin β + Zw cos β
(11)

From (10) and (11) we can see that the points that follow a straight line in the image plane
(i.e., v = constant) are the points withYw = 0 assuming the image center as the origin.
For these points the fact thatZw changes does not matter. For all other points the paths -
followed by points as the camera rotates - change as shown in Fig. 4, which is generated
using simulation and (10) and (11).

The path followed by a point in the image corresponding to a world point (Y = 0, X =
±x), is a straight line, and for all other world points (Y = ±y,X = ±x), the path becomes
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Figure 22: Point motion: As Y values changes from 0 towards positive or negative, the path
followed by the point tends towards a parabola. For Y=0 the path is a straight line.

a parabola. This simple illustration allows us to see the invariance for this type of camera
rotation; a point (Y = 0, X = ±x) will maintain aY -axis invariance for a camera rotating
about theY -axis in theXZ-plane.

4.3.4 Rotational Motion - X Axis

For rotation about theX-axis we have the rotation matrix

R =





1 0 0
0 cosα − sinα
0 sinα cosα





Therefore, from (6) we have the transformation (assuming again that camera reference
frame and world reference frame are coincident and aligned)





x1

x2

x3





image

=





Xw

Yw cosα− Zw sinα
Yw sinα + Zw cosα





world

(12)
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and

u =
x1

x3

=
Xw

Yw sinα + Zw cosα
(13)

v =
x2

x3

=
Yw cosα− Zw sinα

Yw sinα + Zw cosα
(14)

From (13) and (14) we can see that the points that follow a straight line in the image plane
(i.e.,u = constant) are the points withXw = 0 assuming the image center as the origin.

Figure 23: Point motion: As X values changes from 0 towards positive or negative, the path
followed by the point tends towards a parabola. For X=0 the path is a straight line.

4.3.5 Rotational Motion - Z Axis

For rotation about theZ-axis we have the rotation matrix

R =





cos γ − sin γ 0
sin γ cos γ 0
0 0 1





Therefore, from (6) we have the transformation (assuming again that camera reference
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frame and world reference frame are coincident and aligned)





x1

x2

x3





image

=





Xw cos γ − Yw sin γ
Xw sin γ + Yw cos γ

Zw





world

(15)

and

u =
x1

x3

=
Xw cos γ − Yw sin γ

Zw

(16)

v =
x2

x3

=
Xw sin γ + Yw cos γ

Zw

(17)

From (16) and (17) we can see thatZw distance remains constant. AssumingZw = c, the

Figure 24: Point motion: As Z increases along with camera rotation about Z-axis, the world
point which follows a circular path in the image plane converges to a point.

equations foru andv are reduced to the 2-D rotation of a point in theX − Y plane, which
effectively rotates a vector about the origin (therefore tracing a circle).

Thus, rotation of the camera about theZ-axis will result in the points in the image moving
in a circle as showin in Fig. 6. As Z increases, because of perspective projection the circle
will become smaller and smaller and finally converge to a point.
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4.3.6 Circular Motion - Single Time Step (Continuous)

Dudek et al. have explained the theory of a differential drive robot in [18]. Continuous
circular motion can be defined using Fig. 7 as follows.

(a) Uniform circular motion. (b) Angle of rotation.

Figure 25: Circular Motion

Consider the following scenrio: A robot moves along a circular path (shown by the arc).
Its direction of velocity at(x, y) is given by~v. Every point(x, y) on this arc is at a distance
of r from the center, which is also the origin and coincides with the world reference frame.
If ~r is defined as the vector from the origin to any point on the circle, at any angleθ, the
coordinates of that point can be given as

x = r cos θ (18)

y = r sin θ (19)

Therefor~r can be given by
[

r cos θ
r sin θ

]

Note that the point(x, y) happens to be the origin(0, 0) in the camera reference frame.

Fig. 8 shows the camera, initially atT in the tangential direction~v, move on the circum-
ference of a circle to pointT ′ in the tangential direction~v′. It can be easily proven that it
has rotated anti-clockwise by an angleθ; Consider the polygonOTPT ′. We know that the
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angles of this polygon sum up to360◦, therefore∠TPT ′ = 180 − θ. We also know that
α + β = 180 and thatα = ∠TPT ′. Thereforeβ = 180− α = 180− (180− θ) = θ

Fig. 9 gives a 3D illustration of the circular motion as one coordinate frame (the cam-

Figure 26: Uniform circular motion.

era frameOC) moving with respect to another (the world frameOW ). Initially OC is at a
distance ofr with respect toOW on theXW axis.OC the moves along the circumference
of a circle with radiusr andOW as its center. [Since theOC frame is the camera frame,
conventionally, the−ZC axis points towards the world points.]

Since we have the world point in the fixed frameOW , we can use the perspective pro-
jection equation after aligningOW with the camera frameOC ’. To achieve this we need
the folllowing set of rotations and a translation

1) Anti-clockwise rotation ofOW about theXW axis (giving usOW ′

which aligns with
OC) by an angleπ

2
and translation by~r to coincide with the originOC′

, so that theZW axis
coincides withZC .

2) Anti-clockwise rotation ofOW ′

by and angleθ about theY W ′

axis to give usOW ′′

.

The transform matrix for the rotation fromOW → OC can be given by

RXW (−π
2
) =





1 0 0
0 cos(π

2
) sin(π

2
)

0 − sin(π
2
) cos(π

2
)





and the translation can be given as
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Tx = −r cos(θ)
Ty = −r sin(θ)
Tz = 0

So the combined transform matrix for this transformation would be

[R T ]X =









1 0 0 −r cos(θ)
0 cos(π

2
) sin(π

2
) −r sin(θ)

0 − sin(π
2
) cos(π

2
) 0

0 0 0 1









(20)

The second rotation givingOW ’ → OW ” can be given as

RY W ′ (θ) =





cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)





And since we are not translating in step 2), the translation can be given as
Tx = 0
Ty = 0
Tz = 0

Hence the combined transform matrix can be given as

[R T ]Y =





cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0



 (21)

A world pointP can then be transformed using





x1

x2

x3



 = [R T ]Y [R T ]X









Xw

Yw

Zw

1









(22)

and the image coordinatesu, v can be given (by perspective projection) as

u =
x1

x3

, v =
x2

x3

(23)

Equation (22) and (23) gives us the followingu andv:
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u =
(X − r cos θ) cos θ − Y sin θ

−(X − r cos θ) sin θ − Y cos θ

(24)

v =
Z − r sin θ

−(X − r cos θ) sin θ − Y cos θ

and

u

v
=

(X − r cos θ) cos θ − Y sin θ

Z − r sin θ
(25)

Consider a point directly in front of the camera (i.e., on the optical axis at some finite dis-
tance from the optical center). This point -PW = [XW , Y W , ZW ]T - will have its world
coordinates asPW = [r, Y W , 0]T , where

1) XW = r, since the point is at the same distance alongX-axis as the camera
2) Y W is at some finite distance from the optical center of the camera
3) ZW = 0 since the point is directly in front of the camera
4) − ZC is theZ coordinate of the point in camera frame

As the camera moves in a circular fashion, a world pointPW = [r, Y W , 0]T traces the
following path in the image plane (Fig. 7).

Figure 27: Path traced by a world point in the image plane (V axis is scaled).
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In this case, equation (25) becomes

u

v
=

(r − r cos θ) cos θ − Y W sin θ

−r sin θ
(26)

Whenθ → 0, cos θ → 1 and we can write (26) as

limθ→0
(r−r cos θ) cos θ−Y sin θ

−r sin θ

= limθ→0
−Y W sin θ
−r sin θ

= Y W

r

Whenθ → π
2
, cos θ → 0, sin θ → 1 and we can write (26) as

limθ→π
2

(r−r cos θ) cos θ−Y W sin θ

−r sin θ

= limθ→π
2

−Y W

−r
= Y W

r

Whenθ → π
4
, cos θ = sin θ = 0.7071 = α (constant) and we can write (26) as

limθ→π
4

(r−rα)α−Y Wα

−rα
= limθ→π

4

(r−rα)−Y W

−r

Substituting the value ofα we get

u
v
= (r−r(0.7071))−Y W

−r

If we assumer << Y W and0.7071 << Y W , we haveu
v
≈ Y W

r

We can see that given a point on an optical axis of a camera directly in front of it, the
line along which the point moves as the camera rotates in circular fashion has a slope( v

u
)

that can be given by the ratio of the radius of the circle to theworld Y distance,Y
W

r
.

The following experiment (Fig. 8) shows how the said point behaves when the camera
is moved along the circumference of a circle.

5 Conclusions and Future Work

We propose symmetry theory as a basis for sensorimotor reconstruction in embodied cog-
nitive agents and have shown that this allows the identification of structure with simple and
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Figure 28: Path traced by a world point in the image plane.

elegant algorithms which are very efficient. The exploitation of noise structure in the sen-
sors allows unactuated grouping of the sensors, and this method works robustly for physical
sensor data. Symmetry bundles are also proposed as an approach for affordance discovery.

Several directions remain to be explored:

Structural Bootstrapping OnceG-repscan be synthesized for affordance, then boot-
strapping can be accomplished as follows. Given aG-rep with group sequenceG1 ≀ G2 ≀
. . . ≀ Gi ≀ . . . ≀ Gn, then it is abstractly the case that any group equivalent entity to Gi may
be substituted in its place as a hypothesized newG-rep: G1 ≀ G2 ≀ . . . ≀ Ge ≀ . . . ≀ Gn. Of
course, this will need to be checked in the real world. E.g., ayoung child knows that it can
get into a full-sized car; when presented with a toy car, the child may try to get into it, not
realizing that there is a problem with scale. We plan to explore these issues in conjunction
with colleagues working on OAC’s. Moreover, as pointed out earlier, symmetries can serve
as strong semantic attributes in learning OAC prediction functions.

Evolving Communication Mechanisms G-reps provide physical grounding for a robot;
i.e., a link between internal categories and the external world. In order to achieve social
symbol grounding (see Cangelosi [12]), robots must agree to some shared symbols and
their meaning. Schulz et al. [60] propose Lingodroids as an approach to this, and describe
experiments in which a shared language is developed betweenrobots to describe places
(toponyms) and their relationships. Speakers and microphones are used for communica-
tion, and good success was achieved. We propose to apply thismethod to attempt to have
robots develop a shared language for G-reps and behaviors. In particular, we will explore a
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What is this?game in which robots will exchange G-reps for specific objects or behaviors
(e.g., move straight forward) based on their individual G-reps. Measures of success can
be based on the ability to perform the requested behaviors, or to trace or circumnavigate
specific objects.

Figure 29: The complete description of the medial axis structure was defined by Giblin[21].
Our algorithm computes all critical points and characterizes them. On the left the creation
points are the endpoints of the medial axis, while the junction points are where three curves
of the medial axis meet. The curves of the medial axis are traced using an evolution vector
field. No offsets or eikonal flows were computed. On the right the visible key points are
the where the boundary of the medial axis is closest to the object boundaries, fin points
(the ends of the junction curves) and 6-junction points, where junction curves meet. The
bounding crest curves are traced, the junction curves and the sheets are traced with the
algorithm’s evolution vector fields as functions of time. Noeikonal offsets are computed.

Symmetry Axes Although generally not explicit in sensor data, symmetry axes are also
important cognitive features. Blum introduced the medial axis transform in [4], and much
subsequent work has been done in terms of algorithms for its determination (also see Brady
[7]). The medial axis gives the morphology of a 3D object and can be used to determine the
intrinsic geometry (thickness) of both 2D and 3D shapes. Since it is lower dimensional than
the object, it can be used to determine both symmetry and asymmetry of objects. In previ-
ous work our colleagues have obtained results on tracking the distance between a moving
point and a planar spline shape [14, 64], and computed planarVoronoi diagrams between
and within planar NURBS curves[63] (see Figure 29). However, in continuing the search
for methods that allow us to characterize the correct topology as well as shape of the planar
and 3D medial axis, an approach is developed that used mathematical singularity theory
to compute all ridges on B-spline bounded surfaces of sufficient smoothness[42], and then
extended the results to spline surfaces of deficient smoothness[41] and also to compute
ridges of isosurfaces of volume data[44]. Most recently this approach has been extended
to compute the interior medial axis of regions inR3 bounded by tensor product parametric
B-spline surfaces[43]. The generic structure of the 3D medial axis is a set of smooth sur-
faces along with a singular set consisting of edge curves, branch curves, fin points and six
junction points. We plan to exploit these methods to determine topological and metrical
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symmetries. Although useful for a number of applications, one of high importance here is
for grasp planning; colleagues in the European Xperience project team (Przybylski et al.
[54] have recently developed a grasp planning method based on the medial axis transform.
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